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Talk QOutline

e What is CRB and why do we need it?

e CRB for nonlinear filtering

e CRB for jump Markov processes

e CRB for uncertain data association

e Multi-target CRB

e Sensor allocation using CRB

e Summary



What is Cram ér-Rao bound?

CR inequality provides a lower bound on the achievable mean-square esti-
mation error.

The CRB for unbiased estimators mainly in use (although the formulation
for biased estimators is also available);

We distinguish two cases:
¢ deterministic parameter estimation

¢ stochastic parameter estimation (a.k.a. posterior CRB)

Existence of the CR bound not guaranteed.



Some history

e The CR inequality was first stated by Ronald Fisher (1925).

e Proven by Daniel Dugué (1937).

e Harold Crameér, C. R. Rao (independently) merely re-derived the bound
(1945)!

e H. Van Trees (1968) introduced the bound to a wider engineering commu-
nity.



Applications of the CR bound (tracking context)

e Theoretically possible to predict the best achievable 2nd-order error perfor-
mance for a target tracking problem (before you develop an algorithm);

e Aid in a tracker design: one can assess the effects of approximations em-
bedded in tracking algorithms (by comparing RMS errors with the bound);

e Sensor management applications:
¢ radar scheduling;
¢ spatial deployment of sonobuoys;

¢ observer trajectories (bearings-only tracking, cooperative UAVS, etc)
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Definition (static case)

Suppose x IS an unknown random parameter vector (dim ny)

Z = (z1,...,2z;) is a vector of measurement data

Let X = g(Z) be an unbiased estimate of x.

The Cramér-Rao inequality:

C2E{g2) - x[e(2) - X"} > 37}

J is the (Fisher) information matrix with elements:

[82 Inp(x,7Z)

J,i=-FE
8x7; an

tJ

] (i,7=1,...,nz)



Some properties of the bound

e Inequality C > J—1 means that the difference C — J—1 is a positive semi-
definite matrix;

e Since p(x,7Z) = p(Z|x) - p(x), the information matrix decomposed as:

where J, represents the information obtained from the data and J,, repre-
sents the prior information

e If prior pdf p(x) is a multivariate Gaussian with covariance Pg, then

e The diagonal elements of J—1 are lower bounds of the corresponding mean-
square error.



Nonlinear Filtering Problem (dynamic systems)

Notation:

e k Is the discrete-time index

e X, IS target state vector at time k

o zf; Is the measurement vector at time k£ fromsensor ¢ =1,...,L
e W, vi. are independent white processes

e fi.(-), hi () are nonlinear functions

Xk fr1(Xp—1) + Wg_1

zé = hi(xk)—l—vi

fork=1,2,3,...

The assumption is that the initial state xg has a known pdf p(xq).



The CR bound for the Nonlinear Filtering Problem

e Research topic for about three decades:
= an excellent review by T. H. Kerr (1989)

e Tichavsky et al. (1998): Riccati-like recursion for the calculation of J..

Jopr =Jp(k + 1)+ > Io(k+ 1)
14

o Jp(k 4 1) is prior (or predicted) information matrix

o Jﬁ(k + 1) is information matrix due to measurement from sensor ¢ =
1,...,L attime k. Further on we assume ¢ = 1 for simplicity.



The CR bound for the Nonlinear Filtering Problem (Cont'd)

e If process noise w;, ~ N (0, X;), and X, non-singular, then

_ _ _ —1 _
Ip(k+1) = ;1 = SE{Fy} (I, + BE{FL S 'F,))  E(FL}S,

T
where Fp = |Vx, [fr(x )]T is the Jacobian of fi.(-).
k g e \XE

e If measurement noise v, ~ N (0,Ry), and R non-singular, then

J.(k) =E {HZR;lﬂk}

T
where H,, = |Vx, [hp(x)]? | is the Jacobian of hy(-).
k ELHE\AL
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Nonlinear Filtering: Deterministic case

e In the absence of process noise, i.e. w;, = 0, target state x;, is an unknown
deterministic parameter (knowing xg we can compute x;. for any k);

e The expectation operator £ disappears; a simple recursive formula [Taylor,
1979].

—1\7 _ _
Jit1 = (Fr ') TFt +H R Hyp

e Observation: This is identical to the covariance matrix propagation formula
for the Extended Kalman filter! There is only one difference: here we use
true values of x;. to evaluate Jacobians F;. and H;..
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Examples: Bearings-only tracking

e Bearings measurements collected asynchronously by distributed sensors

Time

—40—.—I—A ® = ® /@

@ Sensorl
AN Sensor 2
B Sensor3

e Target moving with a (nearly) constant velocity (linear dynamics);
: . 17T
XE = [ﬂ% Tk Yk yk}

e Sensors are mobile; sensor state vector is known:
. T
Xi:[xi a:i y£ yﬂ , Le{1,2,...,L}
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Examples: Bearings-only tracking (Cont'd)

e Measurement equation (nonlinear)

_ otk
e’“ = h P(xp) + v : hi’“(xk) — arctan 2% y’zk

® zf;k IS @ measurement from sensor /¢, at time t;

0. . o . . .
e v," is measurement noise in sensor /. zero-mean white Gaussian, with

variance R = agk.

e Estimation problem:
Given sensor messages M = {(,, Xz 2 )} (t=1,...,k), estimate xy.
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Examples: Bearings-only tracking (Cont'd)

Single mobile sensor (must manoeuvre to observe the target state)
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Examples: Bearings-only tracking (Cont'd)

Two Mobile sensors: Sensor 1 as before; Sensor 2 reports only at: 31.6s,
47.6s, 63.6s, 79.6s, 95.6s, 111.65
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Examples: Tracking a Ballistic Object on Re-entry

e Problem:

Sequential estimation of kinematic parameters (position, velocity) of a bal-
listic object re-entering the atmosphere

e Practical applications: Surveillance for missile defence (e.g. scud missiles)

e Problem difficult due to the nonlinear object dynamics;

e Long history [Athans et. al. 1968; Mehra 1971; Gelb 1974; Austin 1981; Zarchan 1994;
Julier et al. 2000]
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Ballistic Object on Re-entry: Dynamics

DRAG

¢

¢ GRAVITY

\/( RADAR

e 1D (vertical) motion

e Only two forces act upon the object: drag (air
resistance) and gravity

e Differential equations:

o=
~_ p(h)-g-v?
Vo= —9

25

where
¢ h - object height;

& v - object velocity;

¢ (3 - ballistic coefficient (depends on mass, shape,
Cross-sec.);

p(h) =~ - e~ nh (air density);
g = 9.81m/s?
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Ballistic Object on Re-entry: Dynamics & measurements

e State vector x; = [hx vi 8]’

e Using Euler approx. with a small integration step 7

X1 = fp(x) + Wi

— g-p([1])-x}[2]

where f;.(x;) is nonlinear due to drag D (xy, 2%.[3]

e Process noise: wj, ~ N (0, X)
e Radar is measuring target height (range) every T' > 7 seconds;

e Measurement equation is linear:

zp, = Hxy + vy

where H=[1 0 0] and vy ~ N (0, R = o2).

Ref: B. Ristic, S. Arulampalam, N. Gordon, Beyond the Kalman filter, 2004 (chapter 5).
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Ballistic Object on Re-entry: Trajectory

o ho = 60960 m;

3048 m/s;
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Ballistic Object on Re-entry: CR bound

e R = (200m)Z?;

o 0y = 7184 kg/ms?
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CRB for switching dynamic models

e Object motion sometimes must be modelled using more than a single dy-
namic model,

e Typical motion models: constant velocity, constant acceleration, coordinated

turn, eftc.
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Switching Dynamic model

e Multiple switching linear dynamic models with additive Gaussian noise:

Xi+1 = Fr(re41)xe + wi(rp+1)

e 741 Specifies the target motion model (or regime) which is in effect during the time interval
(th, trt1];

o Wi(rrt1) ~N(O,Xr(re41));

e The evolution of motion model sequence is modelled by a time-homogeneous Markov chain
with known:

¢ transitional probabilities
A : : . A
7T7;j=]P){’I“k+1:]‘Tk=Z}, Z,]ES:{].,Q,...,S}
¢ initial motion model probabilities:
N A . :
p1(i) = P{r1 =1}, 1€ S

e Required to estimate both x; (continuous-valued) and r;, (discrete-valued):
Hybrid estimation!
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Error Bounds for switching dynamic models

e Impossible to derive exact Cramer-Rao lower bounds

Requires differentiation of terms such as log p(r;41|r%)

e Alternatives:

1. Explore more general bounds than the Cramer-Rao bound

e.g. Bhattacharya, Bobovsky-Zakai, Weiss-Weinstein lower bounds
Problem: computationally expensive!

2. Develop an approximate Cramer-Rao lower bound

a. Conditioning on the regime sequence (i.e. enumeration bound)

b. Using best fitting Gaussian distributions [Hernandez, Ristic, Farina, 2005]
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Conditioning on the regime sequence (enumeration bound)

o Let: |pr £ (r},...,7})|be n-th regime sequence (n = 1,2,...,s")

e Then easily shown:

E{ 1% — % Re - x| > PIRCONE

The RHS gives the enumeration bound

P(p}) is the (prior) probability of sequence p}; can be computed knowing initial p; (¢) and
transitional ;; regime probabilities.

Ji is the (Fisher) information matrix conditional on sequence p}':

—1
P = D0+ RGOV R DT +32(0)
T3 (k)
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Conditioning on  p;: Optimistic bound

-1 . .
e Each [J}g} gives the error covariance bound for a known manoeuvre
sequence py;
= the resulting CR bound is overly optimistic!

e Demonstration of this over-optimism with simple example:
¢ S1: target in either CT or NCV model (manoeuvring)
o S2: target always in NCV model

¢ measurements linear in target state in both cases: hence J. (k) same

e We expect the CRB for S1 (manoeuvring target) to be higher as a conse-
guence of additional uncertainty due to model switching.
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Conditioning on  pz’: Optimistic bound demonstration

= NCV model
= NCV-CT models

RMS Error Bound [m]

0 50 1100 150 200
Elapsed time [seconds]
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Switching Dynamic models: Best fitting Gaussian

e Original model (MODEL 1):

Xp+1 = Fr(rp1)xp + wi(rp41) with wi(rgyq) ~ N(0, 35 (rg+1))

e Replace with a best-fitting Gaussian (BFG) approximation (MODEL 2):
Xk+4+1 ~ (I)ka + €L with €L ~ N(O, Qk)

e ¢, and Q. chosen so that:

E [x,|MODEL 1] = E [x,|MODEL2]  forall k

Cov [x,|MODEL 1] = Cov [xx|[MODEL 2]  forall k

e (Q;. must also be positive definite (being a covariance)
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Switching Dynamic models: Best fitting Gaussian (Cont'd)

e The BFG-CRB is then simply computed using the Riccati-like recursion:

1
Jip1 = (Qu+@pJ @) +3(k+1)

e Initialisation:

o Assuming that the prior pdf is: xg ~ N(Xg,Pp), set:

€0 = X0

Co = Po

¢ Determine mode probabilities:

« define: pr(r) 2 P(rp, =7r),forr=1,...,s

S
« determine: pi(r) = > mjpp_1(j) fork=2,3...

=1
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BFG Distribution — General Recursion

e STEP 1: determine ®,, as follows: b, = Z Fi.(r) pr+1(r)
r=1

e STEP 2: determine Cy41 as follows:

Crt1 = Zpk+1(?“) [Fk(r) (Ck + erer ) FL(r) + Ek(”'“)] — Bpepe, D)

r=1

STEP 3: determine Q,, as follows: Qi = Cry1 — PiCr®]
(guaranteed Q; > 0)

e STEP 4: determine ¢, as follows: er+1 = Preg

e STEP 5: set: Ek— (k+1) and repeat from STEP 1
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BFG CR Bound demonstration

BFG approximation incorporates uncertainty due to model switching

30
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Verification of the BFG approximation

e Aim: Compare the theoretical bound with empirical RMS error performance

e We simulate a target switching between CV or CA models (no process noise);

e Transition probabilities: 7;; = 0.9for: = 1,2

e Sampling time T' = 3 seconds

e Measurements of Cartesian coordinates; error standard deviations: o, = o, = 200 m

e Comparison between:
¢ Two theoretical CR bounds (BFG bound and Enumeration bound)

o Empirical RMS error of an IMM filter; obtained via Monte Carlo simulations.
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Verification of the BFG approximation (Cont'd)
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The effectof Py <1land Ps, >0

e Most sensors characterised by P; < 1 and Pr, > 0
= Uncertainty in measurement origin

e This type of uncertainty affects only J.(k) in: J,. = Jp(k) + J2 (k)

e Several contributions since 1990 (more than 10 publications, Jauffret, Bar-
Shalom, Zhang, Willet, Hernandez, Farina, Ristic, etc)

e The most comprehensive treatment (captures all previous developments) is
the measurement sequence conditioning approach:

Hernandez, Farina, Ristic, "A PCRLB for tracking in cluttered environments: A measure-
ment sequence conditioning approach”, to appear in IEEE Trans AES, 2006.
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Measurement sequence conditioning

Measurements sequence: My.. = {m1,mo, ..., my}

m; IS the number of measurements received attime : = 1,..., k.

miE{O,l,Q,...}

The CR inequality is then:

E{lx—x][x—x]"} > 3 P(My) I, (My.p)
Ml:k

P(M7-;) can be computed knowing:
¢ the probability of detection P,

¢ the expected number of false measurements in the gate (Poisson model)
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Measurement sequence conditioning (Cont'd)

e Information matrix as always have two components:

Jp(My.g) =Jp(k: My.—1) + J2(k 1 my)

e Under some reasonable assumptions (rectangular gates, diagonal mea-
surement matrix R;) we obtain:

J.(k :my) = qp(my) E{H} R, TH,}

where ¢i.(m;.) is the information reduction factor (needs to be computed
numerically);

o If Py =1and Py, = 0, thenm;, =1 and ¢, (1) = 1 (see slide 10).
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Measurement sequence conditioning: No false alarms

® Mg € {Oal}

e Sequence M., becomes a “detection/miss” sequence, so that:

0 IfmeO,

J (k : mk) = _ _
i {E{H[Rk H,} ifm, =1

e The resulting bound first proposed in: Farina, Ristic, Timmoneri, "Cramér-Rao
bound for nonlinear filtering with P; < 1 and its application to target tracking”, IEEE Trans
SP, vol.50, 2002.

e When the false alarm rate is small (e.g. average number of false detections
In the gate is below 0.1), the CR bound mainly influenced by P; < 1.
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The influence of P; < 1

Tracking a ballistic object on re-entry (slide 20)

T T
—_— P d=0.9 (correct)
— P10
— P,70.9 (IRF method)

SQRT(CRLB), height (m)

| | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20
TIME [sec]

Ref: M. Hernandez, B. Ristic, A. Farina,L. Timmoneri, IEEE Trans. SP, vol.52, 2004
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Multiple target tracking

e Notoriously difficult if multiple targets appear and disappear at random: the
problem requires joint detection and tracking; Cramér-Rao bound not a suit-
able tool!

e If we assume that L. > 1 targets exist in a surveillance region during the
observation period, possible to formulate a CRB: Hue et al. [IEEE AES
2006], Tharmarasa et al [IEEE AES 2006].

e An analytic expression for multi-target CR bound in the framework of track-
before-detect (ultimate bound)

¢ Ref: B. Ristic, A. Farina, M. Hernandez, “Cramér-Rao lower bound for tracking multiple
targets”, IEE Proc. Radar, Sonar, Navigation, Vol.151, 2004.

o Depends on SNR, sensor resolution, point-spread function and target kinematics.

¢ Directly applicable to Wireless Sensor Networks (WSN)
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Example: Wireless network of acoustic sensors

e State vector: Xk = [mk,i ik,i Yk.i yk,i Ak’i]T;
1 =1,2,... Istarget index

e Target motion nearly CV
e Location of sensor jis: (X7,Y7),j=1,2,..., Ny

e Measurements of sound intensity (at sensor j):
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Example: Wireless network of acoustic sensors (Cont'd)

® The (sound) intensity of the blue target is 3 dB higher

e Easy to include the effects of quantisation, and to predict the required sensor density.
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A Sensor Management Application

e Context:

¢ Tracking of an anti-ship missile using a combination of a phased-array
radar and an IRST sensor.

¢ The IRST passively scans the horizon at a constant scanning interval in
order to detect low altitude threats; each detection serves as an alert to
allocate and cue the radar.

e The Cramér-Rao bound analysis applied to predict an average radar alloca-
tion requirements as a function of: target manoeuvrabllity, sensor accuracy,
positional estimation accuracy.
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Average radar update time

r
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Versus (a) IRST sampling interval; (b) missile manoeuvrability
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Summary

e Cramér-Rao bounds enable us to quantify the (best achievable) tracking
error performance,

e A useful tool for tracker design, algorithm assessment, sensor management,
etc.

e Significant progress made in the last few years on the CRB development for
tracking

e Shortcomings:
¢ impossible to compute in all situations (e.g. appearance of targets, switching models)

¢ In some cases cannot be achieved by any practical estimator
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Future work

e Multi-target tracking, hard constraints, comparison of ultimate bound with
the thresholding bound, etc.

e Explore other variance bounds
(Bhattacharya, Bobovsky-Zakai, Weiss-Weinstein, Barankin, etc)
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