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Drawbacks of Residual-Based Event Detectors like
GLR or IMM Filters in Practical Situations

Thomas H. Kerr III, Ph.D., Senior Member, IEEE and AIAA/ION, Life Member, NDIA

Abstract—Use of the Generalized Likelihood Ratio or of Inter-
active Multiple Model-Based filters have been historically posed
as solutions to certain event detection problems such as for failure
detection in navigation systems and for maneuver detection
in radar target tracking. This critical survey discusses specific
drawbacks, barriers, and limitations encountered when attempts
are made to apply these techniques in practical situations.

Index Terms—Kalman Filter, Approximate Nonlinear Filter,
IMM Filter, Radar Target Tracking, NAV Filter, Reduced-Order
Filter, Failure and Maneuver Detection, GLR, Filter Stability.

I. INTRODUCTORY OVERVIEW AND SUMMARY

PERSPECTIVE

W E have an historical working perspective into several
aspects of Kalman filtering [1]-[8]; including its gen-

eralizations to approximate nonlinear estimation [9]-[14]; and
its related concerns [15]-[23] including having found, exposed,
and corrected other historical fallacies [18]-[21], [24], even
those relating to random or stochastic processes [25], [26] and
in other Kalman filter related mathematics-based areas [22],
[27]-[28].

We now seek to point out apparent weaknesses that have
not been widely publicized or even acknowledged hithertofore
that we, as specialist in this area, perceive to exist in several
alternative approaches to failure detection (being a special case
of event detection [29]). Such considerations arise in reducing
mere theory to a final practical implementation instead of
continuing to dwell on ideal starting points of the original
formulation of an event detection approach without explicitly
considering the realities of the constraints that exist in imple-
mentation within the actual applications. One such prevalent
constraint being the standard use of reduced-order suboptimal
filters [30]-[37, Secs. 6.7-6.9], with numerous application
examples appearing in [39], where filter residuals are no longer
ideally white and unbiased (specifically, filter residuals are
white and unbiased if and only if the system and sensor model
used in the Kalman filter are identical to what exists for the
actual system or in it’s truth model representation used in
the simulation, otherwise the residuals are either nonwhite or
biased or both [40]) thus degrading or corrupting the original
idealized aspects of many detection approaches such as, for
example, [41], which explicitly relies on an assumption of
“whiteness and unbiasness of residuals” as a gauge of normal
unfailed behavior. Please see the accompanying Fig. 1 which
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diagrammatically conveys in the parlance of a continuous-time
representation the specifics being discussed herein using the
familiar state-variable and Kalman filter notation popularized
in [36] 1. Although everything is actually implemented in
discrete-time, the continuous-time version was used through-
out Fig. 1 to make the ideas more straight forward. Although
not depicted here as such, all matrices may be time-varying
and the Gaussian white noises can be nonstationary as long as
the associated covariance intensity levels and possibly time-
varying means are completely specified. A more detailed but
equivalent discrete-time version of just the system and linear
Kalman Filter are available in [36, Figs. 4.2-2, -3]. Noises
that are serially correlated in time may be routinely handled
by appropriately augmenting the state to refect the Markov
structure of the correlated noise as a response to white noise
as the ultimate fundamental input stimulus [44], which makes
the application situation again conform exactly to Fig. 1.
Alternative approaches also exist within this framework for
handling serially correlated Gauss-Markov noises (e.g., [45]-
[47]).

The “whiteness of Kalman filter residuals” is also relied
upon in another failure detection formulation using the Gen-
eralized Likelihood Ratio (GLR) [48], where, again, reduced-
order filter usage introduces bias and nonwhiteness of the
associated filter residuals even in the nominally unfailed
situation. Such effects introduce ambiguity into the algorithmic
decision of whether to declare that “a failure has occurred” or
to declare that “no failure is present” since now the situation
is less of a dichotomy for the decision algorithm after “the
water has been muddied” by the use of a reduced-order filter,
as historically required in most applications (where similar
issues also arise for use of reduced-order observers [32], [33],
[34] in application environments where noise is relatively less
significant). Are the Kalman filter residuals now non-white and
biased because of a failure occurring or because of the standard
use of a reduced-order filter in the particular application? Such
obscuring effects are consequentially time-varying when the
associated navigation (NAV) filter structures which provoke
or aggravate them are similarly time-varying (e.g., [50]).

1This notation served as a standard for over 25 years in U.S. Department
of Defense applications and elsewhere. Within the last 15 years, more recent
books on Kalman filter technology (e.g., [42], [43]), unfortunately, no longer
adhere to the prior standard, thus introducing a schism between the older
and newer generation of practitioners over something as trivial as mere
notation (that had been previously established by convention and concensus)
which previously allowed easy cross-communications between researchers and
practitioners when each knew exactly what the other was referring to. Of
course, the benefits provided in the prior two references far outweigh the
aforementioned drawback.
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Fig. 1. Continuous-Time Summary of Navigation Failure Detection Algorithm’s Structural Operations on Outputs of Linear System Plant Outfitted with a
Linear Kalman Filter

Fig. 2. Parallel bank-of-filters structure of Interactive Multiple Model (IMM) formulation for tracking systems that jump between a finite number, N, of
alternative but specified modes (which have been modeled a priori)
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While many issues above were raised in [49], [51], new
approaches to failure detection have arisen that continue to
exhibit the same weaknesses that had previously been warned
of. Reduced-order filters can be made to perform adequately
in applications by parameter tuning; however, the priorities in
such tuning are:

1) preserving adequate Kalman filter computed output es-
timates of the states of interest;

2) secondarily, achieving adequate on-line Kalman filter
computed output covariances.

The objective of item number 2 above is sought since these
covariances may be needed within subsequent processing for
failure detection algorithms for navigation systems, or within
maneuver detecting algorithms in target-tracking radars, or
within radar target tracking hand-over from detection radars
to tracking radars, or in range gate overlap tests in making
associations of new measurements with existing established
targets within multitarget tracking methodologies [52], [53],
which historically utilized some form of a solution to the
Assignment Problem of Operations Research.

Both items (1) and (2) above are always the general goals
being sought. However, in seeking to approximate an ideal
optimal estimator using an Extended Kalman Filter (EKF)
in nonlinear applications, the goal of item (1) is usually of
higher priority than item (2) since associated EKF covariances
computed on-line are suboptimal in general and are usually
overly optimistic by being smaller than they should be (as
computationally gauged by numerous Monte-Carlo evaluation
trials to establish the true accuracy achieved). Alternatively,
true accuracy can also be better ascertained for the case of non-
linear systems by using a Minimum Variance Least Squares
Batch computing technique [54], [55] (which offers greater
accuracy than offered by an Extended Kalman Filter but at the
higher cost of processing all the available sensor measurements
enmasse and so sacrificing being real-time in order to better
gauge the accuracy of this algorithm’s outputted estimates).
Preserving “whiteness of the filter residuals” or innovations
has not historically been on the list of any objectives in the
design of adequately performing reduced-order filters (viz.,
[37, Secs. 6.8, 6.9], [38]), nor is this objective currently found
within the cost functions associated with state-of-the-art filter
tuning techniques now automating the plant noise covariance
tuning process [56], [57], as an intermediate development step
which seeks to robustify the Kalman filter that is ultimately
implemented for the application at hand.

In navigation applications that involve a conventional Iner-
tial Navigation System (INS) consisting of mechanical gyros
and accelerometers, the adequacy of an approximating linear
model is actively enforced by using actuators to periodically
apply a torquing control to reset [58] the INS (causing it to
be “stabilized”) to help preserve the “small angle assumption”
that is maintained as such for good linearity of the associated
state variable INS error models [36], [37] (optical ring laser
gyros, fiber optic gyros, whine glass acoustically vibrating
gyros, and micro-machined gyros may be handled similarly
after being stabilized). For such systems where linear models

are adequate 2, outfitting with merely a linear Kalman filter
suffices [37, Chapt. 6]. In contradistinction to the unfortu-
nate situation portrayed in the above paragraph, Gaussian
confidence regions still persist as ellipsoidal Gaussians even
when reduced-order filters are inserted into an otherwise ideal
formulation of the application [63]-[8] and certain reduced-
order filters [68]-[70] still avail exact covariances on-line in
real-time (as also confirmed in [4], [5], which also point
out a down-side CPU loading aspect, confirmed by others
[71]) so the Two Confidence Region approach is apparently
robust with respect to this aspect when mechanized using
these or other similar reduced-order filter formulations. As
a specific example of how the state size of the actual NAV
filter may be considerably smaller than that of the truth model
[72]-[74], the truth models for SINS and ESGM were 34
and 100+ states, respectively, while the dimensions of the
associated SINS-only, SINS/ESGM, and ESGM-only NAV
filter models were historically (in the mid 1970’s) 7, 15,
and 18-states, respectively. However, the good news for event
detection approaches based on the Gaussianess or on the
associated Gaussian-based confidence regions [63]-[8] is that
these tractable Gaussian confidence regions persist even when
the underlying probability density functions (pdfs) are from the
more general exponential family in the few situations where
the important conditional and marginal distributions are still
Gaussian [75, Chaps. 1-4]. Maximum Likelihood (ML) and
Uniformly Minimum Variance Unbiased (UMVU) estimates
for situations where additive noises from exponential families
are present are both worked out in [76, pp. 284-294], [77,
pp. 439-448].

II. A CONCISE HISTORICAL SUMMARY OF GLR
DEVELOPMENTS

The Generalized Likelihood Ratio (GLR) approach to event
detection, where maximum likelihood estimates of unknown
parameters are utilized within the ratio of the H1 pdf to the H0

pdf in lieu of not knowing the actual requisite parameters of
the mixed hypothesis (since they are in fact unknown), is pre-
sented and developed by Davenport and Root [78]. Root went
further [79] to investigate applicability of GLR techniques
in the radar detection problem of resolving closely spaced
targets in a background of either known arbitrary correlated
Gaussian noise or in Gaussian white noise. However, Root
[79] obtained explicit criteria that could be applied to indicate
conditions under which one could expect to not resolve two
known signals (of unknown amplitudes and parameters) and
additionally pointed out a difficulty of using GLR for this
purpose.

2Within implementations of merely a linear Kalman filter in the feedback
configuration for a Space Stable or for a Local Level Mechanized INS, where
such techniques possess a nice linear error model system description, use of
the INS-frame-to-computer-frame Ψ-angle misalignments are adequate. For
any INS that is mechanized in a Strapdown configuration, instead of using
a linear Kalman filter, the situation is sufficiently nonlinear and challenging
to warrant use of an Extended Kalman filter as a real-time tractable approx-
imation to an optimal estimator for such nonlinear systems. Only recently
has the wisdom of this standard technical approach been questioned [59].
However, the jury is still out on this issue (see [60], [61]). Moreover, even
better filter model representations for a strapdown mechanized INS have also
been recently revealed [62].
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McAulay and Denlinger [80] advocated use of GLR in
conjunction with a Kalman filter in decision-directed adaptive
control applications. Finally, Stuller [81] defined an M-ary
GLR test that ostensibly overcame Root’s original objections
[79] to GLR for this type of application. (Ref. [81] also
provides a limited history of GLR developments for radar,
excepting no mention of [80], which may possibly have
eluded him since it appeared relatively close to his publication
date.) The use of GLR for failure detection was pioneered by
Willsky and Jones [48] using an identical GLR formulation as
presented by McAulay and Denlinger [80]. While both refs.
[48] and [80] claim “optimality” of the GLR, neither explicitly
specifies a criteria by which it may be judged optimal nor do
they supply a proof or reference where such an optimality
claim is demonstrated (specifically, [80, p. 231] references the
English translation of [82] for “optimality” but diligent follow-
up on our part here revealed no such substantiation located
there).

While use of GLR has potential in many detection sit-
uations, it is not without its drawbacks that are frequently
overlooked:

1) Selin found that some of the unknown parameters (such
as unknown relative carrier phase) must also be esti-
mated in order to maximize the a posteriori probability
in the estimation of two similar signals in white Gaus-
sian noise [83];

2) Selin further identified four standard caveats [84, p. 106]
associated with use of a maximum likelihood estimate of
the unknown parameters in a likelihood ratio (as occurs
within GLR);

3) In general, GLR is not a Uniformly Most Powerful
(UMP) test [85, p. 92], [49], [86, Exs. 2, 3, pp. 354-
5], [87];

4) There are cases where use of GLR can give bad results
[85, p. 96];

5) That use of a Maximum likelihood estimate (MLE)
is not necessarily statistically consistent in general is
explicitly demonstrated in a counterexample in [89,
p. 146].

Within the last decade, GLR is again being advocated for
use in radar (and also in active sonar) applications but those
that advocate its use appear to ignore the historical objections
raised against use of GLR in these types of applications as
well as the explicit counterexamples in [49, 968 ff, App. A,
pp. 973-974] that, apparently, have never been refuted. The
new version of GLR (called “Ed Kelly’s GLR”) is of a
different form than used by the others mentioned above [26]
and is apparently a pseudo-GLR (since it ignores the time at
which the signal event of interest was initiated, corresponding
to the unknown location in time of a known signal [86, Ex. 2,
p. 354]) but useful none-the-less for radar target tracking (as an
approximate GLR). Also see its breakthrough use in new track-
before-detect multi-target tracking [161] as a potentially rev-
olutionary improvement. This new pseudo-GLR is less useful
for failure detection situations since it ignores the underlying
onset time of the detection event of interest. We speculate
that use of the modern day Entropy Maximization (E-M)

algorithm [91], [92] in conjunction with GLR to identify
unknown parameters may, perhaps, now placate Selin’s and
Roots’ concerns above and resolve item 5 above but E-M
is a relatively large computational burden that may yet defy
a real-time implementation and the details have yet to be
worked out for this joint amalgamation. As summarized in
[86, Introduction], there has been a flurry of activity in the
last decade regarding the GLR test statistic itself (e.g., [88]),
its properties, its structural invariance, and its generalization
[90]; however, the other side of the coin of specifying the
appropriate decision threshold to which the GLR test statistic
must be compared in making correct detection decisions has
received less attention (and its tractability is more challenging,
as mentioned in [49, Ex. 2, p. 869; Exs. 4, 6, p. 970]). Decision
threshold specification is necessary before adequate Pd vs.
Pfa characteristics of GLR can be completely worked out
to elucidate the associated Receiver Operating Characteristics
(ROC) for use with GLR. A step in this direction is [93].

III. LOOSE ENDS APPARENTLY PLAGUING IMM FOR

EVENT DETECTION

We now turn to question the status of the Interactive Mul-
tiple Model filtering approach of Fig. 2 for practical systems
exhibiting significant nonlinear dynamics in their associated
plant models. While, by now, it is routine to consider the
generalization of Kalman filter estimation techniques from
mere linear systems (for which Kalman filters are optimal es-
timators [35]-[37], [76], [77]) to nonlinear systems (for which
Extended Kalman filters or Iterated Extended Kalman filters
[9] are frequently useful, tractable, approximate estimators for
nonlinear filtering situations [16, Sec. 9]), as also discussed
in [35]-[37, Vol. 2, 1982]. Similar ideas should successfully
generalize each of the Kalman filters arising in the bank-of-
Kalman filters that occur within IMM mechanizations as IMM
is generalized beyond the exclusively linear case for which it
was originally rigorously derived as a two level approximation
(even in the purely linear case [49, Sec. 12]), where the
sojourn times and Markov chain transition probabilities are
new contrivances within the IMM Structure depicted in Fig. 2.
These two new aspects are useful by providing additional
parameters for tuning to better match potential application
situations by keeping alternative models more actively viable
than they had been for the original 1965 Magill bank-of-
Kalman-filters [94].

A. Concerns about on-line IMM probability calculations

Unfortunately, the associated IMM probability calculations
are more suspect in an attempted generalization to the nonlin-
ear case. Specifically, in each of the following three references
[95, after Eq. 2], [96, after Eq. 6], [97, before Eq. 4], “the
critical mixture is assumed to be a sum of Gaussians, then the
prior pdf is a Gaussian mixture and can be approximated (via
moment matching) with a single Gaussian....” (While sums
of Gaussian random variables or sums of Gaussian random
processes are always Gaussian, that is not the issue or situation
here where the topic instead is whether the resulting pdf of
the output, as a weighted sum of the Gaussian pdf’s called
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a “Gaussian mixture”, does, in fact, coalesce into a single
Gaussian, as claimed.)

Fig. 3. A preliminary hypothesized IMM structure for tracking objects via
radar as they transition between exoatmospheric and indoatmospheric regime
or vice-versa (where the two filters have different state sizes)

Prior to the advent of [104], a statistical analyst could
reasonably make the following four-fold objection to what had
been asserted for IMM:

1) For nonlinear systems, the estimates outputted by an
EKF are not Gaussian in general (unlike the assumption
of Gaussianess that is invoked);

2) There are already existing analytic results [98] which
caution that a single subsuming Gaussian pdf is not
usually possible even if the individual participating pdf’s
were in fact Gaussian when the means of the various
contributing pdf’s are not in close enough proximity,
as gauged by the spread of the associated covariances.
This topic has been an issue since the historically well
known Gaussian-Sums approach of [99], [100], which
also used a bank-of-Kalman-filters structure (with an
associated performance that also did not match “expecta-
tions”, so to speak). Indeed, nonlinear filtering situations
frequently exhibit multimodal output estimates as a fact
of life, as discussed in [101];

3) The “moment matching” called for in [95], [96], [97] is
not explained there (nor in their references) nor does an
opportunity arise to perform such “matching” within the
algorithm itself for each time-step k, as would evidently
be needed;

4) It is not clarified what is to be matched in “moment
matching” of what, and to what, and by what gauge will
it be determined or established that it matches “closely
enough”.

Nothing about these four aspects had been explained in the
three references cited above, where “moment matching” was
called out as the requisite step to accomplishing the solution
sought.

With the recent advent of [104] in its third paragraph from
the end, its comparison of the probability calculations of IMM
to those of the ideal, but unachievable, optimal filter makes
the situation clearer but still somewhat unsettling none-the-
less. It demonstrates that these analysts specializing in this
area can write down the requisite probability expressions that

represent what is needed but cannot evaluate them conve-
niently (let alone in real-time when they are needed) because
the problem is fundamentally infinite dimensional. The IMM
probability calculations (which always assume linear models)
are a tractable approximation that have no pretense of being
close to what the probabilities should be when the underlying
models are nonlinear, a situation that exists in some important
applications, such as that depicted in Fig. 3.

The ideal expressions for the optimal estimator was prov-
ably optimal only if M(k) in [104] were in fact known
beforehand, then the augmented state (x(k), M(k)) would,
in fact, be a Markov process as these authors rely on in
their proofs. However, precisely how the system will switch
is unknown to the analyst or application engineer a priori or
even immediately after the evolution in time and transition in
state of the system of interest which possesses this underlying
multiple model system structure. This is yet another reason
why their optimal system is unattainable beyond being infinite
dimensional (corresponding to the need to solve an associated
PDE [105]). The optimal expression for the probability calcu-
lation in [104, Eq. 21] is reminiscent of the Bucy representa-
tion for nonlinear filtering as in [106, Eq. 4], [107]. (Bucy’s
representation result is similarly found in [108, Eqs. 2.1, 2.2],
but is a more tractable variation by utilizing a new intermediate
result from [111] who used aspects associated with backwards
Markov models.) Similar probabilities are evaluated in [104]
and in Blom’s predecessor publications for the assumed IMM
application system structure. Other application evaluations of
Bucy’s representation are found in [108]. This early Bucy
nonlinear filtering representation result, just mentioned, was
firmed up and made more rigorous by T. E. Duncan [109], as
beautifully and thoroughly explained in [110], [111]. (Because
the Backwards Markov Model (BMM) technique plays such
a prominent and crucial role in how Galdos obtained his nice
result, it is desirable that present day researchers be extra
careful in following-up on all chronologically listed insights
and corrections to BMM [112]-[127] 3 that first arose just
before and subsequent to the final results in [111] since errors
were found and corrected in the “backwards Markov theory” at
around the same time as Galdos’ publication date and its prior
review and subsequently continued to arrive in the installments
reported above for another two decades. An old adage is that
“imitation is the sincerest form of flattery.” That definitely
appears to be the case in this last sequence of references.
Please notice reference [123] which claims a Backwards
Markov Model precedent for A. N. Kolmogorov. This is most
likely true since this same A. N. Kolmogorov [129] was also
the first to recognize in 1933 that measure theory is the appro-
priate rigorous foundation for random variables and random
processes (as acknowledged in A. Papoulis’s textbook [128,
footnote, p. 8] in 1965), and since engineering applications
of random processes were avidly pursued in the USSR well

3Notice that in forwards-backwards Bryson-Frazier two-filter implemen-
tations of Kalman-like “optimal” smoothing algorithms using one filter
processing forwards in time and the other filter subsequently processing
backwards in time (see [113], [119], [127]), the Backwards Markov Model
(BMM) theory plays a prominent role in determining how to convert the final
conditions from the forward-time interval into the proper initial conditions to
be used for the reverse-time segment over the same interval.
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before the Western textbooks by the following well-known
authors in the rigorous probability and random process area:
J. L. Doob (1953) [130], M. Loeve (1963) [131], E. B. Dynkin
(1960) [132], E. Parzen (1962) [133], A. Papoulis (1965)
[128], R. L. Schwartz and B. Friedland (1965) [134], S.
Karlin (1966) [135], W. M. Wonham (1970) [136]. For other
similar Russian precedents, also compare early engineering
applications of random variables and random processes in
[137] vice those in [138], the latter having originally been
published in the 1940’s. Also compare the identical results in
[139] vice [140, pp. 5-10].

B. Concerns about IMM Filter stability

For the hypothesized filter structure in the application of
Fig. 3, the two different filter models need to be such that
the state sizes are conformable. While conformability can be
easily achieved by using a common state size of 7 throughout,
for the exoatmospheric case this represents inclusion of a
phantom state that does not really exist. Unfortunately, as
experienced practitioners know from simulation experience, in
the situation where the actual mode is in fact exoatmospheric
(which really needs only 6 filter states to be present for Kalman
filter tracking), some component of the received measurements
will, unfortunately, be inadvertently attributed by the Kalman
filtering algorithm itself to the superfluous phantom state thus
depriving the true states of what should be attributed to them.
The existence of [152]-[143] not-with-standing, this aspect is
evidently still a problem (but apparently side-stepped in [144]
at a cost of using 12-state filters for both situations, where
previously six and seven state filters sufficed). Recall that the
computational burden goes as the cube of the state size used
within Kalman-like filters [145], [37, Sec. 7] such as these
used in IMM so the implementation advocated in [144] incurs
an additional CPU loading that is approximately 2 3 = 8 times
larger for processing and uses 22 = 4 times as much for
computer memory allocated than the alternative predecessor
6- and 7-state trackers together. Historically, the objective
has been to seek the smallest state variable system model
representation for use within the estimation algorithm. Indeed,
the definition of a state variable representation is a first order
vector differential equation that uses the fewest states (i.e.,
integrators) yet captures the essence of the physical problem.
Further, besides [144] having a filter model that introduces
more complexity into the exoatmospheric tracking application,
the new risk is in using more states than are necessary and the
associated likelihood of introducing controllable states that are
not observable, or observable states that are not controllable,
or states that are neither observable nor controllable [146].
Apparently, a necessary intermediate step needed to fully
justify using a new model is missing since observability and
controllability of the alternative 12-state target model that is
introduced in [144] is not established there nor considered in
predecessor research.

To remind the reader why this ancillary topic is so impor-
tant, the controllability and observability aspect of the underly-
ing mathematical model of the physical system (or comparably
related reachability and detectability) play a prominent role

in both classical filter tracker stability proofs [147], [149],
[150, App. C] (as further explained in [2, App. B, pp. 3-35
to 3-36]) and in contemporary proofs for use with nonlinear
systems [151], [152] of the stability of the Kalman-like filter
in analytically guaranteeing that the tracking filter does an
adequate job in closely following the true state of the system.
Instead of utilizing the second method of Lyapunov, as the
aforementioned rigorous proofs of Kalman filter stability do,
[43] has no mention of Lyapunov functions or of Lyapunov’s
technique but, instead, the author argues that stability accrues
by taking snapshots at each frozen instant in time, and for
these, the filter/system error model has eigenvalues that are all
strictly in the left half plane (for continuous-time) or within the
unit circle (for discrete-time) thus indicating that stability is
achieved even in the case of time-varying filter gains possessed
by a Kalman filter. Unfortunately, this argument is fallacious
when one considers the numerous counterexamples that have
been historically unearthed [153], [155], one conveniently
transparent example being the two state linear time-varying
system of the following form [154, ex. 5.6, pp. 192-193]:

ẋ(t) =


 −1 + a{cos (t)}2 1 − a sin (t) cos (t)

−1 − a sin (t) cos (t) −1 + a{sin (t)}2


x(t)

(1)
with a = 1.5 and initial condition xT (0) = [5, 15]. The
solution to the above system may be easily demonstrated to
be:

x(t) =


 e(a−1)t cos (t) e−t sin (t)

−e(a−1)t sin (t) e−t cos (t)


 [

5
15

]
(2)

by substituting this result and its time derivative back into
the right and left hand sides, respectively, of Eq. 1 to yield
an identity. Also, for t = 0, the specified initial condition
is satisfied. Since the system is linear (although it is time-
varying) with no singularities present and each element in the
system matrix is bounded, the system matrix may be shown
to satisfy a Lipschitz condition, therfore the solution depicted
here is unique.

It may now be seen that for this system, in seeking for
something like “eigenvalues” by a method reminiscent of the
traditional route by first obtaining the characteristic equation:

0 = det [λI2x2 − F (t)]

= det

[
(λ + 1) − a{cos (t)}2 −1 + a sin (t) cos (t)

+1 + a sin (t) cos (t) (λ + 1) − a{sin (t)}2

]

= (λ + 1)2 − a(λ + 1)({cos (t)}2 + {sin (t)}2) +
a2({cos (t)}2{sin (t)}2) − (−1 + a2{cos (t)}2{sin (t)}2)

= (λ + 1)2 − a(λ + 1) + 1 = λ2 + 2λ + 1 − aλ − a + 1
= λ2 + (2 − a)λ + (2 − a). (3)

The above quadratic equation may be explicitly solved for λ
in closed form as

λ =
(a − 2)

+− √
a2 − 4

2
. (4)
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Notice that both these constant “eigenvalues” are complex
numbers having a negative real part for

−2 < a < 2, (5)

yet the 1,1-term and 2,1-term of Eq. 2 is unstable for

1 < a < 2, (6)

so, in particular, for a = 1.5, both the conditions of Eqs. 5
and 6 are satisfied and these so-called “eigenvalues” are
constant and in the left half plane yet the solution of Eq. 2 is
unbounded and unstable as time increases. This easily verified
behavior contradicts some (widely propagated) notions by
control theorists of an earlier era that believed that for time-
varying “eigenvalues” (sic), if all confined to the left half plane
and by not moving around “too much” 4, corresponded to a
stable system. This example conforms with the first part of
the desirata since its “eigenvalues” are constant and in the
left hand plane (and the “eigenvalues” can not move around
“too much” since they do not move at all) yet Eq. 2 is
blatantly unstable and thus exposes the earlier notion as a “folk
theorem” without substance. It is straight forward to establish
filter stability using Lyapunov functions [156, Chaps. 3,4],
[157], which avoid such unpleasant contradictions. Many other
Lyapunov function successes in the analytic theory of various
forms of Neural Network implementations are revealed and
simply explained in [158]. Some 2nd order time-varying linear
systems can be handled using the rigorous Sturm-Louville the-
ory [159] and eigenvalues and spectra are validly generalized
in the Theory of Compact Operators [160, Sec. 9.8].

IV. CONCLUSION

The issues we raise above as likely drawbacks for failure
event detection apparently also carry over for their mathe-
matical dual in target tracking applications as well, especially
when the underlying system models are nonlinear (as in space
vehicle rendezvous, interception, or in reentry target tracking
under inverse squared gravity models). These latter topics
should be of high interest since they arise in National Missile
Defense (NMD) and in Tactical Missile Defense (TMD).
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