
Before You Begin

CDG-1	 Do you understand the design you are about to construct?

CDG-2	 Does the design provide an appropriate level of detail for coding to begin?

CDG-3	 Is the design to be implemented straightforward and feasible, or should it be revisited before
attempting to construct it?

CDG-4	 Do you understand the language and technology well enough to implement the design?

General

CDG-5	 Is the code written in terms of the problem domain as much as possible rather than in terms of
computer-science or programming-language structures?

CDG-6	 Is the code traceable to upstream design and requirements artifacts?

CDG-7	 Does the code have documented test cases and/or unit tests as defined by the project?

CDG-8	 Does the code adhere to CxStand_Code or other designated coding standard?

CDG-9	 Does the code adhere to designated coding styles and / or templates?

CDG-10	 Does the code compile with no warnings from the compiler?

Understandability

CDG-11	 Does the code read from top to bottom?

CDG-12	 Are implementation details hidden as much as possible?

CDG-13	 Is the code straightforward and does it avoid “cleverness”?

CDG-14	 Has tricky code been rewritten rather than commented?

CDG-15	 Do you thoroughly understand your code?

CDG-16	 Is it easy to understand?

Performance

CDG-17	 Are the affects of resource constraints on the technology and operational environment understood
and within the bounds of the performance requirements?

CDG-18	 Are the affects of system load on the technology and operational environment understood and
within the bounds of the performance requirements?

CDG-19	 Is the expected priority of efficient or highly optimized code clear for various areas of the system?

CDG-20	 Has profiling support been planned for areas of the code at risk for performance issues?

Assertions and Tracing

CDG-21	 Are assertions used to document assumptions?

CDG-22	 Are assertions used to aid debugging?

CDG-23	 Are tracing statements used to document events and aid debugging?

CDG-24	 Assertions are not being used to handle errors that should be handled in the code?

Coding Checklist

CxOne 2.1 - CxCheck_Code-General.doc (11/22/02)	
© 2000-2002 Construx Software Builders, Inc. www.construx.com

Page 1

Error Handling

CDG-25	 Is it easy to differentiate between nominal path processing and error processing?

CDG-26	 Are error conditions handled appropriately as per the requirements and design? (i.e., the level of
robustness in detecting and responding to errors matches the needs of the system: not too little
and not too much).

CDG-27	 When attempting recovery from error conditions, are assumptions reasonable?

Code Changes

CDG-28	 Is the change part of a systematic change strategy?

CDG-29	 Has the change been reviewed as thoroughly as initial development would be?

CDG-30	 Does the change enhance the program’s internal quality rather than degrading it?

CDG-31	 Have you improved the system’s modularity by breaking routines into smaller routines, when
possible?

CDG-32	 Have you improved the programming style--variable names, routine names, formatting,
comments, and so on?

CDG-33	 If changes cause you to look for ways to share code, have you considered putting the shared code
at a higher level as well as considered putting it at a lower level?

CDG-34	 Does this change make the next change easier?

CDG-35	 Does the program’s layout show its logical structure?

CDG-36	 Is formatting done primarily to illuminate the logical structure of the code?

CDG-37	 Is the formatting scheme used consistently?

CDG-38	 Are related statements grouped together?

CDG-39	 Are blank lines used to separate code elements including functions, control sequences, related
blocks of code, etc?

CDG-40	 Does the formatting scheme result in code that’s easy to maintain?

CDG-41	 Does the formatting scheme improve code readability?

CDG-42	 Have relatively independent groups of statements been moved into their own routines?

CDG-43	 Are references to variables as close together as possible, both in total live time and from each
reference to a variable to the next?

Individual Statements

CDG-44	 Are continuation lines indented sensibly?

CDG-45	 Are groups of related statements aligned?

CDG-46	 Are groups of unrelated statements unaligned?

CDG-47	 Does each line contain one statement?

CDG-48	 Is each statement written without side effects?

CDG-49	 Are data declarations aligned?

CDG-50	 Is there one data declaration per line?

Coding Checklist

CxOne 2.1 - CxCheck_Code-General.doc (11/22/02)	
© 2000-2002 Construx Software Builders, Inc. www.construx.com

Page 2

Layout

Routines

CDG-51	 Does each routine’s name describe exactly what it does?

CDG-52	 Does each routine perform one well-defined task?

CDG-53	 Is each routine’s interface obvious and clear?

Data Names

CDG-54	 Are names of data types descriptive enough to help document data declarations?
Are they used specifically for that purpose?

CDG-55	 Are variables named well?

CDG-56	 Are variables used only for the purpose for which they’re named?

CDG-57	 Are well-named enumerated types used instead of makeshift flags or boolean variables?

CDG-58	 Are named constants used instead of magic numbers or magic strings?

Data Organization

CDG-59	 Are extra variables used for clarity when needed?

CDG-60	 Are references to variables close together?

CDG-61	 Are data structures simple so that they minimize complexity?

CDG-62	 Is complicated data accessed through abstract access routines (abstract data types)?

Control

CDG-63	 Are related statements grouped together?

CDG-64	 Have relatively independent groups of statements been packaged into their own routines?

CDG-65	 Does the normal case follow the if rather than the else?

CDG-66	 Are control structures simple so that they minimize complexity?

CDG-67	 Does each loop perform one and only one function, like a well-defined routine?

CDG-68	 Is nesting minimized?

CDG-69	 Have boolean expressions been simplified by using additional boolean variables, boolean
functions, and decision tables?

Dependencies

CDG-70	 Does the code make dependencies among statements obvious?

CDG-71	 Do the name and parameters of routines make dependencies obvious?

CDG-72	 Do comments describe any dependencies that would otherwise be unclear?

Coding Checklist

CxOne 2.1 - CxCheck_Code-General.doc (11/22/02)	
© 2000-2002 Construx Software Builders, Inc. www.construx.com

Page 3

Self-Documenting Code

CDG-73	 Are comments up to date, clear, and correct?

CDG-74	 Can someone pick up the code and immediately start understanding it?

CDG-75	 Does the source listing contain enough information to understand the program?

CDG-76	 Do comments explain the code’s intent or summarize it, rather than just repeating it?
(i.e., the why rather than the how)

CDG-77	 Is the PDL-to-code process used?

CDG-78	 Is the distinction between major and minor comments clear?

CDG-79	 Are the comments indented the same as the code?

CDG-80	 Is the commenting style easy to maintain and allow for easy modification of comments?

CDG-81	 Does the code avoid endline comments?

CDG-82	 Do comments prepare the reader’s mind for what is to follow?

CDG-83	 Does every comment count? (i.e., have redundant, extraneous, or self-indulgent comments been
removed or improved?)

CDG-84	 Is code that works around an error or uses an undocumented feature commented?

CDG-85	 Is each control statement commented?

CDG-86	 Are the ends of long or complex control structures commented?

Data Declarations

CDG-87	 Are units on data declarations commented?

CDG-88	 Is the range of values on numeric data commented?

CDG-89	 Are coded meanings commented?

CDG-90	 Are limitations on input data commented?

CDG-91	 Are flags documented to the bit level?

CDG-92	 Has each global variable been commented where it is declared and where it is used?

Coding Checklist

CxOne 2.1 - CxCheck_Code-General.doc (11/22/02)	
© 2000-2002 Construx Software Builders, Inc. www.construx.com

Page 4

Good Commenting Technique

