
Before You Begin

CDG-1	 Do	you	understand	the	design	you	are	about	to	construct?

CDG-2	 Does	the	design	provide	an	appropriate	level	of	detail	for	coding	to	begin?

CDG-3	 Is	the	design	to	be	implemented	straightforward	and	feasible,	or	should	it	be	revisited	before	
attempting	to	construct	it?

CDG-4	 Do	you	understand	the	language	and	technology	well	enough	to	implement	the	design?

General

CDG-5	 Is	the	code	written	in	terms	of	the	problem	domain	as	much	as	possible	rather	than	in	terms	of	
computer-science	or	programming-language	structures?	

CDG-6	 Is	the	code	traceable	to	upstream	design	and	requirements	artifacts?

CDG-7	 Does	the	code	have	documented	test	cases	and/or	unit	tests	as	defined	by	the	project?

CDG-8	 Does	the	code	adhere	to	CxStand_Code	or	other	designated	coding	standard?

CDG-9	 Does	the	code	adhere	to	designated	coding	styles	and	/	or	templates?

CDG-10	 Does	the	code	compile	with	no	warnings	from	the	compiler?

Understandability

CDG-11	 Does	the	code	read	from	top	to	bottom?	

CDG-12	 Are	implementation	details	hidden	as	much	as	possible?	

CDG-13	 Is	the	code	straightforward	and	does	it	avoid	“cleverness”?	

CDG-14	 Has	tricky	code	been	rewritten	rather	than	commented?	

CDG-15	 Do	you	thoroughly	understand	your	code?	

CDG-16	 Is	it	easy	to	understand?	

Performance

CDG-17	 Are	the	affects	of	resource	constraints	on	the	technology	and	operational	environment	understood	
and	within	the	bounds	of	the	performance	requirements?

CDG-18	 Are	the	affects	of	system	load	on	the	technology	and	operational	environment	understood	and	
within	the	bounds	of	the	performance	requirements?

CDG-19	 Is	the	expected	priority	of	efficient	or	highly	optimized	code	clear	for	various	areas	of	the	system?

CDG-20	 Has	profiling	support	been	planned	for	areas	of	the	code	at	risk	for	performance	issues?

Assertions and Tracing

CDG-21	 Are	assertions	used	to	document	assumptions?

CDG-22	 Are	assertions	used	to	aid	debugging?

CDG-23	 Are	tracing	statements	used	to	document	events	and	aid	debugging?

CDG-24	 Assertions	are	not	being	used	to	handle	errors	that	should	be	handled	in	the	code?

Coding Checklist

CxOne	2.1	-	CxCheck_Code-General.doc	(11/22/02)	
©	2000-2002	Construx	Software	Builders,	Inc.			www.construx.com

Page 1



Error Handling

CDG-25	 Is	it	easy	to	differentiate	between	nominal	path	processing	and	error	processing?

CDG-26	 Are	error	conditions	handled	appropriately	as	per	the	requirements	and	design?	(i.e.,	the	level	of	
robustness	in	detecting	and	responding	to	errors	matches	the	needs	of	the	system:	not	too	little	
and	not	too	much).

CDG-27	 When	attempting	recovery	from	error	conditions,	are	assumptions	reasonable?

Code Changes

CDG-28	 Is	the	change	part	of	a	systematic	change	strategy?	

CDG-29	 Has	the	change	been	reviewed	as	thoroughly	as	initial	development	would	be?	

CDG-30	 Does	the	change	enhance	the	program’s	internal	quality	rather	than	degrading	it?	

CDG-31	 Have	you	improved	the	system’s	modularity	by	breaking	routines	into	smaller	routines,	when	
possible?	

CDG-32	 Have	you	improved	the	programming	style--variable	names,	routine	names,	formatting,	
comments,	and	so	on?	

CDG-33	 If	changes	cause	you	to	look	for	ways	to	share	code,	have	you	considered	putting	the	shared	code	
at	a	higher	level	as	well	as	considered	putting	it	at	a	lower	level?	

CDG-34	 Does	this	change	make	the	next	change	easier?	

CDG-35	 Does	the	program’s	layout	show	its	logical	structure?	

CDG-36	 Is	formatting	done	primarily	to	illuminate	the	logical	structure	of	the	code?	

CDG-37	 Is	the	formatting	scheme	used	consistently?	

CDG-38	 Are	related	statements	grouped	together?	

CDG-39	 Are	blank	lines	used	to	separate	code	elements	including	functions,	control	sequences,	related	
blocks	of	code,	etc?	

CDG-40	 Does	the	formatting	scheme	result	in	code	that’s	easy	to	maintain?	

CDG-41	 Does	the	formatting	scheme	improve	code	readability?	

CDG-42	 Have	relatively	independent	groups	of	statements	been	moved	into	their	own	routines?

CDG-43	 Are	references	to	variables	as	close	together	as	possible,	both	in	total	live	time	and	from	each	
reference	to	a	variable	to	the	next?	

Individual Statements

CDG-44	 Are	continuation	lines	indented	sensibly?	

CDG-45	 Are	groups	of	related	statements	aligned?	

CDG-46	 Are	groups	of	unrelated	statements	unaligned?	

CDG-47	 Does	each	line	contain	one	statement?	

CDG-48	 Is	each	statement	written	without	side	effects?	

CDG-49	 Are	data	declarations	aligned?	

CDG-50	 Is	there	one	data	declaration	per	line?

Coding Checklist

CxOne	2.1	-	CxCheck_Code-General.doc	(11/22/02)	
©	2000-2002	Construx	Software	Builders,	Inc.			www.construx.com

Page 2

Layout



Routines

CDG-51	 Does	each	routine’s	name	describe	exactly	what	it	does?	

CDG-52	 Does	each	routine	perform	one	well-defined	task?	

CDG-53	 Is	each	routine’s	interface	obvious	and	clear?	

Data Names

CDG-54	 Are	names	of	data	types	descriptive	enough	to	help	document	data	declarations?	
Are	they	used	specifically	for	that	purpose?	

CDG-55	 Are	variables	named	well?	

CDG-56	 Are	variables	used	only	for	the	purpose	for	which	they’re	named?	

CDG-57	 Are	well-named	enumerated	types	used	instead	of	makeshift	flags	or	boolean	variables?	

CDG-58	 Are	named	constants	used	instead	of	magic	numbers	or	magic	strings?	

Data Organization

CDG-59	 Are	extra	variables	used	for	clarity	when	needed?	

CDG-60	 Are	references	to	variables	close	together?	

CDG-61	 Are	data	structures	simple	so	that	they	minimize	complexity?	

CDG-62	 Is	complicated	data	accessed	through	abstract	access	routines	(abstract	data	types)?	

Control

CDG-63	 Are	related	statements	grouped	together?	

CDG-64	 Have	relatively	independent	groups	of	statements	been	packaged	into	their	own	routines?	

CDG-65	 Does	the	normal	case	follow	the	if	rather	than	the	else?	

CDG-66	 Are	control	structures	simple	so	that	they	minimize	complexity?	

CDG-67	 Does	each	loop	perform	one	and	only	one	function,	like	a	well-defined	routine?	

CDG-68	 Is	nesting	minimized?	

CDG-69	 Have	boolean	expressions	been	simplified	by	using	additional	boolean	variables,	boolean	
functions,	and	decision	tables?	

Dependencies

CDG-70	 Does	the	code	make	dependencies	among	statements	obvious?	

CDG-71	 Do	the	name	and	parameters	of	routines	make	dependencies	obvious?	

CDG-72	 Do	comments	describe	any	dependencies	that	would	otherwise	be	unclear?	

Coding Checklist

CxOne	2.1	-	CxCheck_Code-General.doc	(11/22/02)	
©	2000-2002	Construx	Software	Builders,	Inc.			www.construx.com

Page 3

Self-Documenting Code



CDG-73	 Are	comments	up	to	date,	clear,	and	correct?	

CDG-74	 Can	someone	pick	up	the	code	and	immediately	start	understanding	it?	

CDG-75	 Does	the	source	listing	contain	enough	information	to	understand	the	program?	

CDG-76	 Do	comments	explain	the	code’s	intent	or	summarize	it,	rather	than	just	repeating	it?	
(i.e.,	the	why	rather	than	the	how)

CDG-77	 Is	the	PDL-to-code	process	used?	

CDG-78	 Is	the	distinction	between	major	and	minor	comments	clear?	

CDG-79	 Are	the	comments	indented	the	same	as	the	code?	

CDG-80	 Is	the	commenting	style	easy	to	maintain	and	allow	for	easy	modification	of	comments?	

CDG-81	 Does	the	code	avoid	endline	comments?	

CDG-82	 Do	comments	prepare	the	reader’s	mind	for	what	is	to	follow?	

CDG-83	 Does	every	comment	count?	(i.e.,	have	redundant,	extraneous,	or	self-indulgent	comments	been	
removed	or	improved?)	

CDG-84	 Is	code	that	works	around	an	error	or	uses	an	undocumented	feature	commented?	

CDG-85	 Is	each	control	statement	commented?	

CDG-86	 Are	the	ends	of	long	or	complex	control	structures	commented?	

Data Declarations

CDG-87	 Are	units	on	data	declarations	commented?	

CDG-88	 Is	the	range	of	values	on	numeric	data	commented?	

CDG-89	 Are	coded	meanings	commented?	

CDG-90	 Are	limitations	on	input	data	commented?	

CDG-91	 Are	flags	documented	to	the	bit	level?	

CDG-92	 Has	each	global	variable	been	commented	where	it	is	declared	and	where	it	is	used?	

Coding Checklist

CxOne	2.1	-	CxCheck_Code-General.doc	(11/22/02)	
©	2000-2002	Construx	Software	Builders,	Inc.			www.construx.com

Page 4

Good Commenting Technique


