ASEN 5050 SPACEFLIGHT DYNAMICS Lambert's Problem

Prof. Jeffrey S. Parker
University of Colorado - Boulder

10/8/2013

Announcements

- Homework \#5 due Thursday
- Quiz \#10 tomorrow
- Mid-term to be handed out on Thursday, Oct $17^{\text {th }}$. It will be due on Tuesday, Oct $22^{\text {nd }}$. CAETE due date is Tuesday, Oct $29^{\text {th }}$. Each person will have the same amount of time for the test - CAETE students just have more flexibility to schedule when they work on the test. Open book open note, no working with others.
- Reading: Chapter 7
- Space News:
- Juno's Earth flyby is tomorrow!

Juno's Earth Flyby

- Earth flyby provides $7.3 \mathrm{~km} / \mathrm{s}$ of $\Delta \mathrm{V}$!
- Altitude $\sim 559 \mathrm{~km}$, Inclination $\sim 47.1 \mathrm{deg}$

Juno's Earth Flyby

- Collision Assessment
- The Juno Navigation team is deciding right about now whether or not to execute a small divert maneuver to avoid any collisions.

Credit: NASA/JPL-Caltech, Bordi, J., and Bryant, L., "Conjunction Assessment Plans for the
Juno Earth Flyby", Jet Propulsion Laboratory, California Institute of Technology, May 1, 2013

Today

- Go Juno!
- Today:
- Review Quiz 9
- Lambert's Problem

ASEN 5050 SPACEFLIGHT DYNAMICS Lambert's Problem

Prof. Jeffrey S. Parker
University of Colorado - Boulder

10/1/2013

Lambert's Problem

- Lambert's Problem has been formulated for several applications:
- Orbit determination. Given two observations of a satellite/ asteroid/comet at two different times, what is the orbit of the object?
- Passive object and all observations are in the same orbit.
- Satellite transfer. How do you construct a transfer orbit that connects one position vector to another position vector at different times?
- Transfers between any two orbits about the Earth, Sun, or other body.

Lambert's Problem

Figure 7-8. Transfer Methods, $\boldsymbol{t}_{\boldsymbol{m}}$, for the Lambert Problem. Traveling between the two specified points can take the long way or the short way. For the long way, the change in true anomaly exceeds 180°.

Given two positions and the time-of-flight between them, determine the orbit between the two positions.

Orbit Transfer

- We'll consider orbit transfers in general, though the OD problem is always another application.

$$
\text { Short way }\left(\Delta \nu<180^{\circ}\right) \quad \text { Long way }\left(\Delta \nu>180^{\circ}\right)
$$

Figure 7-15. Varying Time of Flight for Intercept. As the time of flight increases for the transfer to the target (short way left, long way right), the transfer orbit becomes less eccentric until it reaches a minimum, shown as a dashed line. The eccentricity then begins to increase after this transfer. There is always a minimum eccentricity transfer, and a minimum change in velocity transfer. However, they generally don't occur at the same time. Finally, I've shown the initial and final positions with the same magnitude. This is not an additional requirement.

Orbit Transfer

- Note: there's no need to perform the transfer in <1 revolution. Multi-rev solutions also exist.

Orbit Transfer

- Consider a transfer from Earth orbit to Mars orbit about the Sun:

Figure 7-9. General solution options for the Lambert problem. This figure shows the various orbits that are possible for transfers considering the Lambert problem. The units are normalized, and the initial separation between the spacecraft is 75°. The interceptor and target positions are 1.0 and 1.524 AU respectively. Long and short way trajectories are possible with the elliptical transfers. Notice the corresponding increase in minimum transfer time as the number of revolutions increases. (Source Thorne, 2007 using his series solution discussed later)

Orbit Transfer

Orbit Transfer	True Anomaly Change
"Short Way"	$\Delta v<180^{\circ}$
"Long Way"	$\Delta v>180^{\circ}$
Hohmann Transfer (assuming coplanar)	$\Delta v=180^{\circ}$
Type I	$0^{\circ}<\Delta \nu<180^{\circ}$
Type II	$180^{\circ}<\Delta v<360^{\circ}$
Type III	$360^{\circ}<\Delta v<540^{\circ}$
Type IV	$540^{\circ}<\Delta v<720^{\circ}$
\ldots	\ldots

Lambert's Problem

- Given: $\vec{R}_{0} \quad \vec{R}_{f} \quad t_{0} \quad t_{f}$
- Find: $\vec{V}_{0} \vec{V}_{f}$
- Numerous solutions available.
- Some are robust, some are fast, a few are both
- Some handle parabolic and hyperbolic solutions as well as elliptical solutions
- All solutions require some sort of iteration or expansion to build a transfer, typically finding the semi-major axis that achieves an orbit with the desired Δt.

Lambert's Problem

Figure 7-10. Geometry for the Lambert Problem (I). This figure shows how we locate the secondary focus - the intersection of the dashed circles. The chord length, c, is the shortest distance between the two position vectors. The sum of the distances from the foci to any point, r or r_{o}, is equal to twice the semimajor axis.

Lambert's Problem

Find the chord, c , using the law of cosines and $\cos \Delta v=\frac{\vec{r}_{\theta} \cdot \vec{r}}{r_{0} r}$

$$
c=\sqrt{r_{o}^{2}+r^{2}-2 r_{0} r \cos \Delta v} \quad \sin (\Delta v)=t_{m} \sqrt{1-\cos ^{2}(\Delta v)}
$$

Define the semiperimeter, s , as half the sum of the sides of the triangle created by the position vectors and the chord

$$
s=\frac{r_{0}+r+c}{2}
$$

We know the sum of the distances from the foci to any point on the ellipse equals twice the semi-major axis, thus

$$
2 a=r+(2 a-r)
$$

Lambert's Problem

Figure 7-11. Geometry for the Lambert Problem (II). Solving Lambert's problem relies on many geometrical quantities. Be sure to allow for the Earth when viewing representations like this. I've shown transfers between a satellite at 9567.2 km and $15,307.5 \mathrm{~km}$ from the Earth's center. We can use the inset figure to find the transfer semimajor axis. The concentric circles are drawn for elliptical values of a. When the circles (of the same a) touch, half the sum of their radii equals a of the transfer, and the intersection is the location of the second focus, F^{\prime}.

Lambert's Problem

The minimum-energy solution: where the chord length equals the sum of the two radii (a single secondary focus)

$$
2 a-r+2 a-r_{o}=c
$$

Thus,

$$
a_{\min }=\frac{s}{2}=\frac{r_{0}+r+c}{4}
$$

$$
\begin{aligned}
& \text { (anything less doesn' t } \\
& \text { have enough energy) }
\end{aligned}
$$

Lambert's Problem

If $\Delta v>180^{\circ}$, then $\beta_{\mathrm{e}}=-\beta_{\mathrm{e}}$
If $t>t_{\text {min }}$, then $\alpha_{\mathrm{e}}=2 \pi-\alpha_{\mathrm{e}}$

Elliptic Orbits

Hyperbolic Orbits

$$
\begin{aligned}
& \begin{aligned}
& \sin \left(\frac{\alpha_{\mathrm{e}}}{2}\right)=\sqrt{\frac{r_{0}+r+c}{4 a}}=\sqrt{\frac{s}{2 a}} \quad \sinh \left(\frac{\alpha_{\mathrm{h}}}{2}\right)=\sqrt{\frac{r_{0}+r+c}{-4 a}}=\sqrt{\frac{s}{-2 a}} \\
& \begin{aligned}
& \sin \left(\frac{\beta_{\mathrm{e}}}{2}\right)=\sqrt{\frac{r_{0}+r-c}{4 a}}=\sqrt{\frac{s-c}{2 a}} \quad \sinh \left(\frac{\beta_{\mathrm{h}}}{2}\right)=\sqrt{\frac{r_{0}+r-c}{-4 a}}=\sqrt{\frac{s-c}{-2 a}} \\
& t=\sqrt{\frac{a^{3}}{\mu}}\left[\alpha_{\mathrm{e}}-\sin \left(\alpha_{\mathrm{e}}\right)-\left(\beta_{\mathrm{e}}-\sin \left(\beta_{\mathrm{e}}\right)\right)\right] \quad \text { Lambert's } \\
& \text { Solution }
\end{aligned} \\
&=\sqrt{\frac{-a^{3}}{\mu}}\left[\sinh \left(\alpha_{\mathrm{h}}\right)-\alpha_{\mathrm{h}}-\left(\sinh \left(\beta_{\mathrm{h}}\right)-\beta_{\mathrm{h}}\right)\right]
\end{aligned}
\end{aligned}
$$

Lambert's Problem

For minimum energy

$$
\begin{gathered}
-- \text { elliptic orbit } \\
--\alpha_{e}=\pi \\
--\sin \left(\frac{\beta_{\mathrm{e}}}{2}\right)=\sqrt{\frac{s-c}{s}} \\
t_{\min }=\sqrt{\frac{a_{\min }^{3}}{\mu}}\left[\pi-\beta_{\mathrm{e}}+\sin \left(\beta_{\mathrm{e}}\right)\right] \\
\overrightarrow{\mathrm{v}}_{0}=\frac{\sqrt{\mu p_{\min }}}{r_{0} r \sin \Delta v}\left\{\vec{r}-\left[1-\frac{r}{p_{\text {min }}}\{1-\cos \Delta v\}\right] \vec{r}_{0}\right\}
\end{gathered}
$$

Universal Variables

- A very clear, robust, and straightforward solution.
- There are a few faster solutions, but this one is pretty clean.
- Begin with the general form of Kepler's equation:

$$
t_{f}-t_{0}=\Delta t=\sqrt{\frac{a^{3}}{\mu}}\left[2 \pi k+\left(E_{f}-e \sin E_{f}\right)-\left(E_{0}-e \sin E_{0}\right)\right]
$$

Universal Variables

- Simplify

$$
\begin{aligned}
t_{f}-t_{0}=\Delta t & =\sqrt{\frac{a^{3}}{\mu}}\left[2 \pi k+\left(E_{f}-e \sin E_{f}\right)-\left(E_{0}-e \sin E_{0}\right)\right] \\
\sqrt{\mu} \Delta t & =\sqrt{a^{3}}\left[\Delta E+e\left(\sin E_{0}-\sin E_{f}\right)\right] \\
\sqrt{\mu} \Delta t & =\sqrt{a^{3}} \Delta E+\sqrt{a^{3}} e\left(\sin E_{0}-\sin E_{f}\right)
\end{aligned}
$$

Universal Variables

- Define Universal Variables:

$$
\begin{aligned}
\chi & =\sqrt{a}\left(E_{f}-E_{0}\right)=\sqrt{a} \Delta E \\
c_{2} & =\frac{1-\cos \Delta E}{\Delta E^{2}} \\
c_{3} & =\frac{\Delta E-\sin \Delta E}{\Delta E^{3}}
\end{aligned}
$$

Universal Variables

The quantity $\chi^{3} c_{3}$ is computed and rearranged:

$$
\begin{aligned}
& \chi^{3} c_{3}=(\sqrt{a} \Delta E)^{3} \frac{\Delta E-\sin \Delta E}{\Delta E^{3}} \\
& \chi^{3} c_{3}=\sqrt{a^{3}} \Delta E-\sqrt{a^{3}} \sin \Delta E \\
& \sqrt{a^{3}} \Delta E=\chi^{3} c_{3}+\sqrt{a^{3}} \sin \Delta E . \\
& \downarrow \\
& \sqrt{\mu} \Delta t=\sqrt{a^{3}} \Delta E+\sqrt{a^{3}} e\left(\sin E_{0}-\sin E_{f}\right) \\
& \sqrt{\mu} \Delta t=\chi^{3} c_{3}+\sqrt{a^{3}} \sin \Delta E+\sqrt{a^{3}} e\left(\sin E_{0}-\sin E_{f}\right)
\end{aligned}
$$

Universal Variables

- Use the trigonometric identity

$$
\begin{gathered}
\sin \Delta E=\sin E_{f} \cos E_{0}-\cos E_{f} \sin E_{0} \\
\sqrt{\mu} \Delta t=\chi^{3} c_{3}+\sqrt{a^{3}} \sin \Delta E+\sqrt{a^{3}} e\left(\sin E_{0}-\sin E_{f}\right)
\end{gathered}
$$

$$
\begin{aligned}
\sqrt{\mu} \Delta t & =\chi^{3} c_{3}+\sqrt{a^{3}}\left(\sin E_{f} \cos E_{0}-\cos E_{f} \sin E_{0}+e \sin E_{0}-e \sin E_{f}\right) \\
\sqrt{\mu} \Delta t & =\chi^{3} c_{3}+\sqrt{a^{3}}\left[\sin E_{0}\left(e-\cos E_{f}\right)-\sin E_{f}\left(e-\cos E_{0}\right)\right] .
\end{aligned}
$$

Universal Variables

- Now we need somewhere to go
$\sqrt{\mu} \Delta t=\chi^{3} c_{3}+\sqrt{a^{3}}\left[\sin E_{0}\left(e-\cos E_{f}\right)-\sin E_{f}\left(e-\cos E_{0}\right)\right]$
- Let's work on converting this to true anomaly, via:

$$
\begin{aligned}
\cos \nu & =\frac{e-\cos E}{e \cos E-1} \\
\sin \nu & =\frac{\sqrt{1-e^{2}} \sin E}{1-e \cos E}
\end{aligned}
$$

Universal Variables

- Multiply

$$
\sqrt{\mu} \Delta t=\chi^{3} c_{3}+\sqrt{a^{3}}\left[\sin E_{0}\left(e-\cos E_{f}\right)-\sin E_{f}\left(e-\cos E_{0}\right)\right]
$$

by a convenient factoring expression:

$$
\begin{gathered}
\beta=1=\frac{\sqrt{1-e^{2}}\left(1-e \cos E_{0}\right)\left(1-e \cos E_{f}\right)}{\sqrt{1-e^{2}}\left(1-e \cos E_{0}\right)\left(1-e \cos E_{f}\right)} \\
\sqrt{\mu} \Delta t=\chi^{3} c_{3}+\sqrt{a^{3}}\left[\frac{\sin E_{0}\left(e-\cos E_{f}\right)-\sin E_{f}\left(e-\cos E_{0}\right)}{\left(1-e \cos E_{0}\right)\left(1-e \cos E_{f}\right)}\right] \frac{\left(1-e \cos E_{0}\right)\left(1-e \cos E_{f}\right) \sqrt{1-e^{2}}}{\sqrt{1-e^{2}}}
\end{gathered}
$$

Universal Variables

- Collect into pieces that can be replaced by true anomaly

$$
\begin{gathered}
\sqrt{\mu} \Delta t=\chi^{3} c_{3}+\sqrt{a^{3}}\left[\frac{\sin E_{0}\left(e-\cos E_{f}\right)-\sin E_{f}\left(e-\cos E_{0}\right)}{\left(1-e \cos E_{0}\right)\left(1-e \cos E_{f}\right)}\right] \frac{\left(1-e \cos E_{0}\right)\left(1-e \cos E_{f}\right) \sqrt{1-e^{2}}}{\sqrt{1-e^{2}}} \\
\sqrt{\mu} \Delta t=\chi^{3} c_{3}+\sqrt{a^{3}}\left[\frac{\sqrt{1-e^{2}} \sin E_{0}}{\left(1-e \cos E_{0}\right)} \frac{e-\cos E_{f}}{\left(1-e \cos E_{f}\right)}-\frac{\sqrt{1-e^{2}} \sin E_{f}}{\left(1-e \cos E_{f}\right)} \frac{e-\cos E_{0}}{\left(1-e \cos E_{0}\right)}\right] \frac{\left(1-e \cos E_{0}\right)\left(1-e \cos E_{f}\right)}{\sqrt{1-e^{2}}} \\
\cos \nu=\frac{e-\cos E}{e \cos E-1} \\
\sin \nu=\frac{\sqrt{1-e^{2}} \sin E}{1-e \cos E}
\end{gathered}
$$

Universal Variables

- Substitute in true anomaly:

$$
\begin{aligned}
\sqrt{\mu} \Delta t=\chi^{3} c_{3}+\sqrt{a^{3}}\left[\frac{\sqrt{1-e^{2}} \sin E_{0}}{\left(1-e \cos E_{0}\right)} \frac{e-\cos E_{f}}{\left(1-e \cos E_{f}\right)}\right. & \left.-\frac{\sqrt{1-e^{2}} \sin E_{f}}{\left(1-e \cos E_{f}\right)} \frac{e-\cos E_{0}}{\left(1-e \cos E_{0}\right)}\right] \frac{\left(1-e \cos E_{0}\right)\left(1-e \cos E_{f}\right)}{\sqrt{1-e^{2}}} \\
\cos \nu & =\frac{e-\cos E}{e \cos E-1} \\
\sin \nu & =\frac{\sqrt{1-e^{2}} \sin E}{1-e \cos E}
\end{aligned}
$$

$$
\sqrt{\mu} \Delta t=\chi^{3} c_{3}+\sqrt{a^{3}}\left(\sin \nu_{0}\left(-\cos \nu_{f}\right)-\sin \nu_{f}\left(-\cos \nu_{0}\right)\right)\left[\frac{\left(1-e \cos E_{0}\right)\left(1-e \cos E_{f}\right)}{\sqrt{1-e^{2}}}\right]
$$

Universal Variables

- Trig identity again:
$\sqrt{\mu} \Delta t=\chi^{3} c_{3}+\sqrt{a^{3}}\left(\sin \nu_{0}\left(-\cos \nu_{f}\right)-\sin \nu_{f}\left(-\cos \nu_{0}\right)\right)\left[\frac{\left(1-e \cos E_{0}\right)\left(1-e \cos E_{f}\right)}{\sqrt{1-e^{2}}}\right]$
$\sin \Delta E=\sin E_{f} \cos E_{0}-\cos E_{f} \sin E_{0}$

$$
\sqrt{\mu} \Delta t=\chi^{3} c_{3}+\sin (\Delta \nu) \frac{a\left(1-e \cos E_{0}\right) a\left(1-e \cos E_{f}\right)}{\sqrt{a\left(1-e^{2}\right)}}
$$

Universal Variables

- Note: $r=a(1-e \cos E)$

$$
\begin{aligned}
\sqrt{\mu} \Delta t & =\chi^{3} c_{3}+\sin (\Delta \nu) \frac{a\left(1-e \cos E_{0}\right) a\left(1-e \cos E_{f}\right)}{\sqrt{a\left(1-e^{2}\right)}} \\
\sqrt{\mu} \Delta t & =\chi^{3} c_{3}+\frac{r_{0} r_{f} \sin \Delta \nu}{\sqrt{a\left(1-e^{2}\right)}} \\
\sqrt{\mu} \Delta t & =\chi^{3} c_{3}+\frac{r_{0} r_{f} \sin \Delta \nu}{\sqrt{a\left(1-e^{2}\right)}} \frac{\sqrt{1-\cos \Delta \nu}}{\sqrt{1-\cos \Delta \nu}} \\
\sqrt{\mu} \Delta t & =\chi^{3} c_{3}+\frac{\sqrt{r_{0} r_{f}} \sin \Delta \nu}{\sqrt{1-\cos \Delta \nu}} \frac{\sqrt{r_{0} r_{f}} \sqrt{1-\cos \Delta \nu}}{\sqrt{a\left(1-e^{2}\right)}}
\end{aligned}
$$

Universal Variables

- Use some substitutions:

$$
\begin{aligned}
& \sqrt{\mu} \Delta t=\chi^{3} c_{3}+\frac{\sqrt{r_{0} r_{f}} \sin \Delta \nu}{\sqrt{1-\cos \Delta \nu}} \frac{\sqrt{r_{0} r_{f}} \sqrt{1-\cos \Delta \nu}}{\sqrt{a\left(1-e^{2}\right)}} \\
& A=\frac{\sqrt{r_{0} r_{f}} \sin \Delta \nu}{\sqrt{1-\cos \Delta \nu}} \\
& y=\frac{r_{0} r_{f}(1-\cos \Delta \nu)}{a\left(1-e^{2}\right)} \\
& \sqrt{\mu} \Delta t=\chi^{3} c_{3}+A \sqrt{y} \\
& \Delta t=\frac{\chi^{3} c_{3}+A \sqrt{y}}{\sqrt{\mu}}
\end{aligned}
$$

Universal Variables

- Summary:

$$
\begin{aligned}
\chi & =\sqrt{\frac{y}{c_{2}}} \\
A & =\mathrm{DM} \sqrt{r_{0} r_{f}(1+\cos \Delta \nu)} \\
y & =r_{0}+r_{f}+\frac{A\left(\Delta E^{2} c_{3}-1\right)}{\sqrt{c_{2}}}
\end{aligned}
$$

$$
\text { DM }=\text { Direction of Motion }= \begin{cases}+1 & \text { if } \Delta \nu<\pi \\ -1 & \text { if } \Delta \nu>\pi\end{cases}
$$

Many texts also replace the quantity ΔE^{2} with $\psi \quad\left(\psi=\Delta E^{2}\right)$.

Universal Variables

- It is useful to convert to f and g series (remember those!?)

$$
f=1-\frac{y}{r_{o}} \quad \dot{g}=1-\frac{y}{r} \quad g=A \sqrt{\frac{y}{\mu}} \quad \dot{f}=\frac{f \dot{g}-1}{g}=\frac{\sqrt{\mu y}\left(-r-r_{o}+y\right)}{r_{o} r A}
$$

$$
\begin{aligned}
\vec{r} & =f \vec{r}_{o}+g \vec{v}_{o} \\
\vec{v}_{o} & =\frac{\vec{r}-f \vec{r}_{o}}{g} \\
\vec{v} & =\frac{f \dot{g}-1}{g} \vec{r}_{o}+\dot{g} \frac{\vec{r}-f \vec{r}_{o}}{g}=\frac{\dot{g} \vec{r}-\vec{r}_{o}}{g}
\end{aligned}
$$

UV Algorithm

ALGORITHM 58: Lambert-Universal Variables $\left(\stackrel{\rightharpoonup}{r}_{o}, \stackrel{\rightharpoonup}{r}, \Delta t, t_{m}, \Rightarrow \vec{v}_{o}, \vec{v}\right)$

$$
\begin{aligned}
& \cos (\Delta \nu)=\frac{\stackrel{\rightharpoonup}{r}_{o} \cdot \vec{r}}{r_{o} r} \\
& \operatorname{SiN}(\Delta \nu)=t_{m} \sqrt{1-\cos ^{2}(\Delta \nu)} \\
& A=t_{m} \sqrt{r r_{o}(1+\cos (\Delta \nu))}
\end{aligned}
$$

If $A=0.0$, we can't calculate the orbit.
$\psi_{n}=0.0$, therefore $c_{2}=\frac{1}{2}$ and $c_{3}=\frac{1}{6}$
$\psi_{u p}=4 \pi^{2}$ and $\psi_{\text {low }}=-4 \pi$
LOOP

$$
y_{n}=r_{o}+r+\frac{A\left(\psi_{n} c_{3}-1\right)}{\sqrt{c_{2}}}
$$

IF $A>0.0$ and $y<0.0$ THEN readjust $\psi_{\text {low }}$ until $y>0.0$

$$
\begin{aligned}
& \chi_{n}=\sqrt{\frac{y_{n}}{c_{2}}} \\
& \Delta t_{n}=\frac{\chi_{n}^{3} c_{3}+A \sqrt{y_{n}}}{\sqrt{\mu}}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
\text { IF } \Delta t_{n} \leq \Delta t \\
\quad \text { reset } \psi_{\text {low }} \Leftarrow \psi_{n} \\
\text { ELSE } \\
\quad \text { reset } \psi_{u p} \Leftarrow \psi_{n} \\
\psi_{n+1}=\frac{\psi_{u p}+\psi_{\text {low }}}{2} \\
\text { Find } c_{2} c_{3}\left(\psi_{n+1} \Rightarrow c_{2}, c_{3}\right) \\
\psi_{n} \Leftarrow \psi_{n+1}
\end{array}\right.}
\end{aligned}
$$

Check if the first guess is too close UNTIL $\left|\Delta t_{n}-\Delta t\right|<1 \times 10^{-6}$

$$
\begin{array}{ll}
f=1-\frac{y_{n}}{r_{o}} & \dot{g}=1-\frac{y_{n}}{r} \quad g=A \sqrt{\frac{y_{n}}{\mu}} \\
\vec{v}_{o}=\frac{\vec{r}-f \vec{r}_{o}}{g} & \vec{v}=\frac{\dot{g} \vec{r}-\vec{r}_{o}}{g}
\end{array}
$$

Results

- Let's apply the solution to Lambert's Problem to a few problems and see what happens.
- Example Scenario. Build a transfer from Orbit 1 to Orbit 2:
- Orbit 1: $300 \times 1000 \mathrm{~km}$, inclination $=10 \mathrm{deg}$
- Orbit 2: 2000 x 5000 km , inclination $=50 \mathrm{deg}$

Quick Break

- After break we'll cover the Quiz and more details on the Universal Variables algorithm.

Quiz \#9

Information

Lambert's Problem: Let's say we have a satellite in orbit about the Earth. We want to perform a maneuver "DV1" at time "t1" to place the satellite on an orbit transfer that will intersect a target orbit, at which point we will execute a second maneuver "DV2" to insert into that orbit, at time "t2". We know the position and velocity of the satellite at t 1 and we know the desired position and velocity of the target orbit at t 2 .

Question 1 (1 point)

If we don't care what the transfer duration is ($\mathrm{t} 2-\mathrm{t} 1$) and fuel is no constraint, how many different trajectories may we build to satisfy this orbit transfer problem?1 , since the transfer uses tangential burns and there's only one way to build a transfer via tangential burns to satisfy the problem.2, since the transfer uses tangential burns and you can build a prograde and a retrograde solution (since fuel is no constraint).
$2^{*} n$, where " n " is the maximum number of full revolutions about the Earth you are willing to take during the transfer; since transfer duration is unconstrained, n is technically infinity!

Infinite, since there's a unique transfer (typically involving non-tangential burns) for each ($\mathrm{t} 1, \mathrm{t} 2$) combination.

Quiz \#9

Question 2 (1 point)

The motion of a satellite in any given two-body Keplerian orbit is constrained to be in a plane (easily defined via the orbit-normal vector / angular momentum vector!). Lambert's Problem includes orbit transfers from one plane to another. If orbit \#1 is in one plane and orbit \#2 is in another plane, what is the plane of the transfer orbit?

The same plane as Orbit \#1.

The same plane as Orbit \#2.

The average of Orbit \#1's and \#2's planes, computed by taking the average of the angular momentum vectors of each orbit.

The plane that includes the following three points in space: (1) the Earth, (2) the position in space of the start of the orbit transfer, and (3) the position in space of the end of the orbit transfer.

Quiz \#9

Question 3 (1 point)

Extending on the previous question, when is a transfer orbit undefined? That is, when might there be an ambiguity in the solution to the problem?

If Orbit \#1 and Orbit \#2 have the same orbital planes.

If Orbit \#1 and Orbit \#2 have opposite values of inclination.If the initial position vector is on the opposite side of the Earth as the final position vector and they are perfectly lined up along a line.There is never any ambiguity to the orbit transfer.

A few details on the Universal Variables algorithm

Universal Variables

- Let's first consider our Universal Variables Lambert Solver.
- Given: $\mathrm{R}_{0}, \mathrm{R}_{\mathrm{f}}, \Delta \mathrm{T}$
- Find the value of ψ that yields a minimum-energy transfer with the proper transfer duration.
- Applied to building a Type I transfer

Single-Rev Earth-Venus Type I

Single-Rev Earth-Venus Type I

Note: Bisection method

Note: Bisection method

- Time history of bisection method:

- Requires 42 steps to hit a tolerance of 10^{-5} seconds!

Psi Window: 5.20e+01
Psi Window: 3.95e+01
Psi Window: 1.97e+01
Psi Window: 9.87e+00
Psi Window: 4.93e+00
Psi Window: $2.47 \mathrm{e}+00$
Psi Window: $1.23 \mathrm{e}+00$
Psi Window: 6.17e-01
Psi Window: 3.08e-01
Psi Window: $1.54 \mathrm{e}-01$
Psi Window: 7.71e-02
Psi Window: 3.86e-02
Psi Window: 1.93e-02
Psi Window: 9.64e-03
Psi Window: 4.82e-03
Psi Window: 2.41e-03
Psi Window: $1.20 \mathrm{e}-03$
Psi Window: 6.02e-04
Psi Window: 3.01e-04
Psi Window: 1.51e-04
Psi Window: 7.53e-05
Psi Window: 3.76e-05
Psi Window: 1.88e-05
Psi Window: 9.41e-06
Psi Window: 4.71e-06
Psi Window: 2.35e-06
Psi Window: $1.18 \mathrm{e}-06$
Psi Window: 5.88e-07
Psi Window: 2.94e-07
Psi Window: $1.47 \mathrm{e}-07$
Psi Window: 7.35e-08
Psi Window: 3.68e-08
Psi Window: 1.84e-08
Psi Window: 9.19e-09
Psi Window: 4.60e-09
Psi Window: 2.30e-09
Psi Window: 1.15e-09
Psi Window: 5.74e-10
Psi Window: 2.87e-10
Psi Window: $1.44 \mathrm{e}-10$
Psi Window: 7.185111
Psi Window: $3.59 \mathrm{e}-11$

Note: Newton Raphson method

Note: Newton Raphson method

- Time history of Newton Raphson method:
- Requires 6 steps to hit a tolerance of 10^{-5} seconds!

Step 01:	Tol:	4071827.045073 sec
Step 02:	Tol:	1814604.134515 sec
Step 03:	Tol:	147501.379528 sec
Step 04:	Tol:	1176.622979 sec
Step 05:	Tol:	0.076250 sec
Step 06:	Tol:	0.000000 sec

- Note: This CAN break in certain circumstances.
- With current computers, this isn't a HUGE speedup, so robustness may be preferable.

Note: Newton Raphson Log Method

Single-Rev Earth-Venus Type I

Single-Rev Earth-Venus Type II

Interesting: 10-day transfer

Interesting: 950-day transfer

Multi-Rev

- Seems like it would be better to perform a multi-rev solution over 950 days than a Type II transfer!

A few details

- The universal variables construct ψ represents the following transfer types:

Type of Transfer $\left\{\begin{array}{l}\psi<0, \\ \psi=0, \\ 0<\psi<4 \pi^{2}, \\ 4 n^{2} \pi^{2}<\psi<4(n+1)^{2} \pi^{2},\end{array}\right.$
Hyperbolic
Parabolic
0 revolutions elliptical
n revolutions elliptical

Multi-Rev

Earth-Venus in 850 days

Earth-Venus in 850 days

Heliocentric View

Distance to Sun

Earth-Venus in 850 days

Earth-Venus in 850 days

Heliocentric View

Distance to Sun

What about Type III and V?

Earth-Venus in 850 days

Earth-Venus in 850 days

Heliocentric View

Distance to Sun

Earth-Venus in 850 days

Earth-Venus in 850 days

Heliocentric View

Distance to Sun

Summary

- The bisection method requires modifications for multi-rev.
- Also requires modifications for odd- and even-type transfers.
- Newton Raphson is very fast, but not as robust.
- If you're interested in surveying numerous revolution combinations then it may be just as well to use the bisection method to improve robustness

Types II - VI

Announcements

- Homework \#5 due Thursday
- Quiz \#10 tomorrow
- Mid-term to be handed out on Thursday, Oct $17^{\text {th }}$. It will be due on Tuesday, Oct $22^{\text {nd }}$. CAETE due date is Tuesday, Oct $29^{\text {th }}$. Each person will have the same amount of time for the test - CAETE students just have more flexibility to schedule when they work on the test. Open book open note, no working with others.
- Reading: Chapter 7
- Space News:
- Juno's Earth flyby is tomorrow!

