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Overview

• Day 1
– Motivating Examples
– Basic Constructs and Operations

• Day 2
– Propagation Algorithms
– Example Application

• Day 3
– Learning
– Continuous Variables
– Software



Day One Outline
• Introduction
• Example from Medical Diagnostics
• Key Events in Development
• Definition
• Bayes Theorem and Influence Diagrams
• Applications



Why the Excitement?
• What are they?

– Bayesian nets are a network-based framework for representing and 
analyzing models involving uncertainty

• What are they used for?
– Intelligent decision aids, data fusion, 3-E feature recognition, intelligent 

diagnostic aids, automated free text understanding, data mining
• Where did they come from?

– Cross fertilization of ideas between the artificial intelligence, decision 
analysis, and statistic communities

• Why the sudden interest?
– Development of propagation algorithms followed by availability of easy to 

use commercial software 
– Growing number of creative applications

• How are they different from other knowledge representation and probabilistic 
analysis tools?
– Different from other knowledge-based systems tools because uncertainty 

is handled in mathematically rigorous yet efficient and simple way
– Different from other probabilistic analysis tools because of network 

representation of problems, use of Bayesian statistics, and the synergy 
between these



Example from Medical Diagnostics

Visit to Asia

Tuberculosis

Tuberculosis
or Cancer

XRay Result Dyspnea

BronchitisLung Cancer

Smoking

Patient Information

Medical Difficulties

Diagnostic Tests

• Network represents a knowledge structure that models the relationship between 
medical difficulties, their causes and effects, patient information and diagnostic 
tests



Example from Medical Diagnostics

Patient Information

Diagnostic Tests

Visit to Asia

Tuberculosis

Tuberculosis
or Cancer

XRay Result Dyspnea

BronchitisLung Cancer

Smoking
Tuber

Present

Present

Absent

Absent

Lung Can

Present

Absent

Present

Absent

Tub or Can

True

True

True

False

Medical DifficultiesTub or Can

True

True

False

False

Bronchitis

Present

Absent

Present

Absent

Present

0.90

0.70

0.80

0.10

Absent

0.l0

0.30

0.20

0.90

Dyspnea

• Relationship knowledge is modeled by deterministic functions, logic and 
conditional probability distributions



Example from Medical Diagnostics

Tu b e rcu lo sis
Pr esen t
A b sen t

1.04
99.0

XRay  Re su lt
A b n or m a l
N or m a l

11.0
89.0

Tu b e rcu lo sis o r Can ce r
Tr u e
Fa lse

6.48
93.5

Lu n g  Can ce r
Pr esen t
A b sen t

5.50
94.5

D y sp n e a
Pr esen t
A b sen t

43.6
56.4

Bro n ch itis
Pr esen t
A b sen t

45.0
55.0

V isit To  A sia
Visit
N o Visit

1.00
99.0

S m o k in g
Sm ok er
N on Sm ok er

50.0
50.0

• Propagation algorithm processes relationship information to provide an 
unconditional or marginal probability distribution for each node

• The unconditional or marginal probability distribution is frequently 
called the belief function of that node



Example from Medical Diagnostics

Tu b e rcu lo sis
Pr esen t
A b sen t

5.00
95.0

XRay  Re su lt
A b n or m a l
N or m a l

14.5
85.5

Tu b e rcu lo sis o r Can ce r
Tr u e
Fa lse

10.2
89.8

Lu n g  Can ce r
Pr esen t
A b sen t

5.50
94.5

D y sp n e a
Pr esen t
A b sen t

45.0
55.0

Bro n ch itis
Pr esen t
A b sen t

45.0
55.0

V isit To  A sia
Visit
N o Visit

 100
   0

S m o k in g
Sm ok er
N on Sm ok er

50.0
50.0

• As a finding is entered, the propagation algorithm updates the beliefs attached to 
each relevant node in the network

• Interviewing the patient produces the information that “Visit to Asia” is “Visit”
• This finding propagates through the network and the belief functions of several 

nodes are updated



Example from Medical Diagnostics

Tu b e rcu lo sis
Pr esen t
A b sen t

5.00
95.0

XRay  Re su lt
A b n or m a l
N or m a l

18.5
81.5

Tu b e rcu lo sis o r Can ce r
Tr u e
Fa lse

14.5
85.5

Lu n g  Can ce r
Pr esen t
A b sen t

10.0
90.0

D y sp n e a
Pr esen t
A b sen t

56.4
43.6

Bro n ch itis
Pr esen t
A b sen t

60.0
40.0

V isit To  A sia
Visit
N o Visit

 100
   0

S m o k in g
Sm ok er
N on Sm ok er

 100
   0

• Further interviewing of the patient produces the finding “Smoking” is “Smoker”
• This information propagates through the network



Example from Medical Diagnostics

Tu b e rcu lo sis
Pr esen t
A b sen t

0.12
99.9

XRay  Re su lt
A b n or m a l
N or m a l

   0
 100

Tu b e rcu lo sis o r Can ce r
Tr u e
Fa lse

0.36
99.6

Lu n g  Can ce r
Pr esen t
A b sen t

0.25
99.8

D y sp n e a
Pr esen t
A b sen t

52.1
47.9

Bro n ch itis
Pr esen t
A b sen t

60.0
40.0

V isit To  A sia
Visit
N o Visit

 100
   0

S m o k in g
Sm ok er
N on Sm ok er

 100
   0

• Finished with interviewing the patient, the physician begins the examination
• The physician now moves to specific diagnostic tests such as an X-Ray, which 

results in a “Normal” finding which propagates through the network
• Note that the information from this finding propagates backward and forward 

through the arcs



Example from Medical Diagnostics

Tu b e rcu lo sis
Pr esen t
A b sen t

0.19
99.8

XRay  Re su lt
A b n or m a l
N or m a l

   0
 100

Tu b e rcu lo sis o r Can ce r
Tr u e
Fa lse

0.56
99.4

Lu n g  Can ce r
Pr esen t
A b sen t

0.39
99.6

D y sp n e a
Pr esen t
A b sen t

 100
   0

Bro n ch itis
Pr esen t
A b sen t

92.2
7.84

V isit To  A sia
Visit
N o Visit

 100
   0

S m o k in g
Sm ok er
N on Sm ok er

 100
   0

• The physician also determines that the patient is having difficulty breathing, the 
finding “Present” is entered for “Dyspnea” and is propagated through the network

• The doctor might now conclude that the patient has bronchitis and does not have 
tuberculosis or lung cancer



Applications
• Medical Diagnosis

• Internal Medicine
• Pathology diagnosis -

Intellipath by Chapman & 
Hall

• Breast Cancer Manager with 
Intellipath

• Commercial
• Financial Market Analysis
• Information Retrieval
• Software troubleshooting 

and advice - Windows 95 & 
Office 97

• Pregnancy and Child Care -
Microsoft

• Software debugging -
American Airlines’ SABRE 
online reservation system

• Industrial
• Processor Fault Diagnosis -

by Intel
• Auxiliary Turbine Diagnosis 

- GEMS by GE 
• Diagnosis of space shuttle 

propulsion systems - VISTA 
by NASA/Rockwell

• Situation assessment for 
nuclear power plant - NRC

• Military
• Automatic Target 

Recognition - MITRE
• Autonomous control of 

unmanned underwater 
vehicle - Lockheed Martin

• Assessment of Intent



Definition of a Bayesian Network
• Factored joint probability distribution as a directed 

graph:
• structure for representing knowledge about 

uncertain variables
• computational architecture for computing the 

impact of evidence on beliefs
• Knowledge structure:

• variables are depicted as nodes
• arcs represent probabilistic dependence between 

variables
• conditional probabilities encode the strength of the 

dependencies
• Computational architecture:

• computes posterior probabilities given evidence 
about selected nodes

• exploits probabilistic independence for efficient 
computation



Sample Factored Joint Distribution
X1

X3X2

X5

X4 X6

p(x1, x2, x3, x4, x5, x6) = p(x6 | x5) p(x5  | x3, x2) p(x4  | x2, x1) p(x3  | x1) p(x2  | x1) p(x1) 



Bayes Rule

A1
A2 A3 A4

A5A6

E

• Based on definition of conditional probability
• p(Ai|E) is posterior probability given evidence E
• p(Ai) is the prior probability
• P(E|Ai) is the likelihood of the evidence given Ai

• p(E) is the preposterior probability of the evidence

= p(A,B) = p(B | A)p(A)p(A |B)
p(B) p(B)

= p(E A| )
∑

i
ii

ii

)p(AA|p(E
)p(AA|p(E )i)p(A =|E)ip(A i

p(E) )



Arc Reversal - Bayes Rule
X1

X3

X2X1

X3

X2

p(x1, x2, x3) = p(x3 | x1) p(x2 | x1) p(x1) p(x1, x2, x3) = p(x3 | x2, x1) p(x2) p( x1)

is equivalent to is equivalent to

X1

X3

X2 X1

X3

X2

p(x1, x2, x3) = p(x3, x2 | x1) p( x1)

= p(x2 | x3, x1) p(x3 | x1) p( x1)

p(x1, x2, x3) = p(x3 | x1) p(x2 , x1)

= p(x3 | x1) p(x1 | x2) p( x2)



Inference Using Bayes Theorem
Tuber-
culosis

Lung
Cancer

Tuberculosis
or Cancer

Dyspnea

Bronchitis
Lung

Cancer Bronchitis

Tuberculosis
or Cancer

Dyspnea

Lung
Cancer Lung

Cancer
Lung

Cancer
Tuberculosis

or Cancer
Dyspnea Dyspnea

Dyspnea

The general probabilistic inference problem is to find the probability of an 
event given a set of evidence
This can be done in Bayesian nets with sequential applications of Bayes 
Theorem



Why Not this Straightforward 
Approach?

• Entire network must be considered to determine next 
node to remove

• Impact of evidence available only for single node, 
impact on eliminated nodes is unavailable

• Spurious dependencies between variables normally 
perceived to be independent are created and calculated 

• Algorithm is inherently sequential, unsupervised 
parallelism appears to hold most promise for building 
viable models of human reasoning

• In 1986 Judea Pearl published an innovative algorithm 
for performing inference in Bayesian nets that 
overcomes these difficulties  - TOMMORROW!!!! 
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Overview 
of Bayesian Network Algorithms

• Singly vs. multiply connected graphs
• Pearl’s algorithm
• Categorization of other algorithms

– Exact
– Simulation



Propagation Algorithm Objective

Data

Data

• The algorithm’s purpose is “… fusing and propagating 
the impact of new evidence and beliefs through 
Bayesian networks so that each proposition eventually 
will be assigned a certainty measure consistent with the 
axioms of probability theory.”  (Pearl, 1988, p 143)



Singly Connected Networks
(or Polytrees)

Definition : A directed acyclic graph (DAG) in which only one 
semipath (sequence of connected nodes ignoring direction 
of the arcs) exists between any two nodes.

Multiple parents 
and/or

multiple children

Polytree
structure
satisfies
definition

Do not
satisfy

definition



Notation
X = a random variable (a vector of dimension m);  x = a possible value of X
e = evidence (or data), a vector of dimension m
My|x  = p(y|x), the likelihood matrix or conditional probability distribution

y

p(y1|x1)   p(y2|x1)                . . .         p(yn|x1) 
p(y1|x2)   p(y2|x2)                . . .         p(yn|x2)

. . . . . .                . . . 

p(y1|xm)  p(y2|xm)                . . .     p(yn|xm)x

= 

Bel (x) = p(x|e), the posterior (a vector of dimension m)

f(x)    g(x) = the term by term product (congruent multiplication) of two
vectors,  each of dimension m

f(x) g(x) = the inner (or dot) product of two vectors,  or the matrix
multiplication of a vector and a matrix

α = a normalizing constant, used to normalize a vector so that its elements 
sum to 1.0



Bi-Directional Propagation
in a Chain

e+

e-

X

Y

Z

π(e+)

π(x)

π(y)

λ(y)

λ(z)

λ(e-)

Each node transmits a pi message to its
children and a lambda message to its parents.

Bel(Y) = p(y|e+, e-) = α π(y)T λ(y)

where

π(y) = p(y|e+), prior evidence; a row vector
λ(y) = p(e-|y), diagnostic or likelihood evidence;

a column vector

π(y) = Σx p(y|x, e+) p(x| e+) = Σx p(y|x) π(x)
= π(x) My|x

λ(y) = Σz p(e-|y, z) p(z| y) = Σz p(e-|z) p(z| y)
= Σz λ(z) p(z| y) = Mz|y λ(z)



An Example: Simple Chain

p(Paris) = 0.9
p(Med.) = 0.1

M TO|SM =  

M AA|TO =

Strategic
Mission

Paris
Med.

.8     .2

.1     .9[ ]
Ch Di

Pa
MeChalons

Dijon
Tactical 

Objective
.5    .4    .1
.1    .3    .6[ ]
No Ce So

Ch
Di

North
Central
South

Avenue of
Approach



Sample Chain - Setup
(1) Set all lambdas to be a vector of 1’s; Bel(SM) = α λ (SM) π(SM)

π(SM) Bel(SM) λ(SM)
Paris 0.9 0.9 1.0
Med. 0.1 0.1 1.0

(2) π(TO) = π(SM) MTO|SM; Bel(TO) = α λ (TO) π(TO)

π(TO) Bel(TO) λ(TO)
Chalons 0.73 0.73 1.0
Dijon 0.27 0.27 1.0

(3) π(AA) = π(TO) MAA|TO; Bel(AA) = α λ (AA) π(AA)

π(AA) Bel(AA) λ(AA)
North 0.39 0.40 1.0
Central 0.35 0.36 1.0
South 0.24 0.24 1.0

Strategic
Mission

Tactical 
Objective

Avenue of
Approach

MAA|TO =MTO|SM =
.8     .2
.1     .9[ ] .5    .4    .1

.1    .3    .6[ ]



Sample Chain - 1st Propagation

[ ]
t

TR T
=
=

0
5λ( ) . 1   .6

[ ]
t = 0

(lR) = .8   .2π
t = 1
π(SM) = π(IR)

π(SM) Bel(SM) λ(SM)
Paris 0.8 0.8 1.0
Med. 0.2 0.2 1.0

π(TO) Bel(TO) λ(TO)
Chalons 0.73 0.73 1.0
Dijon 0.27 0.27 1.0

π(AA) Bel(AA) λ(AA)
North 0.39 0.3 0.5
Central 0.35 0.5 1.0
South 0.24 0.2 0.6

t = 1
λ(AA) = λ(TR)

Intel.
Rpt.

Troop
Rpt.

Strategic
Mission

Tactical 
Objective

Avenue of
Approach



Sample Chain - 2nd Propagation

t

TR
T

= 0

5λ( ) 1   .6

[ ]
t = 0

(lR) = .8   .2π π(SM) Bel(SM) λ(SM)
Paris 0.8 0.8 1.0
Med. 0.2 0.2 1.0

t = 2
π(TO) = π(SM) MTO|SM

π(TO) Bel(TO) λ(TO)
Chalons 0.66 0.66 0.71
Dijon 0.34 0.34 0.71

t = 2
λ(TO) = MAA|TO λ(SM) 

π(AA) Bel(AA) λ(AA)
North 0.39 0.3 0.5
Central 0.35 0.5 1.0
South 0.24 0.2 0.6

Intel.
Rpt.

Troop
Rpt.

Strategic
Mission

Tactical 
Objective

Avenue of
Approach

[ ]= .



Sample Chain - 3rd Propagation
π(SM) Bel(SM) λ(SM)

Paris 0.8 0.8 0.71
Med. 0.2 0.2 0.71

t = 3
λ(SM) =  MTO|SMλ(TO)

π(TO) Bel(TO) λ(TO)
Chalons 0.66 0.66 0.71
Dijon 0.34 0.34 0.71

t = 3
π(AA) = π(TO) MAA|TO 

π(AA) Bel(AA) λ(AA)
North 0.36 0.25 0.5
Central 0.37 0.52 1.0
South 0.27 0.23 0.6

Intel.
Rpt.

Troop
Rpt.

Strategic
Mission

Tactical 
Objective

Avenue of
Approach



Internal Structure 
of a Single Node Processor

Message to
Parent U

Message from
Parent U

MX|U λ π MX|U

Πk λk(X)
BEL = α π λ

α BEL(X)
λ1(X)

α BEL(X)
λN(X)......

λ(X)
π(X)

λX(U)

λ1(X) λN(X)

π X(U)

πN(X)π1(X)

Processor for 
Node X

Message from
Children of X

Message to
Children of X



Propagation
Example

“The impact of each new piece of evidence is 
viewed as a perturbation that propagates through

the network via message-passing between
neighboring variables . . .”  (Pearl, 1988, p 143`

Data
Data

• The example above requires five time periods to reach equilibrium after 
the introduction of data (Pearl, 1988, p 174)



Categorization of Other 
Algorithms

•Simulation algorithms
• Backward sampling

• Stochastic simulation
• Forward sampling

• Logic sampling
• Likelihood weighting
• (With and without 

importance sampling)
• (With and without 

Markov blanket 
scoring)

• Exact algorithms
• on original directed graph 

(only singly connected, e.g., 
Pearl)

• on related undirected graph
• Lauritzen & Spiegelhalter
• Jensen
• Symbolic Probabilistic 

Inference 
• on a different but related 

directed graph
• using conditioning
• using node reductions



Decision Making in Nuclear Power Plant 
Operations

Situation Assessment (SA)
Decision Making

1)  Monitor the environment
2)  Determine the need for situation 

assessment
3)  Propagate event cues
4)  Project Events
5)  Assess Situation
6)  Make Decision

Situation Awareness
Updated Situation
Belief Distribution

Assess Situation
Action Required

?

Project
Events

Monitor
Environment

Start
Assessment

?

Propagate
Evidence

Choose Action
If Situation = Si

Then Procedure = Pi

• “Decision making in nuclear power plant operations is characterized by:
– Time pressure
– Dynamically evolving scenarios
– High expertise levels on the part of the operators



Model of Situation Assessment and
Human Decision Making

Emergency

• The Bayesian net situation assessment model provides:
– Knowledge of the structural relationship among situations, events, and event cues
– Means of integrating the situations and events to form a holistic view of their meaning
– Mechanism for projecting future events

Steam Generator
Tube Rupture

Loss of Coolant
Accident

Loss of Secondary
Coolant

Situations

Other

Steam Line
Radiation

Events Pressurizer
Pressure

Steam Gen-
erator Level

Steam Line
Radiation Alarm

Sensor
Outputs

Pressurizer
Indicator

Steam Generator
Indicator



Situation Assessment Bayesian Net
Initial Conditions Given Emergency

Em e rge ncy
True
False

 100
   0

LOSC
True
False

17.0
83.0

LOCA
True
False

17.0
83.0

Othe r
True
False

22.0
78.0

SGTR
True
False

44.0
56.0

PRZ_Pre ssure
Rapidly  Dec
Slowly Dec
Const or Inc

56.6
3.50
39.9

SL_Ra dia tion
True
False

71.3
28.7

SG_Le ve l
Increasing
Non Increasing

62.7
37.3

SLR_Ala rm
True
False

70.9
29.1

PRZ_Indica tor
Rapidly  Dec
Slowly Dec
Const or Inc

39.7
30.1
30.1

SG_Indica tor
Increasing
Non Increasing

60.1
39.9



Situation Assessment Bayesian Net
Steam Line Radiation Alarm Goes High

Em e rge ncy
True
False

 100
   0

LOSC
True
False

17.0
83.0

LOCA
True
False

17.0
83.0

Othe r
True
False

26.0
74.0

SGTR
True
False

55.4
44.6

PRZ_Pre ssure
Rapidly  Dec
Slowly Dec
Const or Inc

64.4
3.60
32.0

SL_Ra dia tion
True
False

99.6
0.41

SG_Le ve l
Increasing
Non Increasing

71.4
28.6

SLR_Ala rm
True
False

 100
   0

PRZ_Indica tor
Rapidly  Dec
Slowly Dec
Const or Inc

43.6
28.2
28.2

SG_Indica tor
Increasing
Non Increasing

67.1
32.9



Situation Assessment Bayesian Net
Steam Line Radiation Alarm Goes Low

Em e rge ncy
True
False

 100
   0

LOSC
True
False

17.0
83.0

LOCA
True
False

17.0
83.0

Othe r
True
False

12.3
87.7

SGTR
True
False

16.3
83.7

PRZ_Pre ssure
Rapidly Dec
Slowly Dec
Const or Inc

37.6
3.26
59.1

SL_Ra dia tion
True
False

2.45
97.6

SG_Le ve l
Increasing
Non Increasing

41.5
58.5

SLR_Ala rm
True
False

   0
 100

PRZ_Indica tor
Rapidly Dec
Slowly Dec
Const or Inc

30.1
34.9
34.9

SG_Indica tor
Increasing
Non Increasing

43.2
56.8



Simulation of SGTR Scenario
Event Timeline
Time Event Cues Actions

6:30:00 Steam generator tube rupture occurs
6:30:14 Radiation alarm Operator observes that the radioactivity

alarm for “A” steam line is on
6:30:21 Low pressure alarm
6:30:34 Pressurizer level and pressure are

decreasing rapidly
Charging FCV full open

6:30:44 Pressurizer pressure and level are still
decreasing

Letdown isolation

6:30:54 Decrease in over-temperature-delta
temperature limit

10% decrease in turbine load

6:32:34 Decreasing pressurizer pressure and
level cannot be stopped from
decreasing . . . Emergency

Manual trip

6:32:41 Automatic SI actuated
6:32:44 Reactor is tripped EP-0 Procedure starts
6:33:44 Very low pressure of FW is present FW is isolated
6:37:04 Pressurizer pressure less than 2350 psig PORVs are closed
6:37:24 Radiation alarm, pressure decrease and

SG level increase in loop “A”
SGTR is identified and isolated



Simulation of SGTR Scenario
Convergence of Situation Disparity

0

0.2

0.4

0.6

0.8

1

6:29 6:30 6:31 6:31 6:32 6:33 6:34 6:35 6:36 6:37

• Situation Disparity is defined as follows:
– SD(t) = | Bel (S(t)) - Bel(S’(t)) |
– S represents the actual situation
– S’ represents the perceived situation
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Building BN Structures
Problem
Domain Bayesian

Network

Bayesian
Network

Bayesian
Network

Problem
Domain

Problem
Domain

Expert
Knowledge

Expert
Knowledge

Training
Data

Training
Data

Probability
Elicitor

Learning
Algorithm

Learning
Algorithm



Learning Probabilities from Data
• Exploit conjugate distributions

– Prior and posterior distributions in same family
– Given a pre-defined functional form of the 

likelihood
• For probability distributions of a variable defined 

between 0 and 1, and associated with a discrete sample 
space for the likelihood
– Beta distribution for 2 likelihood states (e.g., head 

on a coin toss)
– Multivariate Dirichlet distribution for 3+ states in 

likelihood space



Beta Distribution
x)(1x

m)(n(m)
(n)p 1mn1m
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1
2
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Multivariate Dirichlet Distribution

)(m)...(m)(m
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Updating with Dirichlet
• Choose prior with m1 = m2 = … = mN = 1

– Assumes no knowledge
– Assumes all states equally likely: .33, .33, .33
– Data changes posterior most quickly
– Setting mi = 101 for all i would slow effect of data down

• Compute number of records in database in each state
• For 3 state case:

– 99 records in first state, 49 in second, 99 in third
– Posterior values of m’s: 100, 50, 100
– Posterior probabilities equal means: .4, .2, .4
– For mi equal 101, posterior probabilities would be: .36, .27, .36



Learning BN Structure from Data
• Entropy Methods

– Earliest method
– Formulated for trees and 

polytrees
• Conditional Independence 

(CI)
– Define conditional 

independencies for each 
node (Markov 
boundaries)

– Infer dependencies within 
Markov boundary

• Score Metrics
– Most implemented 

method
– Define a quality metric to 

maximize
– Use greedy search to 

determine the next best 
arc to add

– Stop when metric does not 
increase by adding an arc

• Simulated Annealing & 
Genetic Algorithms
– Advancements over 

greedy search for score 
metrics



Sample Score Metrics
• Bayesian score: p(network structure | database)
• Information criterion: log p(database | network 

structure and parameter set)
– Favors complete networks
– Commonly add a penalty term on the number of 

arcs
• Minimum description length: equivalent to the 

information criterion with a penalty function
– Derived using coding theory



Features for Adding Knowledge to 
Learning Structure

• Define Total Order of Nodes

• Define Partial Order of Nodes by Pairs

• Define “Cause & Effect” Relations



Demonstration of Bayesian 
Network Power Constructor

• Generate a random sample of cases using the original 
“true” network
– 1000 cases
– 10,000 cases

• Use sample cases to learn structure (arc locations and 
directions) with a CI algorithm in Bayesian Power 
Constructor

• Use same sample cases to learn probabilities for 
learned structure with priors set to uniform 
distributions

• Compare “learned” network to “true” network



Enemy Intent
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Original Network
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Learned Network with 1000 Cases
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Arcs Unspecified: 3



Learned Network with 10,000 Cases
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Comparison of Learned Networks 
with Truth

p(AoA) Truth 1 K 10 K
Prior .37, .37, .26 .37, .35, .28 .38, .36, .26
“Clear” .41, .37, .22 .38, .36, .26 .41, .36, .23
“Rainy” .30, .36, .34 .35, .32, .33 .30, .36, .34
“NAI 1 True” .15, .13, .71 .17, .12, .71 .16, .12, .71
“Rain, NAI 1
True”

.10, .11, .79 .15, .10, .75 .11, .11, .78
“Rain, NAI 1 &
2 True”

.56, .02, .43 .59, .05, .36 .56, .03, .40



Summary of Comparison
• Reasonable accuracy can be obtained with a relatively 

small sample
– Prior probabilities (before data) look better than 

posterior probabilities (after data) for small samples
• More data improves results, but may not guarantee 

learning  the same network
• Using partial order expertise can improve the structure of 

the learned network
• Comparison did not have any nodes with low probability 

outcomes
– Learning algorithms requires 200-400 samples per 

outcome
– In some cases, even 10,000 data points will not be 

enough



Continuous Variables Example

• Data from three sensors can be fused to gain 
information on relevant variables



Continuous Variables Example

Entering values for the three discrete random variables shifts the 
sensor mean values



Continuous Variables Example

• A defective filter has a strong impact on the light 
penetrability and metal emissions sensors



Continuous Variables Example

• What can we learn about the three state 
variables given sensor outputs?



Continuous Variables Example

• A light penetrability reading that is 3 sigma low is a strong 
indicator of a defective filter



Software
• Many software packages available

– See Russell Almond’s Home Page
• Netica

– www.norsys.com
– Very easy to use
– Implements learning of probabilities
– Will soon implement learning of network structure

• Hugin
– www.hugin.dk
– Good user interface
– Implements continuous variables
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Backup



The Propagation Algorithm
• As each piece of evidence is introduced, it generates:

– A set of “π” messages that propagate through the network in the 
direction of the arcs

– A set of “λ” messages that propagate through the network against the 
direction of the arcs

• As each node receives a “π” or “λ” message:
– The node updates its own “π” or “λ” and sends it out onto the 

network
– The node uses its updated “π” or “λ” to update its BEL function

T
BEL(t)

π(t)     λ(t)

U
BEL(t)

π(t)     λ(t)

X
BEL(t)

π(t)     λ(t)

Y
BEL(t)

π(t)     λ(t)

Z
BEL(t)

π(t)     λ(t)

Mu|t My|xMx|u Mz|y



Key Events in Development of 
Bayesian Nets

• 1763 Bayes Theorem presented by Rev Thomas Bayes (posthumously) in the 
Philosophical Transactions of the Royal Society of London

• 19xx Decision trees used to represent decision theory problems
• 19xx Decision analysis originates and uses decision trees to model real world 

decision problems for computer solution
• 1976 Influence diagrams presented in SRI technical report for DARPA as 

technique for improving efficiency of analyzing large decision trees
• 1980s Several software packages are developed in the academic environment 

for the direct solution of influence diagrams
• 1986? Holding of first Uncertainty in Artificial Intelligence Conference 

motivated by problems in handling uncertainty effectively in rule-based expert 
systems

• 1986 “Fusion, Propagation, and Structuring in Belief Networks” by Judea 
Pearl appears in the journal Artificial Intelligence

• 1986,1988 Seminal papers on solving decision problems and performing 
probabilistic inference with influence diagrams by Ross Shachter

• 1988 Seminal text on belief networks by Judea Pearl, Probabilistic Reasoning 
in Intelligent Systems:  Networks of Plausible Inference

• 199x Efficient algorithm
• 199x Bayesian nets used in several industrial applications
• 199x First commercially available Bayesian net analysis software available



Example from Medical Diagnostics

Tu b e rcu lo sis
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   0
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13.3
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 100
   0

S m o k in g
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N on Sm ok er

 100
   0

• Finished with interviewing the patient, the physician begins the examination
• The physician determines that the patient is having difficulty breathing, the finding 

“Dyspnea” is “Present” is entered and propagated through the network
• Note that the information from this finding propagates backward through the arcs



Example from Medical Diagnostics

Tu b e rcu lo sis
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   0
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 100
   0

• The physician now moves to specific diagnostic tests such as an X-Ray, which 
results in a “Normal” finding which propagates through the network

• The doctor might now conclude that the evidence strongly indicates the patient has 
bronchitis and does not have tuberculosis or lung cancer
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Lung Cancer
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Bronchitis



Inference Using Bayes Theorem

Smoker Smoker Smoker

• The general probabilistic inference problem is to find the 
probability of an event given a set of evidence

• This can be done in Bayesian nets with sequential applications of 
Bayes Theorem

Tuber-
culosis

Lung
Cancer

Tuberculosis
or Cancer

Tuber-
culosis

Lung
Cancer

Lung
Cancer

Tuberculosis
or Cancer

Tuberculosis
or Cancer

Smoker Smoker

Lung
Cancer

Tuberculosis
or Cancer

Smoker

Tuberculosis
or Cancer



Sample Chain - Setup

(1) Set all lambdas to be a vector of 1’s; Bel(SM) = α λ (SM) π(SM)

π(SM) Bel(SM) λ(SM)
Paris 0.9 0.9 1.0
Med. 0.1 0.1 1.0

(2) π(TO) = π(SM) MTO|SM; Bel(TO) = α λ (TO) π(TO)

π(TO) Bel(TO) λ(TO)
Chalons 0.73 0.73 1.0
Dijon 0.27 0.27 1.0

(3) π(AA) = π(TO) MAA|TO; Bel(AA) = α λ (AA) π(AA)

π(AA) Bel(AA) λ(AA)
North 0.39 0.73 1.0
Central 0.35 0.27 1.0
South 0.24 0.24 1.0

Strategic
Mission

Tactical 
Objective

Avenue of
Approach









.9.1
.2.8









.6.3.1
.1.4.5

MAA|TO =MTO|SM =
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