Comments on “Federated Square Root Filter for
Decentralized Parallel Processes”

In N. A. Carlson’s recent article [1, p. 518, col. 1,
para 1}, he refers to my prior work [2] (and by direct
extension its refinement in [3]) and its conceptual
decentralized filtering structure ([3, Fig. 8]) as having
no.theoretical justification for the decentralized
filtering aspect since no mathematical basis for it is
offered in [2] (or [3]). It is true that the underlying
theory for decentralized filters was not specifically
worked out in detail again in [2] or [3] (however,
the essence was presented in abbreviated form
in [3, sect. IVC] and [2, sect. 4.3] with supporting
implementation details specified in [3, sect. IV] and [2,
sect. 4.2] because my primary thrust in [2 and 3] was
to elucidate the recently developed failure detection
amelioration aspect, to convey the new results for
real-time managing of this aspect, and to show how
it fit within the context of existing decentralized
filtering as a natural melding with my prior failure
detection experience (as can be gleaned from [17-20]
and from the further references cited in [4-6}, and
from my primary military application experience in
this failure detection area for submarine navigation,
as specifically cited in the references and footnotes
of [20]). However, the underlying theory for my
approach to decentralized filtering was worked out
in the predecessor references that I cited in [2, 3],
being [7-9] here (also see [11]) and in particular [10],
which Dr. Carlson and I jointly coauthored (along
with Dr. Jerome Sacks), a document which originally
provided all the details. As an outside consultant to
Intermetrics in late 1983, Dr. Carlson also monitored
a solicited Army proposal response P-7294 that I did
at Intermetrics for AVRADCOM on this topic of
decentralized filtering. Almost all the salient points
conveyed in [1] regarding navigation applications of
decentralized filters and their subsequent robustness
to subsystem failures were originally made by me in
that proposal as the natural culmination of my earlier
investigation into these aspects in [9, Sect. 1.5 and 5],
where the first conclusions were drawn on the joint
utility of decentralized filters in general multisensor
navigation applications. I felt no compulsion to
rehash the existing theory of decentralized filtering
in [2 and 3] since it had already been admirably
developed and clearly reported (as it evolved and was
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refined) by J. L. Speyer (1979), T. S. Chang (1980),

A. S. Willsky et al. (1982), and Levy et al. (1983) in

a form that is applicable to the time-varying case
encountered in navigation applications,! all being
references cited in [1] (and also in [2, 3], where I

gave proper credit and additionally cited a precedent
within the abbreviated description of the principles

of operation of decentralized filters in [3, sect. IV.C]
and [2, sect. 4.3]). An overview explanation of how
the inherent cross correlation can be taken into
account and compensated in appropriately combining
several local estimates to obtain the optimal global
estimate ([21, pp. 185-189]) along with providing
illustrative simplified low-order simulation examples
for variations of this Speyer approach for navigation
applications (viz., JTIDS RelNav) were offered in
1981-1982 by G. Gobbini and W. S. Widnall (and
later by J. E Kelley), respectively, in [3, ref. [136, 137,
and 140]]. Widnall enjoys international renown as a
seasoned navigation practitioner (e.g., [22-24]). While
Carlson claims ([1, sect. 1, at end of para. 3}]) that no
decentralized filter formulations have been implemented
in real-time for navigation, as apparant justification for
his starting from scratch and building up the theory of
decentralized filtering from first principles again. I cite
four more precedents on [3, p. 101] and [3, ref. [98,
152, 197}] and in C-4 Trident SINS/ESGN submarine

1Carlson asserts in [1, p. 517, para. 3] that this approach (that I
find fully competitive to Carlson’s and perhaps even better) was
“not suitable or practical for real-time estimation of time-varying
systems, due to restrictive system assumptions or large data transfer
requirements” but Carlson doesn’t get into any specifics on these
issues in {1] (that would perhaps allow such assertions to be
refuted item by item). While I have a history of being reasonably
selective, discriminating, and critical both in the failure detection
arena (e.g., [3, Table 1] and [2, Table 2-1]) and in the area of
decentralized filter formulations (e.g., [9, Table 3-1] and [8, Table

1}) especially as they relate to navigation applications, as well as
for critically reviewing reduced-order filter methodologies {25, pp.
75-83]; I have not encountered any restrictive assumptions in the
Speyer/Chang/Willsky/Levy, et al. approach that were not ultimately
loosened sufficiently in the later installments of the theoretical

“development. While Willsky et al. (1982) and Levy et al. (1983)

chose to expedite the reporting of their new ground-breaking results
for decentralized filtering by first rigorously deriving these results

in their shortest time-invariant form (while explicitly indicating
applicability to time-varying situations as well) and Levy et al.
justified their new installment of results using the most expedient

" path of a Scattering Theory derivation; it is well-known that Kalman

filser results all carry over to apply to time-varying systems in general,
with alternative approaches existing for supplying detailed proofs
(as well-known to be available and that can be filled in using any
one of the seven different approaches: 1) Orthogonal Projections
(in a Hilbert Space), 2) Recursive Least Squares, 3) Maximum
Likelihood, 4) Minimum Variance, 5) Conditional Expectations, as
all demonstrated in five alternative centralized filter derivations [26,
ch. 7], or the two additional approaches: 6) Three Martingales (of
Balakrishnan (1971)), or my personal favorite (as used for deriving
decentralized filtering structures in |7, Appendix A, Sect. 2.4], and
in [9, sect. 2.2, 2.3]), 7) use of the Matrix Maximum Principle). More
will be said about appropriately tailoring Speyer’s approach to the
multisensor navigation application in the next paragraph.
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navigation, where real-time decentralized navigation
filters have been implemented.

While Speyer’s original development
(for command, control, communication, and
identification C31 applications) avoided the military
single-point-vulnerability issue of having only a central
processing node by Speyer’s cross communicating so
much information between each of the n participating
decentralized filters in the network that each filtering
node could fully reconstruct the global optimal
estimate, I recognized in [2 and 3] that this full
flexibility is not needed for the application of current
interest involving multisensor navigation fusion
in a single aircraft, so I proceeded to select for
use in [2 and 3] just the minimum subset of cross
communication required to support total synergistic
use of all the available sensor measurements for a
globally optimal estimate reconstruction to occur at
just a single node, designated to be the unification
collating filter output in [2 and 3], while each
individual constituent filter in my design of [2 and
3] still correctly cover their previously assigned
individual jurisdictions by providing the locally optimal
estimate under their operational constraints of only
being allowed to use the locally available sensor
measurements. In the event of a recognized processor
failure (where prescribed voting/tallying algorithms
are offered in [2 and 3] within the voter/monitoring
screen for recognizing underlying failures in real-time),
these local filters still correctly perform their originally
assigned function of providing locally optimal estimates
at the locally designated rate and so provide a degree
of robustness in their backup mode of operating
singly. The results of Willsky et al. ([1, ref. [3]]) and
Levy et al. ({1, ref. [4]]), respectively, provide the
flexibility invoked in [2 and 3] of the n filter nodes
having distinctly different subset system models
and different measurement source sensors and
noises (and associated analytic characterizations or
representations) and even rigorously accommodate use
of reduced-order models ([1, ref. [4, sect. V]]) within
their particular decentralized filtering framework that
I have tapped into for navigation applications. The
idea of using a single collating filter within a single
platform was deduced by me from Levy et al. ([1, ref.
[4, Fig. 8]]) and the introduction of an intermediate
voter/monitoring screen was my novel contribution in [2
and 3] (viz. [3, Fig. 8]; cf. Carlson’s almost identical [1,
Fig. 1]), which I justified there while providing details
for a practical mechanization. So my decentralized
filter formulation of [2 and 3] does have an analytic
mathematical basis, as just recounted above.

Except for [1, Fig. 1] and [3, Fig. 8] having almost
identical high level block diagram representations,
Carlson’s futuristic so-designated type B systems
do differ fundamentally from what was offered or
suggested by me for use in [2] or [3]. On a positive
note, Carlson develops the square root filter and
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information filter form of decentralized filtering

in [1], as recommended in [3, p. 105, last sentence

in col. 1] to be the next logical step that is needed

in decentralized filter development. A prior 1987
precedent [27] illustrates the mechanics of formulating
decentralized parallel filters in square root and
information form, just as Carlson has done. In a more
critical vein, however, I have great apprehension
concerning Carlson’s rype B systems, especially
regarding the sharing of initial conditions and system
process noise across n participating filters according
to his weighted-linear-combination rule using the
weightings [1, eq. (26)]: i, where

l+}_+...+_1_=1,

T T2 In
and 0 < 1/4; < 1. The main problem with use of this
scheme is that no individual filter gives the correct
answer (the correct answer being either the global or
locally optimal estimate or conditional expectation
given the measurements, as normally associated
with the output of a single centralized filter). In
Carlson’s type B framework, the correct answer is only
obtained if all participating decentralized filters are
available and all participating sensor subsystems are
unfailed. Thus, this is a larger computational burden
to implement than use of a single centralized filter
yet offers little robustness of performance in the face
of processor or sensor availability failures that would
delete the expected contribution of a constituent filter.
Hence, Carlson’s type B systems offer only drawbacks
without any apparent ameliorating benefit as an offset.
There appears to be no way (obvious or otherwise)
to extend Carlson’s type B approach (derived for
exclusively linear systems) to the nonlinear case.
The decentralized filtering formulations that T have
investigated in the past [9] and which I advocate for
use in [2 and 3] do not suffer from such weaknesses.
The target tracking applications that I have been
involved in for the last three years are inherently
nonlinear and involve Kalman filter extensions and
approximations embodied as extended Kalman filters
(EKFs) [12]. A recent independent investigation [16]
reports the details that enable use of decentralized
estimators for nonlinear systems. Regarding the utility
of Carlson’s prior square root filter formulation
[13] and its relationship to Bierman’s U — D — UT
formulation, correct but unflattering independent
assessments can be found in [14, p. 338, col. 2, prior
to sect. 2, p- 339, col. 2, next to last para., p. 342, col.
1, 2nd bullet and last para., pp. 334-5, Tables 1, 2, 3],
[15, pp. 403-404, example 7.12, Tables 7.1, 7.2].

THOMAS H. KERR
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