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ABSTRACT 

In the past, U.S. Polaris (A-3) and Poseidon (C-3) SSBNs (ballistic missile 
equipped, nuclear powered submarines) took relatively frequent navigation 
fixes at specified but clsssified periodic rates to compensate for the degra- 
dations of gyro drift-rate. However, a randomization of the fix taking was 
called for to preclude enemy deciphering of the frequency of fix-taking as the 
enemy attempts to enhance its surveillance of U.S. SSBNs. Since warm- 
standby navigation configurations (such as two complete Ships Inertial 
Navigation Systems, SINS) are usually utilized onboard U.S. SSBNs anyway 
to reap the benefit of high reliability/availability through online modular 
repair, the so-called Difference Monitoring procedure consisting of a com- 
parison of the outputs of both these available INSs was instituted in 1976 to 
randomize the fix taking for C-3 SSBNs. 

One contribution of this paper is to use existing results of Helstrom from 
level-crossing theory for the output of nonlinear operations (e.g., the RSSing 
of latitude and longitude error to obtain radial position error) to provide an 
analytically tractable theoretical model for the previous empirical procedure 
of Difference Monitoring. Using the parameters of RMS level and correla- 
tion-time of the underlying INS, this analytic model can be exploited to set 
the constant decision threshold to achieve a specified average interval 
between position fixes. A second contribution of this paper is to present an 
expression for the related variance. A comparison between actual SSBN 
patrol statistics and analytically predicted results for alternative threshold 
settings is included; however, time and navigation accuracy scales are con- 
cealed to prevent divulgence of national security information. 

Measures of SSBN detectability to enemy surveillance should apparently 
also be updated in a manner herein suggested to no longer assume SSBN fix 
taking at a periodic rate. Adoption of this suggestion enables use of an 
absolute evaluation technique (based on Pareto-optimality) already devel- 
oped and utilized as described herein as a third contribution for gauging the 
“goodness” of either randomized or deterministic SSBN fix strategies over 
and specified time epoch. Two Electrostaticially Supported Gyro Navigators 
(ESGNs) have been postulated as a candidate configuration for D-5 Trident 
II SSBNs, where Difference Monitoring will again be as appropriate as in C- 
3 Poseidon SSBNs. 

1. INTRODUCTION 

A description of the empirical procedure of Difference Monitoring, along with 
the philosophy of operation, and a summary of its experimental verification is 
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provided in the introduction to Section 2. A proposed analytical level-crossing 
model for Difference Monitoring is offered in Section 2.1, from which expressions 
are derived in Sections 2.2 and 2.3, respectively, for the mean and variance in the 
time between external position fix indications for the INS. Unclassified numerical 
results are depicted in Section 2.4, where comparisons are made between the 
expected fix intervals for alternative Difference Monitoring decision theresholds 
(and summary patrol data is displayed for further justification). 

The evolution of an analytic basis for quantifying detectability to enemy 
surveillance as it relates to the classical sweep rate measure is summarized in 
Section 3.1. This summary culminates in an expression that has a structural form 
that is compatible with the relatively recent technique of sensor schedule opti- 
mization for Kahnan filter applications (as encountered in the integrated INS 
application for SSBNs). The detailed analytical basis of both properly posing and 
solving the problem (including solution algorithms and pertinent numerical 
experience) is provided in Section 3.2. When augmented with the standard 
techniques of bicriteria optimization theory, the result is a method for quantita- 
tively trading-off the navigation accuracy gained versus the exposure to enemy 
surveillance availed through the use of alternative navaids for external INS 
position fixes. Representative quantitative results for the SINS as obtained by 
the above procedure are depicted in Section 3.3. 

2. DIFFERENCE MONITORING FOR RANDOMIZING SSBN NAVIGATION 
FIXES 

Even for the extremely accurate Inertial Navigation Systems (INS) utilized by 
SSBNs (ballistic missile equipped, nuclear powered submarines denoted as Ships 
Submersible Ballistic Nuclear) the relatively long (- months) strategic patrol 
missions make external position fixes necessary for adequate INS compensation 
of degradations in navigation accuracy due to gyro drift-rate and other sources. 
Alternative navigation fixes are available from satellite, Loran, or bathymetry 
(bottom contour map-matching via sonar), but in each case SSBN utilization 
presents an increased risk of exposure to enemy surveillance during fix taking, 
due either to the presence of antennas or to acoustic radiation. 

Explicitly, Difference Monitoring consists of computing the radial position 
divergence (by RSSing the latitude and scaled longitude divergence between the 
outputs* of the two warm-standby INSs) and comparing this test statistic to a 
fixed decision threshold (denoted herein by D). Since common external effects 
(e.g., gravity anomalies, velocity reference errors, Schuler oscillations, etc.) mu- 
tually cancel in forming INS position divergences, the crossing of the test statistic 
above the empirically specified decision threshold is an indication of essentially 
growing gryo drift that requires an external position fix to compensate. 

To preclude the possibility of both INSs drifting off together with mutually 
degraded accuracy (for example: as a consequence of uncompensated velocity 
errors or vertical deflections [and gravity anomalies] experienced in common) yet 
failing to signal for a navigation fix because their relative divergence and conse- 
quently the RSSed test statistic is still small, a maximum allowable time between 
fixes (MAXTIME) is operationally imposed2. Difference Monitoring is therefore 

* For SINS, these outputs include the standard “corrections,” as obtained from the STAistical Reset 
(STAR) filter, between reset incorporation as actuated through torquing of the SINS2. 
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used to both randomize and extend the time between fixes, thus avoiding periodic 
patterns of fixes and reducing exposure to enemy surveillance. 

The specific values (classified) of the two decision parameters, threshold level 
D and MAXTIME, had been empirically set in the past by considering distribu- 
tions of various fix interval lengths and time-RMS* accuracy errors for five actual 
representative SSBN patrols. The thresholding procedure, performed by the 
responsible organization, consisted of “first selecting arbitrary thresholds, then 
incrementing them” for each of several iterative passes over the data until 
finalized thresholds were obtained, where the sampled Circular Error Probable 
(CEP) from the five particular patrols just equaled the objective CEP spec. Prior 
to adoption by the SSBN Fleet in March 1976, the selected thresholds were 
validated-t in post-processing tests of five additional operational patrols. Because 
Difference Monitoring involved no hardware or software changes but merely a 
change in operational procedures, the usual navigation checkout and shakedown 
on a surface test ship was circumvented prior to fleet use. This short-cutting may 
perhaps have opened up the possibility for glitches to occur in its usage as further 
elaborated upon, with suggested compensation offered by the results of this 
paper. 

2.1. An Analytical Mode/ for Difference Monitoring 

While the detailed state variable truth model of a SINS (Mark 2 Mod 6 with 
either G7-B or V-7 gyros) nominally has 34 states3, reduced-order models of only 
the most significant states affecting a particular application are not uncommon 
(e.g., the so-called CON-B STAR filter uses seven states to represent the SINS, 
while the earlier issue CON-A STAR filter only used six states). In the case of 
Difference Monitoring, the simplified but adequate reduced-order model sug- 
gested for both SINS together (as a consequence of the mutual cancellation of the 
above enumerated common effects and like terms in forming divergences) is 
postulated to consist of the following two independent random processes: 

x (t’) p divergence in latitude error between the two INSs (taken 
to be a first-order Gauss-Markov process having corre- 
lation time l’] and variance uf$ (2.1-1) 

y (t’) p divergence in longitude error times (cosine of latitude as 
required to obtain units of length compatible with lati- 
tude) between the two INSs (taken to be a first-order 

* Time averages being assumed to be equal to ensemble averages as a standard ergodicity assumption, 
appears to be inappropriate in systems with undamped oscillations (such as the Schuler oscillations 
encountered in navigation system linear error models) since oscillatory linear systems are nonstation- 
ary (ex. 45, pp. 167-168 of Ref. 14 and pp. 158-161 of Ref. 39) and consequently nonergodic. Therefore 
previous threshold setting procedures may perhaps be viewed as being somewhat empirical at best. 
t Cautions pertaining to perceived glitches in validation are extended throughout Chapter 3 of Ref. 
16. 
$ Since latitude and longitude errors of each individual SINS can be obtained as a linear combination 
of the computer-frame-to-platform-frame misalignment angles, which in turn represent a single 
integration of the underlying net uncompensated gyro drift-rate errors, this modelphenomenoZogicaZLy 
represents the residual effect persisting after formation of divergences as: 

l white noise for the underlying residual gyro drift-rate errors, 
l latitude and longitude divergence errors as the serially correlated Coriolis consequence of 

integrating the above divergence gyro drift-rate noise model, 
. use of a factor of & in the standard deviations of each position difference as if the two identical 

INSs were independent. 
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Gauss-Markov process having correlation time TZ and 
variance (~22). (2.1-2) 

For conservatism (achieved by using the worst case) and to facilitate analytic 
tractability in what follows, the following common correlation times and vari- 
ances, respectively, are utilized for both the x (t’) and y (t’) processes: 

T = max{T1, Tz} (2.1-3) 

a2 = max(a4, a”, cos2 Lat} (2.1-4) 

thus constituting only a mild assumption since the respective INS latitude and 
longitude divergences are of a fairly similar character in the physical application. 
From the above two underlying constituents x(f) and y(t’) as modified by the 
simplifying conditions of Eqs. 2.1-3 and 2.1-4, RSSing yields an expression for the 
radial position divergence used in Difference Monitoring as 

r(t’) = [x*(t’) + y2(t’)]1’2 (2.14 

As an additional scaling convenience (and as an obscuring obstacle to cover 
classified quantifications), let 

t’ = Tt (2.1-6) 

so that rather than having to deal with x(f) in Eq. 2.1-1 and its autocorrelation 
function of 

R(7) = a~e-ITl/rl (2.1-7) 

the conservatively modified (via Eq. 2.1-3 and 2.1-4) x(t) has the conveniently 
scaled autocorrelation function of 

R(7) = ale 2 -+I (2.1-8) 

and likewise for y (t ). Without any loss of generality, the units of length are also 
normalized so that: 

u2 = 1 (2.1-9) 

The Difference Monitoring problem encountered in SSBN fix taking is observed 
to be of the fundamental form depicted in Fig. 2.1-1. This problem can now be 
recognized as one classically known as level-crossing for random processes, where 
requisite details for this particular model have already been worked out analyti- 
cally (except for a variance that is provided in the derivation of Section 2.2). The 
r(t) process has a transition probability density f-,&ion (pdf) of the following 
form48 5, ! 

p(r,tl r0,O) = r 2 exr :2,TJ:;}J3[$] 

1-P 
(2.1-10) 

where 

and 

(2.1-11) 

Io[ l ] is the zeroth order modified Bessel function. 

The interpretation of Eq. 2.1-10 is that it represents the pdf for the process r(t) 
at time t, given that it had the deterministic value r. at time = zero. 
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Sianals that SSN needs 

Fig. 2.1-l-Difference Monitoring: test statistic reaching decision threshold signals SSBN 
to take a navigation fix. 

This level-crossing problem portrayed in Fig. 2.1-1 was analytically solved* in 
Refs. 4, 5, 6 as summarized here (as a necessary precursor to the extension 
offerred in Section 2.3). Using somewhat corrupted shorthand notation, let 

q& ] ro) dt p probability that r(t) first crosses level D be- 
tween the time instants “t" and 2 + dt”, given 
that the process assumed the deterministic 
value r. at time = 0 (2.1.-12) 

Consider a particular sample function such that 

0 5 ro < D < r(t) (2.1-13) 

The sample function of the Markov process r(t) must have crossed the level D at 
least once within the time interval (0, t), therefore in “sorting” out all the possible 
realizations [i.e., sample functions] of the aggregate ensemble that can pass 
through ro at time = 0 so that they may be categorized as to when they first 
crossed above level D, one obtains the well-known “renewal equation”: 

I 

I 
p(r(t) = r( ro, 0) = qo(B ( ro)p(r(t) = I” I r(B) = D) d8 (2.1-14) 

0 

The so-called renewal equation that arises in the context of level-crossing prob- 
lems is obtained by invoking the Markov property that “what happens to the 
process after time instant 0 (given that r(0) = D) is indepednent of what occurred 
previous to instant f3 and consequently independent of the fact that the r(t) 
process may not have crossed level D within the interval (0, f?).” 

Following the established solution procedure, notice that when the density of 

* While tractably solved level-crossing problems are scarce (apparently only level-crossing solutions 
for a scalar Wiener/Brow&n motion process and an Ornstein-Uhlenbeck [i.e., stationary first-order 
Markov] process are widely known as reported”), both the tractable solution for this nonlinear 
operation (Eq. 2.1-5) on two random processes as reported45 ‘3 6 (and as acknowledged to be in Ref. 17 
as a 1959 precedent) and another neat level-crossing result of Ref. 7 (exploited by this Author for 
SSBN’s in another context’!‘) escaped notice in the fairly recent general surveys’“. I’ of available level- 
crossing results; nor are they discussed in the standard reference on these topics”. 
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Eq. 2.1-10 is substituted into Eq. 2.1-14, the result has the following simplified 
structural form 

I 

t 
p(r(t-O)=rlr0,0)= q&II ro)p(r(t - 0) = rl r(0) = D) de (2.1-15) 

0 

Use of the unilateral Laplace transform with respect to t, when applied to Eq. 
2.1-15, yields the following scalar algebraic equation 

PCs, r; r-0) = Qds; ro)P(s, r; D) (2.1-16) 

This equation, in turn, may be rearranged to provide the Laplace transform of 
the objective pdf as 

Qds; ro’o) = 
W, r; rob) 

W, r; D) 
(2.1-17) 

From the definition of the transform of p( l ) l ), p( l , l ; l ) is observed to be a 
scaled hypergeometric function of the well-known form (p. 251 of Ref. 13): 

wp, y; x)81 + ;; + p(p + 1) x2 
. y(y+ 1)Z 

+ EL(EL + U(P + 2) x3 
y(y + l)(y + 2) ‘3? + *. * * 

for y> 0 (2.1-M) 

Fortunately, upon substituting the hypergeometric function of Eq. 2.1-18 into the 
expression of Qo(s; ro) in Eq. 2.1-17 and properly observing all arguments of the 
function, the common dependence on r in both the numerator and denominator 
divides out leaving only 

Q&; ro’o) = 
W/2, 1; ri/2) 
@(s/2, 1; D2/2) 

(2.1-19) 

where the general expression for the hypergeometric distribution simplifies to* 

s s 
--+1x2 

( 1 (s/2)x 2 2 
w9/2, 1; x)Pl + (1!)2 + 

(2!)2 (2.1-20) 

;(;+1)(;+2)x3 I ’ 

+ + (3!)2 -*** 

2.2 Mean Time to Cross Level D 

To explicitly recover the density qo(t; ro) from Eq. 2.1-19, the inverse transform 
of the ratio of two degenerate confluent hypergeometric functions would have to 
be performed (a task that has been impossible to date). However, for the SSBN 
Difference Monitoring application, just the mean and variance will suffice. For 

* The standard mathematical technique of a ratio test can be used to verify that this series converges 
absolutely for all finite x. 
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this more limited objective, it is fruitful to make use of the well-known property 
that the Laplace transform of the pdf explicitly available in Eq. 2.1-19 is in fact 
a moment generating function: 

E[a-o)] = (-1)“s [Qo(s; ro)] 
s=o 

= (-l)“$ 
[ 

w/2, 1; rQ2) 
@(s/2, 1; P/2) I 

(2.2-l) 
s=0 

which, when differentiated once, yields the “mean time” * for r(t) to cross level 
D; when differentiated twice, yields the second moment from which one can 
obtain the variance. 

In Refs. 4, 5, the indicated differentiation of Eq. 2.2-l was performed once 
(n = 1) to obtain the mean as 

a 

E[T&-o)] = -@(s/2, 1; P/2) 
as 

-$D(s/Z, l;$i/2) 
s=O 

where use has been made of the fact that 

Q(O, 1;~) = 1 forahx: 

(2.2-2) 

s=o 

(2.2-3) 

to achieve considerable simplification in the rhs of Eq. 2.2-2. The two terms of 
Eq. 2.2-2 may be evaluated by differentiating a nine term seriest expansion of 
Eq. 2.1-20 as 

wp, 1; x) = 1 + 6 + 
w + p)x2 

(2!)2 

+ (p3 + 3P2 + 2p)r3 + (p4 + 6p3 + llp2 + 6&r4 

(3!)2 (4!)2 

+ (p5 + 10~~ + 35~~ + 50~1~ + 24~)~~ 
(5!)2 

+ (p’ + 15~~ + 85~~ + 225~~ + 274~~ + 120)x6 

(6!)2 

+ (p7+21p6+175p5 + 735p4+ 1624p3+1764p2+ 720)x7 

(7!)2 

(pa + 28p7 + 322#+ 1960p5 
+ + 6769p’ + 13,132~~ + 13,068~~ + 5040&r8 + 

(a!)2 
. . . . (2.2-4) 

* Mean time, expected tune, and average time-of-first crossing are all synonyms. Because a first 
crossing of level D indicates that it is time to take an external navigation fii in the SSBN Difference 
Monitoring application, the average time to cross 1evel.D also has the interpretation of average tune 
between navaid fixes. 
t Even though retaining just a few terms of the series suffices for calculating the mean, the explicit 
enumeration of these nine terms is needed in order to calculate the variance as done in Section 2.3 as 
a theoretical precedent. 
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$ @(p, 1; x) = 0 + T.- + (2P + 1) x2 + (3~~ + 6~ + 2)x3 

(1!)2 (2!)2 (3!)2 

+ (4~~ + 18~~ + 221.1. + 6)x4 

(4!)2 

+ 5p4 + 40~~ + 105~~ + 100~ + 24)x5 
(5!)2 

+ 
(6~~ + 75~~ + 340~~ + 675~’ + 548~ + 120)x6 

(6!)2 

+ 
(7@ + 126~~ + 875~~ + 2940p3 + 3528~ + 720)x7 

(7!)2 

(S/L’ + 196/P + 1,932p5 + 9,800p4 + 27,076~~ 

+ 
+ 39,396p2 + 26,136~ + 5040)x* + 

(8!)2 
. . . .(2.2-5) 

Upon evaluation of Eq. 2.2-5 for p = 0 as required in Eq. 2.2-2, results in 

(2.2-6) 

In Refs. 4,5, the connection is established between the series of Eq. 2.2-6 and the 
well-tabulated15 exponential integral Ei. The expression for the mean-time-to- 
first-crossing of level D in Eq. 2.2-2 can be evaluated from tables using the 
convenient equivalence to an exponential integral as 

E[7D(r0)] = %{Ei[D2/2] - ln(D2/2) - Ei[$2] + l&/2)} (2.2-7) 

If tables such as Ref. 15 are inaccessible, Eq. 2.2-2 may still be conveniently 
evaluated approximately using the first few terms of the series expansion of Eq. 
2.2-6. 

In particular, for the Difference Monitoring application 

r0 = 0 (2.2-8) 

as a consequence of having just taken an external position fix* and differenced 
the remainder, so Eq. 2.2-7 degenerates to 

E[TD(~)] = M{Ei[D2/2] - (0.577215. . .) - ln(D2/2)} (2.2-9) 

* Surveying the many significant simplifications that accure for this zero value of r~ (Eq. 2.2-8) as 
arises here, note that (1) the modified zeroth order Bessel function has argument zero and consequently 
a value of unity, (2) the numerator of Eq. 2.1-19 is unity since the value that corresponds to x 
appearing in Eq. 2.1-20 is zero, (3) the term on the right in Eq. 2.2-2 is zero (as can be seen from Eq. 
2.2-6 with x = 0). Full generality for a possibly nonzero ro was retained herein so that (1) all the 
benchmarks and milestones of the earlier analysis of Refs. 4, 5, 6 can be conveniently utilized as 
crosschecks on the correctness of these results, (2) in order to not overlook possible nonzero 
contributions in the second derivative as the variance is obtained in Section 2.3 by differentiating Eq. 
2.2-5 (via Eq. 2.2-l) even though Eq. 2.2-5 is zero for r,, = 0, (3) to provide the fist time variance 
result in its full generality for the possible benefit of others. 
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As one of the novel contributions of Ref. 16, the above expression was used to 
calculate the theoretical mean fix interval for SINS Difference Monitoring as 
depicted in Section 2.4 as a function of normalized threshold setting D. 

2.3 Variance in the Time to Cross Level D 

Using Eq. 2.2-1, the expression for the variance in the time-to-first-crossing of 
level D can be obtained by evaluating the following: 

Var[m(rd] = E[&rd] - (E[m(r0b)l)2 (2.3-la) 

w/a, 1; d/2, 
Q(s,2, 1; D2,2j - (E[d-0)1)2 1 (2.3-lb) 

1 
= 0 5 

2 a2 

- apz { @'(pL, 1; d/2) - -$ @‘(pL, 1; D2/2) 

- LqmhJm2 (2.3-1~) 

p=o 

The necessary second partial derivative of a(~, 1; X) occurring in Eq. 2.3-k can 
be conveniently obtained from Eq. 2.2-5 by performing another term by term 
differentiation to yield: 

-$D(p, 1; X) = ; + ; + (0.9166); + (0.8333); 
. . 

+ (0.7611); + (0.7); + (0.64821): + . . . . (2.3-2) 

Using the condition of Eq. 2.2-8 for the Difference Monitoring application in 
conjunction with Eq. 2.3-2 in Eq. 2.3-1~ yields 

- -$ @(/A, 1; 072) 

2 

+ 2 1 II, u=o 

1 
- oc a fD(p, 1; D2/2) 

2 

- 

4 ap II p=o 

= (E[TD(O)])~ 

(2.3-3a) 

+ o 7o (D”/2)7 + (o 65821) (D2/2)” + 
---T- * 7 ... (2.3-36) 
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Fig. 2.4-l-Average fix interval vs. threshold level. 

The evaluation of the objective variance of the time-of-first-crossing of level D 
may be conveniently accomplished directly from the series expansion of Eq. 2.3- 
3b by using a programmable hand calculator* (and utilizing Horner’s rule to 
minimize the total number of operations and associated roundoff error incurred) 
as was done here, with results depicted in Fig. 2.4-l of Section 2.4 for the SINS 
as one of the significantly new contributions of this paper. 

2.4 Comparison of Analytically Calculated Theoretical Mean-Time-Between- 
Fixes to SSBN Fleet Data 

The solid diagonal line in Fig. 2.4-l represents the evaluation of the theoretical 
mean-time-between-fixes from the expression derived in Section 2.2 for C-3 SSBN 
Difference Monitoring. The diagonal line that is alternately dashed and dotted in 
Fig. 2.4-l represents the evaluation of the theoretical standard deviation in the 
time-between-fixes for Difference Monitoring as obtained from the expression 
derived in Section 2.3. In both cases, the value increases with increasing decision 
threshold D, which is intuitively reasonable since a higher decision threshold 
takes longer to reach for the same random process starting at zero. While 0.615 
(in normalized units) for time-between-fixes ostensibly was the target spec. 
objective for the currently used threshold setting, the data obtained using this 
threshold setting (of 1.27 in normalized units of length) in three separate patrols 
(sources being utilized are identified in Ref. 16) apparently fall far short of this 
mark as seen from Fig. 2.4-l. The available patrol data actually fall above and 
below to bracket the theoretically derived mean of 0.504 as evaluated using the 
results of Section 2.2 rather than around the target spec. of 0.625 as an average 

* A conservative bound on the magnitude of the error incurred in using only the first eight terms of 
the series in Eq. 2.3-36 is available from Lagrange’s form of the remainder (or error) as”; 

1 error 1 < e02’2(02/2)9/9! (which is 0.01 for D*/2 = 2) 

corresponding to the largest value of threshold setting considered in the Difference Monitoring 
Application (where for smaller settings, the error incurred is less). 
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for times-between-fixes. Additionally, the SSBN patrol data can be seen to be 
well within 1 standard deviation of the theoretically calculated mean of D = 1.27. 

Another feature that is also made graphically apparent is the inappropriateness 
of the decision threshold D = 1.63 that had been suggested for use in the past by 
others,40 but never actually used by the SSBN fleet in practice. By the analytically 
tractable, theoretical evaluation technique of Sections 2.2 and 2.3, this threshold 
of 1.63 is demonstrated to correspond to 0.964, which even exceeds the rather 
expansive la region of the current threshold setting and is considerably above 
the span of indicated acceptable values (from 0.625 to 0.750 normalized units of 
time) having been previously imposed as a prudent range of acceptable variations. 
The analysis of Section 2.2 indicates that the target spec. of 0.625 (normalized 
time units) between fixes is just met for D = 1.38 (normalized units of length) and 
so the threshold currently used for C-3 Difference Monitoring should perhaps be 
raised to this value in order to just meet the target spec. 

3. AN EVALUATION TECHNIQUE FOR GAUGING THE ABSOLUTE/ 
RELATIVE UTILITY OF SSBN FIX STRATEGIES 

3.1 Natural Evolution of the Sweep Rate Measure 

Over the years, various measures of the detectability of objects to enemy 
surveillance have been developed. One of the earliest measures of detectability 
that has withstood the test of time is to gauge the “observability*” of the object 
to a surveillance sensor mounted on the surveillance platform as represented in 
Fig. 3.1-1 in terms of Sweep Rate41. As illustrated in the two smaller diagrams at 
the bottom of Fig. 3.1-1, alternative sensors have inherent detection patterns such 
as the “donut” (i.e., torus or annulus) or cookie-cutter (i.e., cylinder) encountered 
for radar/visual detection of SSBN masts and Forward Looking InfraRed (FLIR), 
respectively. 

Sweep rate (SR) as defined for continuously exposed targets (such as surface 
ships) is commonly defined (Koopman, la, lg) with physical motivation readily 
apparent from the cross-hatched overview in Fig. 3.1-1 as 

where 

SR = 2RV (3.1-1) 

R p detection range of the sensor used, 
VP velocity of the surveillance platform upon which the sensor is 

mounted. 

Detection range is the range at which the target is just detectable with probability 
0.50. Everywhere within this range, the probability of detecting the target is 
greater than 0.50. Also, sweep rate may be routinely converted to probability of 
detection under an assumed random searchlg for a convenient alternate charac- 
terization of detectability. Because most surveillance sensors not only detect the 
presence of an object orthogonal to the track of a surveillance platform (but also 
in front and in back), the expression for the area swept has been reasonably 
modified here to also include the two dotted semicircles depicted in the top view 
of Fig. 3.1-1 (which can be significant contributors depending on the relative 

* “Observables” is Navy military terminology used to denote all physically discernable characteristics 
that would enable an object’s presence to be detected. 
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Fig. 3.1-I-Physical basis for quantifying an object’s susceptability to enemy surl 
in terms of sweep rate. 

magnitudes of R and V* At) as: 

c p area swept = 2RVAt + rR2 (3.1-2) 

The five C-3 Poseidon and C-4 Trident navigation system position fix alterna- 
tives* currently utilized by SSBNs are: 

l LORAN-C (Phase-Shift)/NAVSAT Synchronizationt and simultaneous 
NAVSAT fix, 

l LORAN-C (Phase-Shift) fix from only two stations (or three stations for 
redundancy), 

l LORAN-C (Hyperbolic) fix from three stations, 
l Depth Sonar fix (i.e., bathymetric bottom contour map-matching), 
l LORAN-C (Phase-Shift)/Depth Sonar synchronization+, 

and a sixth measurement usage option could be considered to be the use of no 
navaid measurement fix at a candidate fix time. 

A new measure of SSBN detectability, Average Effective Sweep Rate (AESR), 
is recommended in Ref. 16 as being an appropriate generalization which rigorously 
accommodates time-varying fix intervals and alternating navaid usages as: 

* Worst case detection threats, assumed with SSBN use of each navaid alternative have been compiled 
and are periodically reassessed in view of evolving ASW technology (e.g., RF linked sonobuoys, sonar 
“dippers,” Magnetic Anomaly Detection (MAD), infrared wake detectors, etc.) and countermeasures. 
+ Synchronization (or initialization) pertains to an additional operational consideration in using 
Phase-Shift LORAN, that the drift of the on-board atomic clock must be compensated for via an 
occasional NAVSAT or Depth Sonar Bathymetry fix. 
$ Future NAVSTAR Global Positioning System (GPS) availability affords the additional option of 
LORAN-C (Phase-Shift)/GPS Synchronization and simultaneous GPS fixes for SSBNs taking less 
time, with much reduced antenna radar cross-sectional area exposure, and with less restrictive 
constraints on acceptable satellite location translating into available time windows for usage. 
9 As routinely encountered since the 1976 introduction of Difference Monitoring into the SSBN 
Fleet, where any available navaid can be used for the required fixes indicated by Difference 
Monitoring. 
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Surveillance Area Covered During All Navaid 
Fix Exposures Over a Specified Time Interval 1 

AESR 4 
Total Specified Time Interval 

(3.1-3a) 

or 

; [2R(k)V(k)At(k) + &(k)] 
AESR = ‘=I 

; A(k) 
k-l 

(3.1-3b) 

where 

R(k) Adetection range (of the designated worst case sensor for the 
navaid used* at the kth time-step) e.g., visual, infrared, x-band 
radar, passive sonar, etc. 

V(k) &velocity of the surveillance craft (either SSN or aircraft, de- 
pending on which is mounted with the worst case sensor for 
the navaid used at the kth time-step) 

At(k) 4 time required to take a fix (for the navaid used at the kth time- 
step) 

NAnumber of time-steps into which the specified time interval is 
subdivided (the subdivisions normally occurring at the fix times 
but can be more frequent for purposes that will be elaborated 
upon in Section 3.2) 

A(k) 4 step-size (possibly varying in duration) at the k th time-step 

A natural accuracy measure that assesses in summary fashion the effect of 
SSBN navigation errors (as a consequence of both INSs and navaid fix history) 
as they would affect a missile that could be called for a launch at any time during 
the patrol is Average Uncertainty in Missile Radial Miss Distance, and is 
defined as: 

i 
l/2 

u&z(k) + u&(k) 
UAF~MD L\ 

k-l 

N 
+ dmmrnksion 1 (3.1-4) 

where 

cttrans-ion 4 standard deviation of errors introduced in transmitting 
navigation information to the SSBN’s fire control subsys- 
tem through the optical reference unit, 

oDR (12) 4 standard deviation of down-range missile miss distance at 
time-step k due to navigation errors, 

OCR(k) Astandard deviation of cross-range missile miss distance at 
time-step k due to navigation errors. 

* If no navaid fii is taken at the k”’ time-step, then the appropriate sensor detection range is R(k) = 
0 and there is no contribution made at time-step = k to the surveillance area covered or to the 
Average Effective Sweep Rate. 
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Time-steps k should be taken more frequently than fix/reset occurrences to 
obtain a representative average. 

Besides being natural and convenient, the above two measures AESR and 
UARMD are true generalizations to nonperiodic fix intervals since they agree 
identically with the previous detectability and accuracy measures, respectively, 
when used to quantitatively evaluate the effects of navaid fix schedules that are 
periodic. Since an SSBN’s navigation accuracy degrades with time if fues from 
a navigation aid (navaid) of sufficient quality and at a sufficient frequency are 
not provided, there is an inherent trade-off between maintaining acceptable 
navigation accuracy while seeking to minimize the risk of SSBN exposure to 
enemy surveillance from use of nauaids. An additional benefit of using the above 
AESR and UA~D as measures to trade-off the effects on the SSBN of various fix 
schedules is indicated in Section 3.2. These two measures in particular are 
demonstrated to allow use of an analytically tractable computational procedure 
that suffices for gauging both the relative and absolute “goodness” or utility of 
particular patterns of contiguous fix usage (referred to herein as fix strategies or 
fix schedules) over SSBN patrol segments. 

3.2 Cost Functions, Pareto-Optimality, TPBVPs, and a Min-H Solution 
Technique 

As detailed for continuous-time20, the sensor fix usage strategy optimization 
problem for Kahnan filters (as used for keeping track of INS errors on SSBNs) 
can be represented as finding the vector sequence {m *(k)}c?,, which minimizes 
the following scalar cost function over the time interval from k = 0 to k = N: 

N-l 

J[{n(k)}kN;d-]8~1.tr[API;;‘] + C {~~.tr[B&-)] + p2-cT(k)rn(k)} (3.2-l) 
k-0 

where 

A is a symmetric positive definite weighting matrix, 
Bk is a symmetric positive definite weighting matrix, 

c(k) is a vector of the observables cost-per-fur as expressed in terms 
of area exposed to enemy surveillance during the fur, 

pl, ~2 are scalar weightings of fix error and cost of sensor usage having 
a range of values that is specified as p2A(l - ~1) and 0 5 ~1,s 1, 

m (lz) is a vector that serves to summarize the strategy of sensor usage 
at time step = k. The sequence {m(k)}::; summarizes the sensor 
usage strategy over the entire mission time interval under con- 
sideration. 

The justification for using just a single cost function when the problem is 
obviously one of trading-off the two considerations of navigation error us. detect- 
ability is provided at the end of Section 3.2 where a rigorous link between 
bicriteria optimization and the so-called method-of-linear-combinations results in 
Eq. 3.2-l. 

rn abiding by the above mathematical structure required to properly interface 
with sensor strategy optimization (as prescribed in Ref. 20), the SSBN observables 
exposure us. accuracy considerations are modeled in terms of the following 
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combined cost function: 

277 

k-0 k-0 

Reflects Navigation 
Error over the 
patrol interval 

W> Nl 

J 

Reflects cost 
of SSBN 

“observables” 
over the patrol 

interval 

(3.2-2) 

where 

G(K) = quantification of area swept during a fix while SSBN is using 
the ith navaid (Eq. 3.1-2), 

LK= missile impact partials that relate missile miss distance to 
underlying navigation causes (defined in Chapter 7 of Ref. 3).* 

It is noted that the terms under the first summation of Eq. 3.2-2 have the 
following form 

tr[ L~Lk&-‘] = tr[&Pk’Lz] = a& + a& = variance of radial miss (3.2-3) 
distance at time = k 

where 

oDlp-down-range miss distance along the great circle joining the 
launch point to the target, 

uCR-wmqxm& of miss distance orthogonal to the down range error 
(i.e., cross-range error). 

Notice that by virtue of Eq. 3.2-3, the first term on the right of the cost function 
of Eq. 3.2-2 is p1 times (a&n. N - c&mm&ion) while the second term is ~2 times 
the numerator of Eq. 3.1-3b. 

Both the C-3 Poseidon, C-4 Trident, as well as all of several proposed Trident 
II configurations have SSBN navigation system error models of the following 
state variable form: 

x(k + 1) = @(k + 1, k)x(k) + w(k) (3.2-4) 

with the following external position fix measurement structure 

Z,(k) = HiX(k) + Vi(k) (3.2-5) 

(i = 1, . . . ) 6 corresponding to the six SSBN sensor fix options listed following 
Eq. 3.1-2) 

* The symmetric matrices LkTL and LSL.N, respectively, play the role of I& and A in the cost function 
of Eq. 3.2-l. 
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@is the invertible discrete-time transition matrix, 
x(k) is the state vector at time K 
w  (k) is the zero mean Gaussian white corrupting process noise 

having covariance level Q, 
Zi(K) is the measurement at time K as obtained from the ith 

external position fix/reset sensor, 
Hi and Vi(K) are the observation matrix and zero mean Gaussian mea- 

surement noise for the ith external position fix/reset sen- 
sors, respectively, where the corrupting measurement 
noise has covariance level Ri. 

The use of either no-measurement or else just one external position fix/reset 
measurement at each time step k from one of the six alternative SSBN navaid 
usage options is modeled as 

where 

z(k) = 5 mi(k)zi(k) = i mi(k)[Hix(k) + vi(k)] 
i-l i-l 

(3.2-6) 

mi(k) = 0 or 1 (3.2-7) 

(i.e., a one signifies that the i* navigation aid device is being used, a zero signifies 
that the ith device is not being used). As in Ref. 20, a convenient constraint is 
imposed that for each k 

il mi(k) = 1 (3.2-S) 

which has the physical interpretation that, at each time step k, no more than one 
of the six external position fix navaid usage options is being used. 

By paralleling in discrete-time the continuous-time methodology of Ref. 20, an 
appropriate scalar Hamiltonian is formed from the cost function of Eq. 3.2-l as 

H(d-‘, Ak+l, m(k), k)&rtr[&p6-‘] + p,dn(k) 

-Pi-’ fDT(k + 1, k) + Q (3.2-9) 

which also incorporates the appropriate dynamical constraint of 

(3.2-10a) 

(3.2-lob) 
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(with initial condition PO) associated with the SSBNs’s use of a Kalman filter to 
track the navigation error states of the INS. 

Upon taking the appropriate gradients that define an optimum to minimize the 
cost function of Eq. 3.2-1, the result is* 

A: = 
dH(Pk, Aktl, m(k), 4 

aPk 
(3.2-11~) 

* 

(3.2-llb) 

which upon completing the square simplifies as 

~~:‘(k)fI?(fiPk*HiT + Ri)-‘H, )I 
T 

mP(k)H~(fZiPk*H? + R,)-‘Hi )I (3.2-11~) 

with final condition 

A%=--$ tr[pl-APN](* = pi-AT 
N 

(3.2-12) 

(recognized to be a matrix Lyapunov equation). Upon taking gradients? of the 
Hamiltonian in Eq. 3.2-9 with respect to Ak+l, just returns the dynamical 
constraint of Eq. 3.2-10 as the Riccati equation 

Pi+1 = <P(k + 1, k) P/F - Pk* c” 
I ( 

l??,:(h) HiT[ HiPk*HzT + Ri]-‘H, I% 
1=1 ) I 

4bT(k f 1, k) + & (3.2-13) 

with initial condition 

PO* = PO (3.2-14) 

Eqs. 3.2-11~ and 3.2-13 to be solved backward and forward, respectively, over a 
specified time interval, constitute the fundamental Two Point Boundary Value 
Problem (TPBVP) that is underlying the optimization or minimization of the cost 
function of Eq. 3.2-2; however, the equations are in fact well-posed (i.e., are 
directly solvable without encountering any instabilities in either the forward or 
backward time directions36) and are only finite dimensional. 

* The asterisk appearing in the evaluation of the Hamiltonian derivatives in the canonical equations 
and as a superscript in P*, A*, rn* is standard usage and denotes evaluation at the optimum. 
t In this application, it is permissible without ill effects to ignore the slight complications that arise in 
taking matrix gradients with respect to symmetric matrices2’. 
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A further necessary condition on the optimum fix strategy nt* is that it 
minimize the Hamiltonian as 

H(Pk*, fk$+l, ml, k) s H(Pk*, Ai+19 mk, A) 

which simplifies to yield the following condition 

jl mt(k)s*(k) 5 ,g rni(K)Si*(k) 

(3.2-15) 

(3.2-16) 

where for convenience 

Si*(k)$*Cj - tr[(HiT[HjPk*H~ + Rj]-'Hj)Pk*QTAX+l@PZ] (3.2-17) 

This simplified representation in Eq. 3.2-16 of the essence of the statement of the 
minimum principle for the SSBN problem, in conjunction with the constraint of 
Eq. 3.2-8 and in conjunction with the physical constraint of Eq. 3.2-7 that mi(lz) 
is either one or zero (i.e., sensor off or in use) leads to the following necessary 
condition for satisfying the inequality of Eq. 3.2-16; 

m?(k) = 
1 

1 if si*(k)~sT(k) for j=l,2,...,M and s,?(k)rO 
0 otherwise (3.2-18) 

In practical terms, when the policy of Eq. 3.2-18 is adherred to, the result is that 
the minimum principle of Eq. 3.2-15 is satisfied as a necessary condition for 
minimizing the cost function J of Eq. 3.2-l. 

Returning to consider the appropriateness of the simple scalar cost function of 
Eq. 3.2-2 for the SSBN application, the two conflicting objectives of “reducing 
navigation error through navaid utilization” and “reducing the exposure to enemy 
surveillance in using navaids” are not so diametrically opposed that they are 
incompatible. If there were originally just a single scalar criterion, two distinct 
competing fm usage strategies could be compared unambigously to demonstrate 
superiority of one strategy over the other. However, in applications such as the 
SSBN navaid fix utilization problem which inherently involves two criteria: 

J AE-a memwe of navigation accuracy error 
Jcow-cost of SSBN exposure to enemy surveillance in fix taking 

there is no unambigous optimum since the plane cannot be “ordered”. However, 
when provided with two (or more) criteria there is a set of optimal strategies 
classified as being Pareto-optimal26v 25 for which: 

l For fixed JAE, Jcos~ is minimized, 
9 For fixed Jcos~, Jm is minimized. 

The pareto-optimal set is depicted in Fig. 3.2-l and can be calculated using the 
method-of-linear combinations. The “method-of-linear combinations”22V 23, 24V 26 
requires that the associated scalar cost function of Eq. 3.2-2 of the form 

J 
N-l 

CmG91k = o 
I 

=: p- JAE + (1 - p)- JCOST (3.2-19) 

be minimized for each fixed p within the range 

OS/.&51 (3.2-20) 

Bi-criteria optimization theory (pp. 24-28 of Ref. 26, Refs. 22,23) guarantees that 
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OPTIMAL SET IS LOWER BOUNDARY 

> JCOST 

Fig. 3.8l-Pareto-optimal set provides a lower bound forperfom- 
ante trade-offs. 

for the structure* provided by the SSBN navaid fix utilization problem, minimi- 
zation of Eq. 3.2-2 for all values of p in the range of Eq. 3.2-20 provides all of the 
Pareto-optimal solutions. 

The switching policy of Eq. 3.2-18 for specifying m * (k) is crucial as it forms the 
computational basis of the min-H solution techniquet2” 3ov 33. The basic structure 
of the discrete-time-formulation presented here (use being available through 
Intermetrics, Inc. as a 1000 line validated PL/l program) is identical to the min- 
Hflow chart of Fig. 5 in Ref. 20 for continuous-time sensor schedule optimization. 
However, the current updated implementation includes an additional outside 
loop for obtaining solutions that minimize -the cost function J of Eq. 3.2-l for a 
span of fixed weightings p (handled as a stacked case run) and in addition 
incorporate a reduced-order filter formulation (unlike Ref. 16). The use of varying 
weightings in this manner serves as the requisite link with bi-criteria optimization 
theory to allow computational delineation of the Pareto-optimal lower boundary 
for the SSBN application as pictorially illustrated in Section 3.3. 

Major technical differences between the optimization approach of Ref. 20 and 
that which is reported here (as used in Ref. 16) are: 

9 Cost functions used here include effect of accuracy considerations over the 
entire time interval, rather than just a single terminal time accuracy con- 
straint (as discussed in detail in Section 3, Ref. 38), 

l Current formulation is posed in discrete-time to more closely match the 
SSBN application of discrete navaid events, 

l Continuous-time formulation of Ref. 20 required piece-wise continuous flow 
of measurements at all times, while explicit modification herein allows 
possibility of no measurements at some times (being the prevalent case for 
the SSBN application), 

l Discrete-time formulation (having only a finite number of candidate fix times 
over an interval) circumvents a continuous-time “chattering” problem ac- 
knowledged in Ref. 20, where successive iterations of the min-H algorithm+ 
produced slightly different instant-of-switchings within the time continuum, 

* Structure does not require strict “convexity” of the two cost function components, merely directional 
convexity suffkesz2~ 23. While the right hand cost-of-exposure component of Eq. 3.2-2 is linear in m and 
therefore convex in a degenerate sense but convex none-the-less, directional convexity of the left 
hand accuracy error component of Eq. 3.2-2 is established by using the convexity of the matrix inverse 
for symmetric positive definite matrices” in conjunction with the alternative form of Eq. 3.1-10b and 
the fact that the trace operation preserves convexity. 
t Whiie the mm-H algorithm represents an approximate technique for many non-linear optimization 
applications, use of the min-H algorithm is exact for the linear problem structure of sensor schedule 
optimization2’. 
$ The rate of convergence of the min-H algorithm is fast*‘, r6, ‘I and has been studied in detail in Ref. 
27 where convergence (in-the-sense-of-orthogonal-search-algorithms) is guaranteed for this sensor 
scheduling optimization problem. 



282 Navigation Winter 1981-82 

l Application to C-3 Poseidon in Ref. 16 untilized a 46 state model (as 
contrasted to the 3 state model in the application of Ref. 20)* consisting of: 

-34 state linearized SINS navigation error model, 
-10 state Loran fix/synchronization model”, 
-2 state Depth Sonar bias effects3, 

which was computationally accommodated due to faster computation speeds 
and more efficient handling of sparse matrices now available despite the current 
computer burden that goes as the cube of the state size (4S3). 
Despite the prevalence of independent analytical support for different aspects 

of the procedure, it still has not been reduced to a crank-and-grind technique. 
Considerable human “mothering” of the computational procedure is required. An 
example is in the required provision of “informed” initial guesses for reasonably 
close fix strategies to start off the iterative optimization, since the underlying two 
cost functions are not strictly convex the possibility exists for encountering some 
local extrema or limit-cycling if adequate precautions are not taken to steer clear 
of these. 

3.3 Assessing Limits of C-3 SSBN Performance 

Fig. 3.3-l depicts the Pareto-optimum lower boundary obtained using the 
procedures of Section 3.2 for C-3 Poseidon SSBNs” under nominal conditions 
(as reflected in the values of ci used in Eq. 3.2-2). Worst or best case environmental 
conditions as effects on detection range (e.g., as a consequence of electronic 
countermeasures ECM), velocity of surveillance platform, or time required to 
take a fix (e.g., sea state related effects can alter fix taking expediency) for a 
particular navaid can be absorbed merely as minor changes in the values of the 
tit (defined in Eq. 3.1-2) as used in Eq. 3.2-2. While a lower boundary slightly 
different from the one portrayed in Fig. 3.3-l results for best and worst case 
conditions, it is still easily calculated as a parametric study using the same 
techniques of Section 3.2. 

Also depicted in Fig. 3.3-1, as numbered from one to six, are the relative 
evaluations of various representative C-3 SSBN fix strategies (for a four day 
epoch) as explicitly identified in Ref. 16 to include several characteristic of 
Difference Monitoring (i.e., Nos. 3 and S)$. Extremes in detectability are ob- 
tained for different sensor mixes and differing fix intervals. These alternate C-3 
navaid fix strategies can be compared to each other as a relative gauge of utility 
or to the lower boundary where proximity is an absolute gauge of “goodness.” 

While the methodology remains the same, complete evaluations such as the 
one depicted in Fig. 3.3-l have yet to be performed for the Electrostatically 
Supported Gyro (ESG) navigation technology of Trident I and II SSBNs for 
SINS/ESGM, SINS/ESGN, or ESGN/ESGN candidate navigation conligura- 

* The application of Ref. 20 was to a Lincoln Lab study of an aircraft (modeled using 3 state variables) 
with alternative radar measurements meeting a required terminal-time accuracy constraint (for 
targeting purposes). 
t Methodology of Section 3.2 also accommodates time-varying cost c(k)‘“,‘“. This enables a rigorous 
contrivance for the SSBN application of making the cost of using a depth Sonar fii essentially infinite 
between designated map-matching areas (P-points) to avoid otherwise inappropriate fix taking. 
$ No fix schedules are explicitly depicted here since any order of alternative fix usage and time 
intervals between fixes would be classified. 
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Fig. 3.3-l-Relative comparisons between selected fix-schedules in an accuracy vs. 
observables trade-off. 

tions (including options of velocity measuring sonar and/or gradiometers), despite 
the fact that specific alternative navaid usage schedules have been postulated% 
for C-4 Trident SSBNs. Other considerations that may help alleviate the impacted 
computer burden of the three CP-89O/UYK navigation computers and further 
facilitate use of the analysis technique of Section 3.2 is to utilize recently 
developed results from decentralized estimation (for more detail, please see 
conclusions on p. 326 of Ref. 35 and Ref. 37). Since accuracy in targeting is a 
significant function of the navigation accuracy of own-ship position but effective- 
ness requires maintaining covertness, similar trade-off analyses should be per- 
formed for full consideration of TOMAHAWK and SUBROC launches as well as 
for other cruise-missile launching submarines. 
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