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Abstract

A derivation is provided herein of the fundamental Integral and its evaluation using the Cauchy
Residue Theorem to enable a rigorous setting of decision thresholds for the Two Confidence Region
(CR2) approach to failure detection. This CR2 approach (for 1-D and 2-D) was historically used on
board US Submarines in monitoring the SINS/ESGM Inertial Navigation Systems (INS) for the presence
of ramp failures, a prominent failure mode observed to sometimes occur within the ESGM as it was
originally being introduced on board these boats 30+ years ago. The resulting equations enable statistical
analysis and associated performance trade-offs constituting the CR2 Receiver Operating Characteristics
(ROC). CR2 continues to be rigorous even when reduced-order Kalman filter models are used in the
implementation, which causes the associated filter residuals to no longer be purely white and unbiased in
the unfailed situation. Related to this aspect of model mismatch, we also point out apparent weaknesses
of GLR and IMM-KF, the latter being especially worrisome in its attempted generalization of associated
probability calculations for nonlinear applications.

1 Introduction

A detailed derivation is provided here of the equations that provide a rigorous setting of decision thresholds
for the Two Confidence Region (CR2) approach to failure detection triggered by the lack of overlap of
certain ellipsoidal confidence regions (defined and described analytically in [1], with statistics derived in
[2]and further refined in [3]-[6]). This CR2 failure detection approach was historically developed for use 1

with the hybrid SINS/ESGM Navigation system consisting of the existing Ships Inertial Navigation System
(SINS) (a conventional INS with its rotating gyros and a dual version of it used as a warm standby system [16]
as a backup) in conjunction with the newer Electrostatically Supported Gyro Monitor (ESGM), generally
more accurate (but initially more susceptible to failure), [10]-[14].

As discussed in [1], “Failure detection and failure isolation are common problems in engineering systems.
In general, failure detection requires continuous vigilant monitoring of the observable output variables of the
system. Under normal conditions, the output variables follow certain known patterns of evolution within
certain limits of uncertainty introduced by slight random system disturbances and measurement noise in
the sensors. When failures occur, the output variables deviate from their nominal state space trajectories
or evolutionary pattern. Most failure detection techniques are based on spotting these deviations from the
usual in the observable output variables.

Whereas the detection of an unknown signal at a known time or the detection of a known signal at an
unknown time are standard problems in communication theory, the problem in failure detection is to detect a
signal of unknown magnitude which occurs at an unknown time. Failure detection is a more difficult problem
that has been receiving attention” only since the 1970’s, a representative sampling being [1]-[8], [17], [21],
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[22], [67], [76]-[78] and their bibliographies, especially the extensive one in [21]. The problem of tracking a
maneuvering target is mathematically dual to that of failure detection [68], [88].

The Generalized Likelihood Ratio (GLR) [67], Residual Whiteness Tests [76], and Interactive Multiple
Models (IMM) [77], [78]are failure detection approaches that will be considered further in Appendices A and
B.) “Our CR2 approach to failure detection uses a different philosophical approach to solve the problem. It
places a confidence region about the nominally unfailed trajectory corresponding to the H0-hypothesis and
a second confidence region about the Kalman estimate based on processing the actual measurements. When
these two confidence regions are disjoint, implying a non-H0 situation, a failure is declared.

The associated underlying integral evaluation of Eq. 29 (examined in detail here) enables a statistical
analysis for the CR2 approach involving calculation of this detection algorithm’s performance trade-off
characterized by, what is known in the parlance of Statistical Communications or Information Theory [15],
as Receiver Operating Characteristics (ROC) from which the operating point 2 is set by specifying the
value of the decision threshold to be used. The underlying mathematical evaluations are tediously long
exercises in appropriately substituting variables in creative ways [2, Eq. 40] and in constructively applying
Cauchy’s Residue Theorem and, although such operations are initially somewhat unwieldy, it still warrants
documenting since the application is of considerable engineering significance and the rigorous analytical
stepping stones that ultimately yield such useful results in [2], [3] are surprisingly tractable and eventually
collapse to shorter more manageable more intuitive expressions that will likely be useful to others as well,
as identified in [7], [8], [22], [52, Sec. III]. The CR2 failure detection approach is predicated on the system of
interest being adequately described or modeled in continuous-time as a state variable representation (e.g., a
system of coupled ordinary differential equations) [28], [29, Eq. 4-39]:

dx(t)
dt

= f(x, t) + g1(x, t)u(t) + g2(x, t)w(t), (1)

along with discrete-time sensor data measurements being available of the following algebraic form:

z(tk) = h(x(tk), tk) + v(tk), (2)

where w(t) and v(t) in the above are independent zero mean Gaussian White Noises (GWN) of known,
specified covariance intensity 3, Q and R, respectively, and also independent of the Gaussian initial condition 4

x(to) ∼ N (̄(x)(0), P0) and u(t) is a deterministic control or exogenous input, with technical regularity
conditions of observability and controllability being satisfied by the system and its noises and control inputs
in Eqs. 1 and 2 (or, at least conditions of detectability and stabilizability being satisfied). The functions f(x, t),
g1(x, t), and g2(x, t) are assumed to be bounded and measurable and satisfy a global Lipschitz condition and
h(x(t), t) is continuous in x and t.

The system is assumed to be outfitted or equipped with an adequately matched Kalman filter (or an
Extended Kalman Filter or an Iterated Extended Kalman Filter [27] matched to a linearized version 5 of
the system) since the CR2 failure detection approach is definitely Kalman filter-based. The CR2 algorithm
itself makes use of (a proper subset 6 of) the state estimates, x̂, and corresponding associated covariance

2The familiar concept of evaluating an ROC curve is essentially a delineation of the Pareto optimal solution for the two
cost functions of Probability of False Alarm and Probability of Correct Detection that characterize this bicriteria optimization
problem. The minimax solution would be to fix the decision threshold associated with the test statistic so that the operating
point is at the knee of the curve. The more prevalent approach (and our approach) would be to set the decision threshold to
meet a specified probability of false alarm that is set in system specifications, perhaps as a Constant False Alarm Probability
(CFAR) [71].

3The noise covariance intensity matrices Q and R are symmetric and positive definite and can be time-varying for nonsta-
tionary GWN as long as the time-varying values are completely specified beforehand.

4The initial covariance is also symmetric and positive definite.
5For both the Extended Kalman Filter (EKF) and the Iterated Extended Kalman Filter (IEKF), the Filter’s system model is

relinearized using a Jacobian evaluated about the last available output state estimate at each new data point (and so reflects the
information accumulated from the actual sensor measurements). For Inertial Navigation Systems (INS) involving a constellation
of gyros and accelerometers, even though the mechanization itself is nonlinear (e.g., Space Stable, Local Level-wander azimuth,
Local Level-free inertial, Strapdown) the underlying error model is linear [30], [32] and as such the optimal estimator is a linear
Kalman filter, usually implemented in indirect feedback form (as one of the three possible mechanization options available) [29,
Chap. 6].

6The subset constitutes the particular states being monitored for failures. For the ESGM, the states of interest were the
three INS gyro drift rates.
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of estimation error, P1(t), (computed from the underlying discrete-time Matrix Riccati Equation) that are
available as outputs on-line from the Kalman filter at each discrete-time step, k. The covariance output
of an associated Matrix Lyapunov Equation, P2(t), (corresponding to the covariance or uncertainty of the
system without any sensor measurements being available) is also assumed to be available to (or calculated
within) the CR2 algorithm. The CR2 algorithm essentially compares what can be inferred about system
covariance behavior (centered about the filter estimate) by utilizing the available sensor measurement data
(reflecting what is actually happening as being either the hypothesis of no failure H0 holding or the possibly
of a failure holding as H1–see [2, Eqs. 8, 9]) to what can be inferred about system covariance behavior under
the assumption of having only a purely unfailed system H0 (without any measurements being available to
test against and so the unconditional covariance is centered about an unconditional mean of zero in the case
of monitoring the ESGM for anomalous gyro drift).

2 Overview of CR2 Approach to Failure Detection and Objectives
of this Investigation

At a particular fixed discrete-time step k, the defining equations that need to be evaluated for the completely
general n-dimensional case in order to specify the probability of false alarm, Pfa(k) and probability of correct
detection, Pd(k), are provided in [2] as Eqs. 33 and 34, respectively. Both are expressed in terms of the
underlying Gaussian densities assumed to be present under the mixed hypotheses H0 and H1 and are also
expressed in terms of the measured Signal-to-Noise Ratio, having the following structural form [2, Eq. 35]:

SNR(k)
�
=

√
dT (k)P−1

x̃x̃ (k)d(k), (3)

and in terms of the computed scalar CR2 test statistic and in its relationship to the (possibly time-varying)
decision threshold, K1(k)), where in the above:

d(k)
�
= the mean deterministic response of the Kalman filter to an assumed specific failure mode ν̄, (4)

where the time evolution of the vector d(k) may be evaluated explicitly from a joint system and filter
simulation using the truth models for system and (possibly reduced-order) Kalman-like filter [23] but with the
system and measurement noise sample functions zeroed out (i.e., Q ≡ 0, R ≡ 0) and only ν̄, as the particular
failure mode of interest being activated. Details of the underlying structure of the system component failure
detection problem are available in [22], [68].

These results are fundamental in detection theory and need to be evaluated for any practical application.
We will treat the evaluation of Pfa(k) and Pd(k) separately in what follows below, corresponding to the
different form of the underlying probability distribution functions (pdf’s) under H0 and H1, respectively, as:

(no − failure) H0 : x̃i(k) ∼ N (0, [Px̃x̃(k)]ii) (zero mean), (5)

(failure) H1 : x̃i(k) ∼ N (d(k), [Px̃x̃(k)]ii) (non − zero mean), (6)

where, in the above:

x̃(k) = x(k) − x̂(k), (7)

x̂(k)
�
= E[x(k)|Z(k)] (the conditional mean being the optimal estimate [29]), (8)

E[x(k)] = E [E[x(k)|Z(k)]] , (a property of conditional expectation), (9)
E[x̃(k)] = E[x(k)] − E[x̂(k)] = E[x(k)] − E [E[x(k)|Z(k)]] = E[x(k)] − E[x(k)] = 0, (10)

0 = E[x̃(k)x̂T (k)] = E[x(k)x̂T (k)] − E[x̂(k)x̂T (k)] = E[x(k)x̂T (k)] − P1(k), (11)

which, when Eq. 7 is multiplied by its own transpose and unconditional expectations taken throughout
yields:

Px̃x̃(k) = P2(k) − P1(k), (12)
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where the cross-terms dropped out as a consequence of the Hilbert space projection theorem result of the left
hand side of Eq. 11. The following has been rigorously established earlier in [1, Lemma 5.1] by taking the
synchronous difference between the two respective matrix difference equations, Lyapunov and Riccati, which
describe their evolution (in discrete-time) by demonstrating that the difference is always positive definite as
it evolves in time:

P2(k) − P1(k) > 0 for all k > 0. (13)

In the expressions of conditional expectation above, the notation Z(k) denotes the sigma algebra generated
by the sequence of measurements received z(i) for 0 ≤ i ≤ k (also interpreted as the subspace spanned by
the discrete measurements received up to time k).

A mechanization of a failure detection solution using the CR2 approach is of the following form:

Decide that no − failure occured (indicative of H0 holding) at time − step, k, when : �(k) ≤ K1(k),

Decide that a failure occured (indicative of H1 holding) at time − step, k, when : �(k) > K1(k). (14)

3 Evaluation of Pfa(k) for the CR2 detection test

For CR2, a detection is declared when the scalar test statistic �(k) exceeds the decision threshold setting
K1(k) as depicted in Eq. 14 so the probability of false alarm corresponds to the following situation for the
n-dimensional case:

Pfa(k)
�
= Prob[�(k) > K1(k)|H0] =

∫
· · ·

∫
�(k)>K1(k)

N (0, Px̃x̃(k)) dx̃. (15)

The above expression is difficult to evaluate for general dimension n. However, it is relatively easy to evaluate
for the scalar case (treated in Sec. 3.1) but very challenging even for the case of n = 2 (handled in Sec. 3.2).
In both cases, simpler expressions are needed (and have already been obtained in [2]) for the test statistic in
order to enable explicit evaluation of the integrals encountered corresponding to Eq. 15 and to ultimately
enable specification of the requisite decision threshold, K1(k), that corresponds to a value of Pfa(k) imposed
as a constraint to satisfy system performance specifications.

For the application of interest that funded this investigation [10]-[14], only gyros and accelerometers with
one or two input axes are involved so the corresponding version of CR2 only needs 1- and 2-dimensional CR2
mechanizations, respectively, to monitor their behavior. We therefore restrict attention here to evaluating
the Pfa(k) and Pd(k) for just the 1-D and 2-D cases as the simplification in vogue rather than pursue the
more general n-dimensional case (that remains an open question for later generations to tackle and solve).
In a 3-D world, the ESGM had two gyros, each with two input axes, one of the four input axes being
redundant, so the gyro with nonredundant input axes (i.e., both input axes participating in the computed
navigation solution) used a 2-D version of CR2 and the other gyro (with only a single actively used input
axis participating in the computed navigation solution) needing to be outfitted with only a 1-D version of
CR2. The statistical analysis and calculation of the scalar CR2 test statistic for the 2-D case is much harder
to handle than that for the 1-D case, as will become quite evident in what follows below in Secs. 3.2, 3.3,
and 4.2.

3.1 The CR2 Pfa(k) Calculations Simplify Nicely for the 1-D Case

From [2, Eq. 23], the scalar CR2 test statistic for the 1-D case is 7:

�(k)
�
=

[x̂i(k)]2

(
√

[P2(k)]ii +
√

[P1(k)]ii)2
, (16)

7The constrained optimization problem and associated scalar Lagrange multiplier that define the scalar CR2 test statistic
both have a closed-form exact solution for the 1-D case as, respectively, Eqs. 20 and 21 of [2].
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which, when substituted into Eq. 15 yields:

Pfa(k) =
∫

x̂2
i
>K1(k)·(√P2+

√
P1)2

Nx̂(0, [P2(k) − P1(k)]) dx̂i,

=
∫

u2>K1(k)·(√P2+
√

P1)/(
√

P2−
√

P1)2
exp

[−u2

√
π

]
du,

= 1 − 1
2
erf

[√
K1(k)

2
·
√

(
√

P2(k) +
√

P1(k))
(
√

P2(k) − √
P1(k))

]
. (17)

To obtain the decision threshold K1(k), given a fixed value of Pfa(k) to be maintained at each check time,
involves using tables to solve for the constant b in the following equation:

Pfa(k) = 1 − 1
2
erf

[
b√
2

]
, (18)

and, by equating and substituting as depicted in [2, Eq. 39a], the CR2 decision threshold for the 1-D case
is:

K1(k) = b2 ·
[

(
√

[P2(k)]ii −
√

[P1(k)]ii)
(
√

[P2(k)]ii +
√

[P1(k)]ii)

]
. (19)

The above is a time-varying decision threshold that can be used to maintain a constant specified instantaneous
false alarm rate. (A methodology is provided in [3] for specifying a decision threshold using random process
level-crossing theory so that a particular probability of false alarm exists over an entire specified time interval
and not just instantaneously at each discrete check time k.) Real-time on-line mechanization of CR2 for 1-D
uses only Eqs. 16, 18, 19 and the two comparison tests of Eq. 14.

3.2 Evaluating CR2 Pfa(k) for the Challenging 2-D Case

The expression for the scalar CR2 test statistic for n = 2 is considerably more complex than for the 1-D
case. It is obtained by first solving the scalar iteration equation for the associated Lagrange multiplier [1,
Eq. 34], [8, Eq. 1]:

λn+1 =
1

1 + wT (k)[(1−λn)P2(k)+λnP1(k)]−1P1(k)[(1−λn)P2(k)+λnP1(k)]−1w(k)

wT (k)[(1−λn)P2(k)+λnP1(k)]−1w(k)

for λ0 = 0.75, (20)

where w(k)
�
= x̂1(k)− x̄(k). This iteration equation 8 converges geometrically fast as a contraction mapping

[1, Theorem 5.1] to a unique solution λ̄(k), which is then substituted back into the accompanying Lagrangian
saddle point solution for the minimum x∗(k) of the constrained optimization problem that serves as the scalar
CR2 test statistic:

�(k) = �
(
λ̄, x∗(k)

)
= λ̄

(
1 − λ̄

)
[
(
1 − λ̄

)
P2(k) + λ̄P1(k)]. (21)

The above expression along with K1(k) is used in the limits of the integral representing the Pfa(k). For the
case of n = 2, the integrals of Eq. 15 become:

Pfa(k) =
∫ ∞

K1(k)

pL|H0(�) d� =
∫ ∞

K1(k)

[
1

|a1|pχ2

( ·
a1

)
∗ 1
|a2|pχ2

( ·
a2

)]
dL, (22)

=
∫ ∞

K1(k)

[
exp (−L/2a2)

2π
√

a1a2

∫ L

0

e−bx√
x(L − x)

dx

]
dL, (23)

=
∫ ∞

K1(k)

[(
1

4π
√

a1a2

) ∫ π

−π

exp {−1
2

[
1
a2

+ b + b sin θ

]
L} dθ

]
dL, (24)

8The best grouping to minimize the associated computational burden in terms of operation counts is also identified in [1],
[8, Eqs. 4, 5].
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=
(

1
4π

√
a1a2

) ∫ π

−π

[∫ ∞

K1(k)

exp {−1
2

[
1
a2

+ b + b sin θ

]
L} dL

]
dθ, (25)

=
(

exp {−K1C/2}
2πC

√
a1a2

) ∫ π

−π

[
exp {−(bK1/2) sin θ}

1 + (b/C) sin θ

]
dθ, (26)

=
(

exp {−K1C/2}
2πC

√
a1a2

) ∫ π

−π

[ ∞∑
i=0

(−bK1/2)i (sin θ)i /i!
1 + (b/C) sin θ

]
dθ, (27)

=
(

exp {−K1C/2}
2πC

√
a1a2

) ∞∑
i=0

[
(−bK1/2)i /i!

]
·
∫ π

−π

(sin θ)i

1 + (b/C) sin θ
dθ, (28)

=
(

exp {−K1C/2}
πC

√
a1a2

) ∞∑
i=0

[
(K1b)

i
/i!

] ∫ ∞

−∞

xi[
(x2 + 2(b/C)x + 1) (1 + x2)i

] dx, (29)

=
(

exp {−K1C/2}
e0

) [
e0 + e1K1 + e2K

2
1 + e3K

3
1 + e4K

4
1 + e5K

5
1 + · · ·] , (30)

where in the above [2, Eqs. B.1-11 to B.1-13]:

ai > 0 for i = 1, 2, (31)

b
�
=

a2 − a1

2a2a1
> 0, (32)

C
�
=

1
a2

+ b =
1
a2

+
a2 − a1

2a2a1
=

a2 + a1

2a2a1
> 0, (33)

C > b (34)

1 > (b/C)2 > 0, (35)

and ∗ denotes the operation of convolution. Since the integrand of Eq. 22 is positive as are those of Eqs.
23 and 24 9 as probability density functions (pdf’s) and, as such, have a finite integral when integrated over
K1(k) to ∞, use of Fubini’s theorem [55] allows the rigorous interchange of the order of integration, resulting
in Eq. 25. After integrating out the variable L in Eq. 25 to obtain Eq. 26, Eq. 26 may be rewritten, using
the series expansion of the exponential, as Eq. 27. Since the resulting series of continuous functions in Eq.
27 is a uniformly convergent series by the Weierstrass M-test [57], the order of integration and summation
can be rigorously (i.e., validly) interchanged in Eq. 27 to result in Eq. 28. Using the half-angle substitution
[56] of x = tan (θ/2) for which θ = 2 arctanx and dθ = 2 dx

1+x2 in Eq. 28 yields Eq. 29. Going from Eq.
29 to obtain the result of Eq. 30 is very challenging and tedious since it involves fairly long intermediate
expressions but they eventually collapse into shorter more manageable expressions, as summarized here. The
details of this challenging evaluation is provided next in Sec. 3.3.

3.3 Obtaining a Tractable Series Needed for Handling the 2-D Case of CR2

The following integral that arose as Eq. 29:

Pfa(k) =
(

exp {−K1C/2}
πC

√
a1a2

) ∞∑
i=0

[
(K1b)

i /i!
] ∫ ∞

−∞

xi[
(x2 + 2(b/C)x + 1) (1 + x2)i

] dx, (36)

can be evaluated over a closed path involving a semi-circle and the real axis in the complex plane using the
Cauchy Residue Theorem [58] in conjunction with some limiting arguments to make the upper half-plane
semi-circle have a radius that goes to infinity (and the corresponding real axis segment go from −∞ to ∞),
as explained below.

9The inner integral in Eq. 24 was originally to be integrated from −π/2 to π/2 but that is equivalent to the more convenient
version from −π to π when divided by two.
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Notice that the general integral of Eq. 29 has poles at the values of z where the following two polynomials
have zeroes:

0 = z2 + 2(b/C)z + 1, (37)

0 =
(
z2 + 1

)i
, (38)

specifically, the roots of interest, which fall within a closed infinite semi-circle in the upper half complex
plane, occur at the following values of z:

z = − b

C
+ 

√
1 − (b/C)2, (39)

z = + (of multiplicity i), (40)

and the negative imaginary roots of both of these quadratic polynomials lie outside of the closed upper
semi-circle and therfore play no role in the numerical evaluation via a sum of the enclosed residues in the
counter-clockwise direction. The contribution of the path integral along the infinite semi-circle is zero because
the degree of the denominator is more than two greater than that of the numerator so the real integrals of
Eq. 29 (Eq. 36) are equivalent to the complex path integrals over the simply connected region enclosed:

2π
∑

Res =
∮

zi dz[
(z2 + 2(b/C)z + 1) (1 + z2)i

] = lim
R→∞

∫ π

0

Ri+1e(i+1)θ dθ[
(R2e2θ + 2(b/C)Reθ + 1) (1 + R2e2θ)i

]
+ lim

R→∞

∫ +R

−R

xi dx[
(x2 + 2(b/C)x + 1) (1 + x2)i

] = 0 +
∫ ∞

−∞

xi dx[
(x2 + 2(b/C)x + 1) (1 + x2)i

] , (41)

where the integrand is analytic within the contour described except at the above mentioned simple poles
that are enclosed.

Evaluation of the integrals of Eq. 36 for the first five terms, using the Cauchy Residue Theorem yields
the first three easy evaluations that demonstrate how the evaluations will be performed for the remaining
two harder cases:

I0 =
∫ ∞

−∞

dx

[(x2 + 2(b/C)x + 1)]
= 2π · 1

2
√

1 − (b/C)2
=

π√
1 − (b/C)2

, (42)

I1 =
∫ ∞

−∞

xdx

[(x2 + 2(b/C)x + 1) (1 + x2)]
= 2π


 1

2
√

1 − (b/C)2(−2b/C)
+

1
2 (2b/C)


 , (43)

I2 =
∫ ∞

−∞

x2 dx[
(x2 + 2(b/C)x + 1) (1 + x2)2

] = 2π


 1

2

√
1 − (b/C)2(−b/C)2




+ 2π

[
d

dx

(
x2

[x2 + 2(b/C)x + 1](x + 1)2

)] ∣∣∣∣
x=1

= 2π


 1

2

√
1 − (b/C)2(−b/C)2


 +

2π

[
−2x4 − 2(b/C)x3 + 

(
2(b/C)x2 + 2x

)
[x2 + 2(b/C)x + 1](x + 1)3

] ∣∣∣∣
x=1

=2π


 1

2
√

1 − (b/C)2(2b/C)2
− 1

2 (2b/C)2


 .(44)

Continuing in like manner, but sparing the reader much of the long unwieldy intermediate expressions, yields:

I3 =
∫ ∞

−∞

x3 dx[
(x2 + 2(b/C)x + 1) (1 + x2)3

]
= 2π

[
1

2

√
1 − (b/C)2(−2b/C)3

+
1
2

[
d2

dx2

(
x3

[x2 + 2(b/C)x + 1](x + 1)3

)] ∣∣∣∣
x=1

]
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= 2π

[
1

2
√

1 − (b/C)2 (−2b/C)3
+

1
2

[
1

(2b/C)3
+

1
8 (2b/C)

] ]
(45)

and

I4 =
∫ ∞

−∞

x4 dx[
(x2 + 2(b/C)x + 1) (1 + x2)4

]
= 2π

[
1

2

√
1 − (b/C)2(−2b/C)4

+
1
6

[
d3

dx3

(
x4

[x2 + 2(b/C)x + 1](x + 1)4

)] ∣∣∣∣
x=1

]

= 2π

[
1

2
√

1 − (b/C)2 (−2b/C)4
− 1

24

[
1

(2b/C)2
+

8
(2b/C)4

]]
(46)

I5 =
∫ ∞

−∞

x5 dx[
(x2 + 2(b/C)x + 1) (1 + x2)5

]
= 2π

[
1

2

√
1 − (b/C)2(−2b/C)5

+
1
24

[
d4

dx4

(
x5

[x2 + 2(b/C)x + 1](x + 1)5

)] ∣∣∣∣
x=1

]

= 2π

[
1

2
√

1 − (b/C)2 (−2b/C)5
+

1
24

[
1

(2b/C)5 2
+

1
(2b/C)3 24

+
3

(2b/C) 28

]]
. (47)

Although the above results were originally derived by long hand, they fortuitously possessed a type of internal
error cross-check by the imaginary contribution of the enclosed residues collapsing to be identically zero.
Nowadays, these expressions can be confirmed using a symbol manipulation routine such as Maple c©.

As derived and defined in [2, Lemma 1, Eq. B.1-2], a useful auxiliary matrix is:

S(λ̄, k)
�
= [P2(k) − P1][(1 − λ̄)P2(k) + λ̄P1] (48)

that can be used as an intermediary in specifying the requisite parameters a1, a2, b2, and C, from which
ultimately the parameters e0, e1, e2, e3, e4, e5 are defined [2, Eqs. 41-44]. It is also established in [2, Eqs.
B.2-12 to B.2-13], by the simple algebraic manipulation of inequalities, that:

C > 0 (49)
ei > 0 for all i = 0, · · · , 5. (50)

In order to solve Eq. 30 for the unknown K1(k), a useful contrivance is to decompose it into two separate
algebraic equations to be solved simultaneously as:

y1(K1)
�
= e0 + e1K1 + e2K

2
1 + e3K

3
1 + e4K

4
1 + e5K

5
1 , (51)

y2(K1)
�
= e0Pfa(k) · exp

[
CK1

2

]
. (52)

Notice that the vertical intercept of the two equations are rordered as e0 > Pfa · e0 and the exponentially
increasing term initially starts below the quintic at K1 = 0 but ultimately grows to intersect it since the
exponent is purely positive and the exponential will eventually dominate the quintic polynomial even though
it starts below it. A successive approximations implementation of these two equations [59] can be used to
easily solve this problem evaluation for the unknown K1(k), as depicted in [2, Fig. 4]. Convergence is obvious
from the figure cited. This successive approximations approach is iterated to convergence for each successive
k to yield a time-varying decision threshold that yields a CFAR implementation of the CR2 test (cf., [71]).
Real-time on-line mechanization of CR2 for 2-D uses only Eqs. 20, 21, 51, 52 and the two comparison tests
of Eq. 14.
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4 Evaluation of Pd(k) for the CR2 detection test

For CR2, the probability of correct detection corresponds to the following situation for the n-dimensional
case:

Pd(k)
�
= Prob[�(k) > K1(k)|H1] =

∫
· · ·

∫
�(k)>K1(k)

N (d(k), Px̃x̃(k)) dx̃. (53)

Similar to the situation for evaluation of Pfa(k), the above expression is difficult to evaluate for general
dimension n. However, it is easy to evaluate for the scalar case (treated in Sec. 4.1) and tractable but more
challenging for the case of n = 2 (handled in Sec. 4.2).

4.1 The CR2 Pd(k) Evaluation Simplifies Nicely for the 1-D Case

In complete analogy to what was done in Sec. 3.1 and the simplifications that accrued for the 1-D case, the
integral of Eq. 53 reduces to the following closed form (with constituent parts that are known and easy to
evaluate):

Pd(k) = 1 − 1
2
erf

[(
SNR(k)√

2

)
+

√
K1(k)

2
·
√

(
√

P2(k) +
√

P1(k))

(
√

P2(k) − √
P1(k))

]

−1
2
erf

[(
SNR(k)√

2

)
−

√
K1(k)

2
·
√

(
√

P2(k) +
√

P1(k))
(
√

P2(k) − √
P1(k))

]
, (54)

where in the above, the expression for the signal to noise ration of Eq. 3 simplifies as:

SNR(k) =
|d(k)|√

P2(k) − P1(k)
. (55)

4.2 Evaluating CR2 Pd(k) for the Challenging 2-D Case

For the 2-D case, after performing an offset by the indicated mean and scaling by the covariance matrix
present in the Gaussian distribution, Eq. 53 simplifies as:

Pd(k) = 1 −
∫ ∫

G

Nu(0, I) du, (56)

where G is the following elliptical region:

(
u + [P2 − P1]−1/2d(k)

)T

Ā−1(λ̄)
(
u + [P2 − P1]−1/2d(k)

)
≤ K1(k)

λ̄(1 − λ̄)
, (57)

where the integral here represents the volume under the circular (independent) bivariate Gaussian surface
enclosed by an offset ellipse and can be evaluated using existing tables [36]. A circular approximation to the
above elliptical region is offered in [2, Eq. 54] and enables these integrals of a circular bivariate Gaussian
surface to be evaluated over an offset circle, as found in more generally available tables [35], [34].

5 Summary and Conclusions

We have summarized the rigorous mathematics underlying the CR2 approach to failure detection, with
particular attention being given here to the evaluation of the complex integral of Eq. 29 which, up to
now, had received short shrift in other associated CR2 documentation. This evaluation was crucial in
order to evaluate Pfa(k) and Pd(k), as arise in characterizing the CR2 performance in terms of ROC (and
CFAR values of Pfa and associated Pd (incurred for failure magnitudes to be protected against) are used as
parameters in the non-ideal 3 state switches that arise in associated system Reliability/Availability diagrams
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[6]). An example of another approach to evaluating ROC (for a Schweppe likelihood ratio detection test
also obtained from further operations on the outputs of a Kalman filter) uses Chernoff upper bounds, which
are then optimized to be as tight as possible, is demonstrated in [9]. There are detailed figures intuitively
depicting all aspects of CR2 diagrammatically in [1]-[3]. The fundamental characterization of CR2 found
in [1], [2] is particularly amenable to being depicted graphically since the underlying test for the overlap
of two ellipsoidal confidence region sheaths at a particular check time k is geometrical in character and
is solved by embedding the n-dimensional problem within an (n+1)-dimensional space. A recent test for
n-dimensional ellipsoid overlap test [83] (which avoids CR2’s restrictive hypothesized condition of Eq. 13)
also embeds the problem in (n+1)-dimensions in order to elegantly solve the general n-dimensional overlap
problem, as pointed out in [54]. This recent overlap test can also be applied within the complete Failure
Detection, Identification, and Reconfiguration (FDIR) approach advocated in [21], which previously avoided
using CR2. GPS/INS Integrity monitoring, where consideration of GPS interaction with an INS is currently
absent in GPS Reciever Autonomous Intergrity Monitoring (RAIM) [53, p. 598], can be based on the joint
approaches of [21]with [83]. The results of applying CR2 to real SINS/ESGM sensor data is depicted in [2,
Fig. 3], [4], [5]. Only failure magnitudes corresponding to SNR = 1̃2.5 dBm or more above the background
noise of the coarser SINS will have good detection behavior, a standard benchmark number.

Since we have a working perspective into many other aspects of Kalman filtering [18]-[21], [23], [24],
[51]; nonlinear estimation [25]-[27], [74]; and its related concerns [37]-[54], [68], [73]; we use this forum to
also point out perceived weaknesses that exist in several other alternative approaches 10 to failure detection
(treated in Appendices A and B) that have not been publicized hithertofore. Such considerations arise in
reducing mere theory to a final practical implementation instead of continuing to dwell on ideal starting
points without facing the realities of the constraints that exist in real implementations (one such being the
standard use of reduced-order filters 11, where filter residuals are no longer white and unbiased [72] thus
foiling or corrupting the original approach of [76] which relies on whiteness of residuals as a gauge of normal
unfailed behavior, as GLR also relies [67]). An in depth understanding of a system’s principles of operation
must be known [10]-[14], [50], [73] before one knows how to break it [49], [87] or better yet defend it, as in
developing counter-countermeasures C5I (as Old Crows know full well).

A Status of GLR Approach to Event Detection

While Generalized Likelihood Ratios (GLR) (where maximum likelihood estimates of unknown parameters
are utilized within the H1 to H0 likelihood ratios in lieu of the parameters being unknown) are presented and
developed by Davenport and Root [60], Root went further [61] to investigate applicability of GLR techniques
in the radar detection problem of resolving closely spaced targets in a background of either known arbitrary
correlated Gaussian noise or in Gaussian white noise. However, Root [61] obtained explicit criteria that could
be applied to indicate conditions under which one could expect to not resolve two known signals (of unknown
amplitudes and parameters) and additionally pointed out a difficulty of using GLR for this purpose.

Selin [62] found that some of the unknown parameters (such as unknown relative carrier phase) must
also be estimated in order to maximize the a posteriori probability in the estimation of two similar signals
in white Gaussian noise. Selin further identified four standard caveats [63, p. 106] associated with use of a
maximum likelihood estimate of the unknown parameters in a likelihood ratio (as utilized in GLR).

McAulay and Denlinger [66] advocated use of GLR in conjunction with a Kalman filter in decision-
directed adaptive control applications. Finally, Stuller [64] defined an M-ary GLR test that ostensibly
overcame Root’s original objections [61] to GLR for this type of application. (Ref. [64] also provides a
limited history of GLR developments for radar, excepting no mention of [66], which possibly eluded him.

10This tact was pursued here since illustrative counterexamples are tracked far less diligently in engineering literature than
in the field of mathematics (e.g., [84], [85]).

11Gaussian confidence regions still persist as Gaussians when reduced-order filters are inserted in the application and certain
reduced-order filters still avail exact covariances on-line in real-time [23] so CR2 is therefore robust with respect to this aspect.
The truth models for SINS and ESGM are 34 and over 100 states, respectively, while the dimensions of the associated Nav filter
models were 15 and 18 states. Moreover, Gaussian confidence regions arise even when the pdfs are from an exponential family,
where the important conditionals and marginals are still Gaussian [86, Chaps. 1-4].
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The use of GLR for failure detection was pioneered by Willsky and Jones [67] using an identical GLR
formulation as presented by McAulay and Denlinger [66]. While both Willsky and McAulay claim optimality
of the GLR, they never explicitly specify a criteria by which it may be judged optimal nor do they supply
a proof or reference where such a claim is demonstrated (specifically, [66] references the proof to be in a
English translation of an identified German textbook but diligent follow-up on our part here revealed no
such substantiation located there).

On [15, p. 92], attention is called to the fact that GLR is not a Uniformly Most Powerful (UMP) test,
while [15, p. 96] offers recognition that cases exist where use of GLR can give bad results. That a maximum
likelihood estimate (MLE) is not necessarily statistically consistent in general is explicitly demonstrated in
a counterexample in [65, p. 146].

GLR is again being advocated for use in radar applications but those that do appear to ignore the
historical objections for use of GLR in these types of applications as well as the explicit counterexamples in
[17, 968 ff, App. A, pp. 973-974] that, apparently, have never been refuted. The new version of GLR (called
“Ed Kelly’s GLR”) is of a different form than used by the others mentioned above [88] and is apparently a
pseudo-GLR but useful none-the-less for radar tracking but evidently somewhat lacking in its present form
for failure detection since it ignores the onset time of the detection event. Use of the Entropy Maximization
(E-M) algorithm may placate Selin’s and Roots’ concerns above but is a large computational burden that
may defy a real-time implementation.

B Status of Interactive Multiple Model (IMM) Parallel Bank-of-

Kalman filters for Nonlinear Applications

While, by now, it is routine to consider the generalization of Kalman filter estimation techniques from
mere linear systems (for which Kalman filters are optimal estimators [28], [29], [32]) to nonlinear systems
(for which Extended Kalman filters or Iterated Extended Kalman filters [27]are frequently useful, tractable
approximations to nonlinear filtering [41, Sec. 12]), as also discussed in [28], [29, Vol. 2, 1982], [32]. Similar
ideas should successfully generalize each of the Kalman filters arising in the bank-of-Kalman filters that occur
in Interactive Multiple Model (IMM) mechanizations as IMM is generalized beyond the exclusively linear case
for which it was rigorously derived as merely a two level approximation (even in the purely linear case 12);
however, the associated IMM probability calculations are more suspect in an attempted generalization to
the nonlinear case. In each of the following three references [75, before Eq. 4], [77, after Eq. 2], [78, after Eq.
6], “the critical mixture is assumed to be a sum of Gaussians 13, then the prior pdf is a Gaussian mixture
and can be approximated (via moment matching) with a single Gaussian....” Our objection here is four-fold.
First, for nonlinear systems, the estimates outputted by an EKF is not Gaussian in general (unlike the
assumption). Secondly, there are already existing analytic results [82] which caution that a single subsuming
Gaussian pdf 14 is not always possible (or not usually possible) even if the individual participating pdf’s
were in fact Gaussian when the means of the various contributing pdf’s are not in close enough proximity,
as gauged by the spread of the umbrella of associated covariances. This topic has been an issue since the
historically well known Gaussian-Sums approach of [80], [81] also used a bank-of-Kalman-filters structure
(which also did not match “expectations”, so to speak ). Indeed, nonlinear filtering situations frequently
exhibit multimodal output estimates as a fact of life, as discussed in [79]. Thirdly, the “moment matching”
called for in [75], [77], [78] is not explained there nor is there an opportunity to do so within the algorithm
for each time-step k, as needed. Fourthly, what is to be matched in “moment matching” by what and to
what and by what gauge will it be determined that it matches closely enough. Nothing about these aspects
has been explained in the three references cited above.

12The sojourn times and Markov chain transition probabilities are a new contrivance within IMM, useful by providing
additional parameters to tune to better match potential application situations by keeping alternative models more actively
viable than they were for the Magill bank-of-Kalman-filters (1965).

13While sums of Gaussian random variables or sums of random processes are always Gaussian, that is not the issue or situation
here. The topic here is of the resulting pdf’s of the output which are claimed to be a weighted sum of the Gaussian pdf’s called
a “Gaussian mixture”.

14This aspect is not subsumed under the Central Limit Theorem nor under its more recent generalizations of the last 38
years.
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