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Designing Nonlinear Filters Based on Daum’s Theory

Garfield C. Schmidt*
Boeing Defense and Space Group, Seattle, Washington 98124

The purpose of this paper is to present a method for designing nonlinear filters based on work by Frederick
E. Daum. The evolution of a probability density function on an interval between measurements can be described
by the Fokker-Plank equation that, under certain conditions, can be written as the product of a scalar function
and an exporential function. The parameters defining the latter satisfy coupled ordinary differential equations
and can be updated. However, it is very difficult to obtain the mean and covariance at this stage in the
development of the theory. A major theoretical result communicated in this paper is the derivation of sufficient
conditions, stated in terms of the nonlinear function defining the dynamic system, under which a probability
density function exists satisfying Davm’s conditions. This leads to algorithms for propagating the mean and
covariance lhgt generalize the Kalman-Bucy equations. A nonlinear filter for the exoatmospheric intercept of an

intercontinental ballistic missile is given as an example.

I. Introduction

ONSIDER a dynamic system described by the stochastic
differential equation

¥=fxi)+we )

Here x' is the system state vector and ¢ time. The forcing
function w is a stochastic process. Measurements are taken at
discrete time intervals and are functions of the states and an-
other stochastic process v.

z2=ulx'Y+v ()]

The purpose of this paper is to present a method for design-
ing nonlinear filters for such systems based on the work of
Daum.!-f Daum’s work is theoretically elegant, but it is diffi-
cult to generate computional algorithms based on the current
state of the theory.

The portion of Daum’s work that forms the basis for this
paper will be summarized in Sec. 11, along with a discussion of
a new point of view providing for easier formulation of com-
putational algorithms. The new conditions that, if satisfied,
lead to computational algorithms are derived in Sec. IIl. The
formulas for propagating the mean and covariance of the
probability density function (pdf) for the estimates £” of x” are
derived in Sec. IV, An example is given in Sec. V, and conclu-
sions are summarized in Sec. VI.

II. New Perspective on Daum’s Results
The specific formulation of Daum’s results used here is
presented in Ref. 2. Two of the assumptions that Daum makes
are common to most developments. The first is

E[w(H)u(n)T} = Q(1)8( —7)
Ef{a()u{nT] =0
Efw(t)(n)T) = R(1)3(t —7) )]

In Eq-s. (3), E denotes expectea value and 4 the delta function.
The matrices Q(¢) and R(f) are called process and measure-
ment noise matrices, respectively.
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The second common assumption is that the measurements
are linear in the state variables

2=H(Ox (£} + v @

where H(f) is an m xn time-dependent matrix. Several
observations may be made before proceeding to Daum's other
conditions. It is well known® that the pdf p(x,r) of the
state variables defined by Eq. (I} satisfies the Fokker-Plank
equiation

. (o), _ af\ 1 3_’1’)
at “(ar)f p[tr(ax,):] * 2 tr(Q dx’2 ®

in the interval (¢4, ,x) between measurement updates. Here,
dp/8x' is the gradient of p with respect to x* written as a row
vector, 3f/8x' is the Jacobian of f with respect to x’, tr
denotes ““trace,’* and d%p/dx'? is the Jacobian of the trans-
pose of the gradient dp/dx’.

There are three elements common to recursive filters. The
first is the assumption that the initial pdf p(x, ) is defined in
terms of a given set of parameters. The second is that the
solution to Eq. (5} on (#g,4} can be described by the same set
of parameters. The third is that the update at ¢#;, based on the
measurements at ¢y, vields a pdf that again has the given form.
One can then continue to propagate and update the pdf
through as many measurements as necessary,

In Ref. 2, Daum assumes an unnormalized pdf of the form

p(x’,tg) = W(x ", to)'e ~ ¥l ~moTFE e’ —ma)] (6)

The vector m, is n dimensional, Py is an n X n positive-definite
matrix, and s is a real number between 0 and 1. Conditions on
¥(x’,t) will follow shortly. Only s = ¥2 is considered here. An
unnormalized pdf p(x’,Zp) can be made into a pdf by dividing
it by the integral of the function over the whole state space.
That is,

P(X',ta) - P(x',fo) (7)
Sp(x',tn) dx’

The next observation is that since one assumes that p(x”’,#p)
is known, the mean %’ of the state vector at f; is known.
Therefore, it is possible to express f(x',¢) as a series in the
variable x =(x’ —%'). Assume that Eqs. (1), (2), (4), and (5)
are written in terms of x, where %’ is the mean of the state
variables x ' at the left-hand endpoint of the interval between
two measurements.
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Now let

3
r=o [ ¥(x, 1)) @®

Then, Daum’§ other conditions can be stated as follows.

Daum’s Conditions
Condition I: ¥(x,t) also satisfies the Fokker-Plank equation

3¥(x, 1) _a¥ af 1 biza' 4
T =T af— ‘Ifl:tr('é;):’ + Etr(Q E\'_i) ()]

on (t;_y,t).
Condition 2;

o
tr(a) +(AYOrT=xTAx + b7x + ¢ (10)

for some symmetric matrix A, vector b, and scalar c.
Condition 3:

S QrT=Dx + E (11)

for some matrix D and vector F.
In Ref. 2 Daum proves that if such a ¥ exists, then the

unnorm Zed pd k 1
n ah t at¢ C()nd thHEd on the set Of measurements

Pestic| i) = ¥, 1Y e
xp { = V4 [Cre = mo) TP (v ~ my)]) (12)

The parameters m and P are propagated between measure-
ments according to the following two differential equations:

dm .

Frie —PAm + Dm — (%)Pb + E (13)
o
ar —PAP +DP + PDT L O (14)

The parameters before and after updat -
respectively, peate are (=) and (+),

Pel+) " mp(+) = HTR 'z + Pe(=)""mp(~) (15)
Pk(+)-1=HTR"1H+Pk(—)ﬁ1 (16)

The parameters m and p are not the mean and covariance of
the states, and it is difficut to build a recursive filter based on
these.results. At this point, it is profitable to ask the following
question. Under what conditions will condition 1 have a sohw
tion, or an approximate solution, that is of the form dictated
by conditions 2 and 37 Such conditions can be formulated in

terms of the nonlinear function defining the dynamic system as

shown in the next section. P

III. Conditions for Daum’s Solution to Exist

If we assume that £ in Eq. (1) does not d ici
. epend e
¢, f can be.written as P xplicicy on

J(x)=a+ Bx + U + (higher-order terms) an
where
h=f(x") (18)
B = % . 19
xTGx
U= : (20)
xTG,x
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Each G;is a symmetric matrix, Also,

of
tr(g;) =d+8Tx + xTLx + (higher-order terms) {21y

for some symmetric matrix L, vector S, and scalar ¢

If conditions 2 and 3 are true up to i )
der terms, then P to and including second-gr.

¥(x, 1) = ehtxn 22
where A{x,t) must have the form
R, 0)=xTVx + g7x + (1) (23)
for some s ri i i
vy ymmetric matrix ¥V, vector g, and scalar function

The partial differential equation for # is obtained b i
tuting Eq. (22) into Eq. (©). Y subst

o an ar\ #h  (on\T{an
o == o{3) e S (D)

24)
Using Eqgs. (17) and (23), we get
w(t)= -QxTV+gNA+Bx+Uy—d — STx —xTLx
+(QV) + 2xTVQVx + 2xTV0g + V4 tr(Qgg 7
+ (higher-order terms) 25

Define J(x,t) as follows:

S, ) =xTQVQV -2VB-L —5,G,~ - —8.Gn)x
+(287QV —g™B —2ATV — ST)x + V5 tr(Qge T + 20V)
~gTh—d — &) (26)

If V and g can be chosen so that J{x.f) is i i
zero in (rk'_ 1,44} then A as defined by Eq.((2,3))i;sarlld:glt::":ca:ﬁlilisf
mate SOl'lIt.l()n of Eq. (24) up to the second order. Conditions
for the existence of a second-order approximation of Eq- ®
satisfying conditions 2 and 3 are given by setting each term of
Eq. (26) equal to zero. These are the foliowing.‘

Conditions A
AVQV—-VB)=L + (8:Gy+ --- +£,G,) 27
gT2QV —B)= 8T+ 23TV (28)
a(t) =12 tr(QggT+20V) —gTh— d (29

If fis linear or a linear approximation
and (28) are trivially satisfied with ¥ ~0 gnlgzd;%leﬂiﬁgg ﬂc{
extended Kalman filters fall under this category. '

A weaker set of conditions is obtained if one only requires
tha_lt the value of Jat (x;_,#,_,) be zero, that 3J/3x =0 in 2
neighborhood of x,_,, and that 8/8¢=0 at (Xpot1ytu1)
}Tgettl“.] \;lg b; a zezr?? in a neighborhood of (x;_,, tk_;).’ Thus,

efine . will irst- i
faetined (gﬁ),qw(e h)ave be a first-order solution of Eq. (24)-

aJ

o5 = " 2XTVB +BTY) + axTVQV

[

—2xT(L +g,G, + -+ +2.G,)

+2g7QV - gTB — 2pTV _ 8T (30)

sa  tuti
[]

¢ conditions for the existence of a first-order solution to Eq.
satisfying conditions 2 and 3 may now be written as fol-

- jows.
Copditions B

2OV - (VB+BTV) = [L+(81Gi+ -~ +2.G.)]  GD

¢T2QV —B) = 8T+ 22TV (32)
&(t) = B(2) (33

Note that J(x,£)=0over (t,_; .t ) does not imply either condi-
tion A or B.

IV. Propagation and Update
The relationship between Daum’s parameters P and m and
the covariance M and mean % can now be established. From
Egs. (6), (22), and (23), it follows that :
pix,1) = Cie - [(x—m)TP‘ lx— m)m(zTVx-t-ng)] (34)
where €, depends on time alone. Equation (34) may be re-
written as ’

p(,f)=Ce” Wix-KTM-Yx-% (%)

where .
M7=Pri-V 36)
#=MP~lm + Mg . e

Distribution’(35) is Gaussian. The covariance M and mean ¥
are propagated using the formulas derived next.
Daum’s equation (14) can be written

d . .
3 P=A-P ID-D'P! - P-iQP™! (38)

From Egs. (8), (10), (11), (17), and (23), we find that

A=L+VQV (39
BT =ST+gTQV (40)
c=d+(%)g7Qs @1

D=B-QV “2)

E=8-(%)0g 43)

It can now be shown that
M=BM + MBT— MQL +81Gi+ - +8,G.)M + Q (44)

This equation for propagating the covariance differs from that
of an BKF by the factor MQL + .G+ -+ +8.Gn)M.

_ To obtain the formula for propagating the mean, first mul-
tply both sides of Eq. (37) by PM 1.

PM - %=m+ ViPg 43)
Differentiate Eq. (45) and simplify to show that )
¥=7+BY—MQ@L4+&G+ - +8:G)x— MS  (46)

This formula for propagating the mean differs from that of an
KF by the factors MQL +g,G+ - +£,Gp)% and MS.
The equations for updating M and % are obtained by substi-
ng Bqs. (36) and (37) into Eqgs. (15) and (16). The matrix ¥
vector g cancel out of these equations, leaving the same
m with P and m replaced by M and %. (See Ref. 7).
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Fig. 1 Engagement geometry.

V. State Equations for Guidance Filters

A nonlinear filter is developed to illustrate the result of
the preceding section. Consider the engagement of a space-
based interceptor against an intercontinental ballistic missile
(ICBM). The interceptor has an angle-only seeker with a given
acquisition range. A coordinate system, called the terminal
homing cocrdinate systém (THCS), is defined by taking the
x axis to be the line of sight from the interceptor to ICBM at
acquisition, and the y and z axes to be the y and z body axes
of the interceptor at acquisition. The THCS moves with the
interceptor, but does not rotate in inertial space. The intercep-
tor is.equipped with rate gyros so that attitude of the intercep-
tor body axis relative to the THCS can be estimated. The two
angle measurements taken relative to the seeker boresight can
therefore be transformed into two angle measurements, azi-
muth and elevation, in the THCS. The azimuth angle lies in the
x,» plane and remains small throughout terminal homing, so
no loss of performance results if the elevation angle is thought
of as lying in the x, z plane. Both measured angles remain small-
because of the limited divert capability of the interceptor.
Thus, the measurement equation is essentially linear.

The x body axis of the target ICBM is along its length (axis
of symmetry) and is oriented relative to the THCS by yawing
through ¢ deg from the negative x axis and then pitching
through ¢ deg as indicated in Fig. 1. {The pitch angle in Fig. 1
is negative, the yaw angle positive.)

Two filters identical in structure are implemented: one for
the x,y plane and one for the ¥,z plangé. The x,y plane filter
equations will be derived here. Let T denote thrust, m mass,
and I, the specific impulse of the-ICBM. Also, let ¢, denote
the direction cosine of the target acceleration with respect to
the y axis. The states for the x,y plane are defined as follows.

1 = azimuth angle

y, = azimuth angle rate

vy = ¢, (T/m)

ya=T/(glym) (47

Using the fact that, for a rocket,

= —T/(gly) “8)

one sees that
Ya=yya+&,(T/m) 9
Va=2i (50)

The nonlinearities in the filter equation are due to the way in
which target acceleration is described in Eqgs. (49) and (50) and
not in the choice of a coordinate system.

If the range and range rate are R and R, then the following
states, which are called range axis states, appear in the filter
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equations, The direction cosine of target acceleration is de-
noted c,.

where Ay, is the interceptor’s own acceleration in the xy plane,
Expand the right side of the state equations (54) about the

X = R/R estimated mean (now denoted ¥ rather than %). It follov\.fs that
X3 = 1I/R P,
x3y = e (T/m) 4 —x2X3 01 =26 P2+ X3 P — X2 A ¥
Xa=T/glom) 1) 513):4
>
The secker does not provide a range measurement, and these
range axis states are not observable unless the interceptor is
causegi to fly particular types of trajectories.” These trajecto- ¢] 1 0 0
ries will not be considered here. An initial estimate of the range
axis state is made that contains errors {quantified later),-and B = XXy =2 x 0 5
the range axis states are propagated without update. These 0 0 P4 0P ©3)
errors must be small; otherwise the filter diverges.
The x and y coordirates of the target in the THCS are 0 0 0 25
¥ =R sin y (52)
L=10]
X=Rcosy (53)

Differentiating twice, using small angle approximations, and
simplifying yield the. equation for y,. Because the degree-
of-target maneuver reflected in &, is not known, the term
¢,(T/m) is represented by a stochastic process w, . A stochastic
process ws is also added to the equation for y; because of the
uncertainty in I, and lack of knowledge of {F/m) at the start
of homing. The filter-state equations are thus

1=y

V2= —xaxay — 2x 0 + xA - Ap)

57=100,0,0,3] -
d= —2x+ 3,

Furthermore, G, and G, are zero, Gy has 0.5 in the (3, 4) and
{4, 3) positions, G, has 1 in the (4, 4) position, and Q has g,(¢)
and g.(¢) in the (3, 3) and (4, 4) positions. Otherwise, all ele-
ments of Gz, G4, and @ are zero.

Conditions A are satisfied by a vector g that is zero except
for the fourth element that we denote by g again, and a matrix
V that is zero except for the (4, 4) element, which we label ».
The matrix products in Eq. (27) all have zero entries except for

Fa=¥ays + the (4, 4) element. The scalar equation for this position is
Ja=Yi+w (549 £ =2(gv2i-2p,v) (56)
[ e T T T T o

| Inijalize | *1 Propagate L I
1 az. state [ET * azimuth Azimuth Ugdatg‘ f:;‘p pross RofiltaI last l
estimates tes } | azimu state >
| sta - Residual shales {ipdate 100 samples I
thaz & el
| T‘ filtar I
L. COmpule Statistical Yeos
| [ reererms azimuth il Stare ke |
I o gains % ¥ outofn Resat I
oz oo Update No accaleration
L] azimuth 4 T covariance |
—_——— covariance ] I
Initialize I l
process . I
noise I 1 I
. o1 A I
t J
Initiafize 1) Propagats ] l ) ]—ﬁ Reset j [
noniinear £ nonlinear € ] € nonlinear
factors factors I factors I
, AR |
Initiaize Propagate | _ ) J I . j‘c L'
range axis |- rangaaxis [ T [
statas + stales — T T T T -
Bias y axis Azimuth measurement
acceleration Use 4th state
MU ' ce»f Rotate to | from azimuth f|——1
Z axis 171 THCS fitar, cov
acceleration 1 —_
Use 4th siate

filter, cov,

— — . — p— — — — —

| Etovation fitter \

Elavation measurement
Borasight )
@ az., ol. € l_] _l_

Fig. 2 New nonlinear filter block diagram.

from elavation A
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1200 7 Acceleration error m/s 2 12.00 ] Acceleration error m/s 2
9,500 9.600
. AKF mean error + 15 200 =
7.200 NNF mean 7 5 AKF mean efror + 1¢
] — 4.800 1  NNF mean
4.800 e etror + 16 . ] atror + 15
1 AKF mean 2.400 e
2.400 3 error ' J NNF mean eno\
0.000 0.000 J
2400 3 -2.400
4800 -4.800
7200 7.200
9,600 3 -9.600
-12.00 3 s|||||||||||||||||||1||[!||||||r||||||i|||||n||| -12,m-||1|'||||llllllllll]llillIIII|lIIIIlIIIlIIlllIIlli
000 1 2 3 4 5 6 7 8 9 10 000 1 2 3 4 5 & 7 8 9 10
a} Time, sec b) Time, sec
Fig. 3 Mean and 1o acceleration estimate errors: a) x,y plane (azimuth) and b) x,z plane (elevation).
0080 3 Errors in 4th state estimalte {sect) 29 &
] h="—+7,5 (60)
0064 — v, 2v2
: AKF mean error + 1“1 The parameters v, and v, in formulas (58-60) were chosen to
0048 be exponentially decreasing functions with a time constant of
n one. The parameter g, is used in all covariance propagating
0032 - NNF mean error + 16 equations except the tenth [or (4, 4) in matrix terminology],
E which uses g».
0016 — AKF mean error A block diagram illustrating the implementation of both the
3 ™\ new nonlinear filter (NNF) and an adaptive Kalman filier
0000 =] 1 (AKF) is given as Fig. 2. The elevation filter is not included in
] NNF mean error detail because it is similar to the azimuth filter. However, the
-002 = filters are somewhat coupled as indicated in the diagram,
] Both the NNF and AKF use the same maneuver detection
003 = criteria. The residuals for both filters are normalized by divid-
’ 3 ing by the appropriate angle covariance and stored along with
005 the data necessary to refilter a portion of the measurcments
| ] once a maneuver is detected. When these residuals in either
006 3 filter exceed a given value in m out of n times, @ maneuver
3 detection switch is set. Before refiltering the stored data, the g
-008 3 process noise and acceleration covariance for each filter are
) AR RARARTRLRN RRRAD RRARE RRLE RRRR) RARRY LARRN RARRY reinitialized. These terms in both filters are reinitialized to the
000 1 2 3 4 5 B 7 8 9 10 same value. Of course, the NNF has additional terms in the
covariance matrix propagation, and the best way to make use
Time, sec of these terms appears to be reinitialization of the (3, 4) cross-

Fig. 4 Mean and 1o fourth-state estimate errors.

The vector equation (28) has zeros in all components except
the fourth. The scalar equation for the fourth element is

g = (G+29vY2Aqv —34) (57)

Itis customary in filter design to choose process noise as one
~Of the parameters to vary to improve filter performance. The
-Method used here is admittedly heuristic. The best filter per-

4'O'mance has been obtained by using v as & parameter and
.'?-rgromDUting g, and g via the following formula that is derived

fTom Egs. (56) and (57):
g1 = —Pvi — VI (L +v53) (58)
ga= —Fava—V3In(1+ ) . (59

covariance term. After a maneuver detection, the update of the
fourth state is suppressed because a change in T/(glgpm) due
to a change in acceleration direction cannot be distinguished
from that due to the rocket equation, whith is really what it is
supposed to reflect.

Since maneuver detection is being done, the value of process
noise is chosen to be a decreasing exponential function. The
initial value and time constant are chosen for best AKF perfor-
mance after maneuver detection and a steady-state value is
chosen for best AKF steady-state performance. The same pro-
cess noise is used in both filters and the same initial covariance
matrix is used for both filters. Therefore, the improvement the
NNF shows over the AKF comes only from designing with the
additional terms suggested by Eqs. (44) and (46).

The interceptor and target are closing at 10,000 m/s and the
engagement lasts 10s. The y and z axis le errors in initial
position, velocity, and acceleration were 750 m, 75 m/s, and
7.5 m/s?, respectively. Perfect range axis information was
used to generate the data of Figs. 3 and 4 to illustraté the
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difference between filters. Range axis errors equal to the
¥y and z axes errors were used in Fig. 5. The target acceleration
at impact was 120 m/s? and the zero effort miss 2386 m in each
axis. The seeker tracked a point in the ICBM target plume, and
an aimpoint bias was used to move the*intended impact from
this point in the pluime to the target center. The seeker accu-
racy was 100 prad at 100 km coming down to a floor of
50 urad. For miss distance computation and probability of hit
calculations, the ICBM body was 3 m in diameter and 13 m
long. The interceptor had a 100-m/s* acceleration Jimit, _

The acceleration occurs along the y axis to illustrate filter
performance over the widest range of accelerations, i.e., large
accelerations in the azimuth filter and no acceleration in the
elevation filter. The most significant difference in perfor-
mance occurs in the third- and fourth-state estimates, as illus-
trated in Figs. 3 and 4. This is to be expected, since this is
where the nonlinearities occur. The NNF performs better by
converging faster and having smaller 1o steady-state errors.
When the target acceleration is partitioned between the ¥ and
z axes, the fourth-state convergence is not as good, but it is still
better than the AKF and convergence in the acceleration states
remained better than for the AKF.

The following guidance ldw was used:

Ugy = (1+atDA V. 52— bxixy vy +(0.5) ) (61)

where U, is acceleration’in the xy plasie. A similar formula
holds for the xz plane. Here A, @, and b are constants, V, is
the closing velocity, and the aimpoint bias term is bx;x,¥,.
Time to go is #,. There are a number of important issues con-
cerning the implementation of the guidance loop that cannot
be covered here. The NNF shows improvement (in terms of
probability of hit} over the AKF only when the target maneu-
vers and an aggressive guidance law are necessary to take
advantage of this. ’
Probability of hit vs maneuver angle for discrete times start-
ing at 85 (25 before impact) is presented in Fig. 5. Here a
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Fig. 5 Performance against a discrete maneuver.

discrete turn is one where the farget starts with a rotation rate
of zero, the nozzle is giinballed for 1 s during which the target
rotates through a given angle, and then the rotation rate is
zeroed out via a control law, The target starts out accelerating
along the y axis and then yaws, so all of the acceleration
remains perpendicular to the line of sight. This case best illus-
trates the difference between NNF and AKF performance.

¥1. Conclusion

This paper presents a new mathematical foundation for de-
signing nonlinear filters, Conditions stated in terms of the state
cquations defining the dynamic system are derived, under
which the Kalman-Bucy equations for propagating the state
estimates and covariance may be generalized. The interpreta-
tion of the additional terms that appear in the state and co-
variance propagation equations and the way in'which one can
use these terms to improve filter performance are far from
clear. However, we have presented an example that demon-
strates significant performance improvement can be obtained
using these nonlinear terms and therefore justifies calling the
attention of the filtering and tracking community to these
results. Tt is also significant, at least theoretically, that in some
cases the pdf remains Gaussian even if the filter equations are
nonlinear.
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