Draft American National Standard

Flight Dynamics Model Exchange Standard

Warning

This document is not an approved AIAA Standard. It is distributed for review and comment. It is subject to change without notice.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Sponsored by
American Institute of Aeronautics and Astronautics
Approved XX Month 200X
American National Standards Institute

Abstract

This is a standard for the interchange of simulation modeling data between facilities. The initial objective is to allow a person with a simulation of a certain type of vehicle or aircraft at facility A to transfer the simulation to facility B in an easy, straightforward manner.

LIBRARY OF CONGRESS CATALOGING DATA WILL BE ADDED HERE BY AIAA STAFF

Copyright © 200X American Institute of Aeronautics and Astronautics
All rights reserved
No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without prior written permission of the publisher.

Printed in the United States of America

Contents

Foreword v
Introduction vi
Trademarks viii
1 Scope. 1
2 Tailoring 1
2.1 Partial Use of the Standard 1
2.2 New and Reused Software Tailoring Guidance 2
2.3 Creating New Variable Names and Axis Systems 2
3 Applicable Documents 3
4 Vocabulary. 3
4.1 Acronyms and Abbreviated Terms 3
4.2 Terms and Definitions 3
5 Standard Simulation Axis Systems 4
5.1 Background / Philosophy 4
5.2 Summary 9
5.3 References 9
6 Standard Simulation Variables 9
6.1 Background / Philosophy 9
6.2 Variable Naming Convention 10
6.3 Additional Discussion 2
6.4 Standard Variable Name Table Example 16
6.5 Summary 17
7 Standard Simulation Function Table Data Format and XML Implementation of the Standard: DAVE-ML 17
$7.1 \quad$ Purpose 17
7.2 Philosophy 18
7.3 Design Objective 18
7.4 Standard Function Table Data - An Illustrative Example 18
7.5 DAVE-ML Major Elements (reference Annex B) 20
7.6 A Simple DAVE-ML Example 21
7.7 Summary 27
8 Future Work 27
8.1 Time history information 27
8.2 Dynamic element specification 28
9 Conclusion 28
Annex A Standard Variable Names (Normative) 29

Foreword

This standard was sponsored and developed by the AIAA Modeling and Simulation Committee on Standards. Mr. Bruce Jackson of NASA Langley conceived DAVE-ML. DAVE-ML is the embodiment of the standard in XML. This document is the data type descriptions for the XML implementation and includes examples of its use. (Annex B)

This implementation was then tested by trial exchange of simulation models between NASA Langley Research Center (Mr. Bruce Jackson), NASA Ames Research Center (Mr. Thomas Alderete and Mr. Bill Cleveland), and the Naval Air Systems Command (Mr. William McNamara and Mr. Brent York). Numerous improvements to the standard resulted from this "testing".

At the time of approval, the members of the AIAA Modeling and Simulation CoS were:

The above consensus body approved this document in Month 200X.
The AIAA Standards Executive Council (VP-Standards Name, Chairman) accepted the document for publication in Month 200X.

The AIAA Standards Procedures dictates that all approved Standards, Recommended Practices, and Guides are advisory only. Their use by anyone engaged in industry or trade is entirely voluntary. There is no agreement to adhere to any AIAA standards publication and no commitment to conform to or be guided by standards reports. In formulating, revising, and approving standards publications, the committees on standards will not consider patents that may apply to the subject matter. Prospective users of the publications are responsible for protecting themselves against liability for infringement of patents or copyright or both.

Introduction

The purpose of this standard is to clearly define the information and format required to exchange air vehicle simulation models between simulation facilities (see the figure below). The standard is implemented in XML and called DAVE-ML.

The Exchange Standard (DAVE-ML) Includes:

- Standard variable name definitions - the purpose of this is to facilitate the transfer of information by using these standard variables as a "common language". The DAVE-ML standard can be used without using standard variable names, however it will be more difficult because the person exporting the model will have to explicitly define all the variables instead of just a subset unique to the particular model.
- Standard function table definition - this allows easy transfer of non-linear function tables of n dimensions.
- Standard axis system definitions - this is used by the variable names and function tables to clearly define the information being exchanged.
- Standard static math equation representation - for definition of aero model (or other static models) equations. This is implemented using Math-ML.

XML provides a format for the exchange of this information, therefore each organization is required to design import/export tools which comply to the standard one time only.

Use of this standard will result in substantially reduced cost and time necessary to exchange aerospace simulations and model information. Test cases have indicated an order of magnitude reduction in effort to exchange simple models when utilizing this standard. Even greater benefits could be attained for large or complicated models.

Trademarks

The following commercial products that require trademark designation are mentioned in this document. This information is given for the convenience of users of this document and does not constitute an endorsement. Equivalent products may be used if they can be shown to lead to the same results.

Simulink ${ }^{\circledR}$
MATLAB® ${ }^{\circledR}$

1 Scope

This standard establishes the definition of the information and format used to exchange air vehicle simulations and validation data between disparate simulation facilities. This standard is not meant to require facilities to change their internal formats or standards. With the concept of an exchange standard, facilities are free to retain their well-known and trusted simulation hardware and software infrastructures. The model is exchanged through the standard, so each facility only needs to create import/export tools to the standard once. These tools can then be used to exchange models with any facility at minimal effort, rather than creating unique import/export tools for every exchange.

The standard includes a detailed convention for defining simulation variables. The purpose of this is to assist in the clarification of the information within the model when it is exchanged between two simulation customers or facilities. Such clarification includes axis systems referenced, units, and sign conventions used. XML is used as the mechanism to facilitate automation of the exchange of the information. Using the definitions in the standard, a list of simulation variable names and axis systems is included. This list of standard variable names further simplifies the exchange of information, but is not required.

2 Tailoring

When viewed from the perspective of a specific program or project context, the requirements defined in this Standard may be tailored to match the actual requirements of the particular program or project. Tailoring of requirements shall be undertaken in consultation with the procuring authority where applicable.

NOTE Tailoring is a process by which individual requirements or specifications, standards, and related documents are evaluated and made applicable to a specific program or project by selection, and in some exceptional cases, modification and addition of requirements in the standards.

The following sections provide further guidance on specific tailoring situations.

2.1 Partial Use of the Standard

2.1.1 General

Each simulation created may not require the implementation of all aspects of this standard. The following guidelines are provided to encourage appropriate use of the standard in a number of example situations.

2.1.2 Creating a New Simulation Environment

This situation calls for use of the complete standard. In this situation it is hoped that the team developing this new simulation would add to the list of standard variables and axis systems.

2.1.3 Creating a New Simulation Model in an Existing Simulation Environment

This situation is defined as creating a new system model (aircraft dynamic model for example) that will run in an existing simulation environment. It is expected that this is the most commonly performed work that will see benefit by application of this standard.

In this case the following tailoring guidelines are applicable. Apply the standard to the new development aspects of the project and all the function tables. Assuming that most or all of the standard variable names and axis systems are applicable to the simulation, use them for the new code developed for the simulation. In the existing simulation environment that is being reused, for example the equations of motion, there is no need to rewrite the code to use the standard variable names or axis systems. However, in most cases the axis systems used in existing simulation environments will be covered in the standard axis system definitions herein (Section 6). Therefore the standard axis systems can easily be referenced when documenting the simulation and interfaces between the new simulation components and those reused.

2.1.4 Creating or Updating a Simulation with a Long Life Expectancy

A pilot training simulator is an excellent example of this type of simulation. This simulation may only be updated every 3-10 years, so at first glance the standard may seem to be less applicable.

In fact the opposite is true. It is because of the infrequent maintenance that the standard is critical. In this case, in each new software update, the original developers (or last updaters) are probably gone, and the update is being done by new personnel. Therefore, software developed under the standard is much easier to understand by the new software team. They would be working with clear variable definitions that they are familiar with. The function table format is understood and the functions themselves better documented. Changes are recorded for the next software update team some years down the road. The axis system definitions are clear.

In simulations with long expected life, use of the state, state derivative and control conventions as part of the naming convention becomes critical as these variables form the core of the model and control of it. It is critical that the personnel modifying the simulation are able to easily find the states, state derivatives and controls.

2.2 New and Reused Software Tailoring Guidance

The longer the expected life of the simulation, the more important the use of the standard becomes. The above tailoring guidelines may be categorized into two common situations; new and reused code.

New simulation code should

- use standard axis system definitions (Section 5) where they coincide with the definitions in the standard;
- use standard variable names (Section 6) to facilitate consistency and simplify documentation requirements;
- apply the convention for states, state derivatives and controls wherever possible; and
- use standard function tables (Section 7) for ALL function tables.

NOTE This facilitates consistency in the data, the documentation of the data, and collaboration with other organizations to improve or debug the data.

Reused simulation code should reference the standard only when convenient to document interfaces with new code.

2.3 Creating New Variable Names and Axis Systems

The standard variable names and axis system definitions are included in the standard to facilitate communication. They provide a "common language" for the exchange. For example, it is not enough to exchange the lift coefficient function. As a minimum, the independent variables used to define the function and their units, sign convention, and reference axis system must be defined. This is facilitated by having standard variable names and axis systems. Of course, new variable names, definitions, and other convenient axis systems may be used to exchange models between simulation facilities. However, in such cases, the exporters and importers must carefully define these variables and axes, otherwise the exchanged model may not produce the desired results. Use of standard variable names and axis systems facilitates the exchange.

This standard includes a methodology for creating new standard variables. Its use is encouraged. Annex C provides the URL for submitting additional standard variable names and axis systems or comments on existing standard variable names and axis systems.

3 Applicable Documents

The following documents contain provisions which, through reference in this text, constitute provisions of this standard. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies.

AIAA R-004-1992
Atmospheric and Space Flight Vehicle Coordinate Systems

4 Vocabulary

4.1 Acronyms and Abbreviated Terms

4.2 Terms and Definitions

For the purposes of this document, the following terms and definitions apply.

Breakpoint

the value of the independent variable of a given dependent variable, or the X coordinate (or abscissa) of a one dimensional table

Confidence Interval

an estimate of the computed or perceived accuracy of the data

Dependent Variable

the output of a function table
EXAMPLE For $C_{L}(\alpha, \beta), C_{L}$ is the dependent variable, also called the output.

Independent Variable

the input(s) to a function table
EXAMPLE For $C_{L}(\alpha, \beta), \alpha$ and β are independent variables.
One Dimensional Table
a table containing only one independent variable
EXAMPLE $\quad C_{\llcorner }(\alpha)$ is a one dimensional table.

Two Dimensional Table

a table containing two independent variables
EXAMPLE $\quad C_{L}(\alpha, \beta)$ is a two dimensional table.

Static Equation

a mathematical statement where the output (left hand side) does not have direct dependence (right hand side) on a simulation state

Simulation States (State Derivatives)

in the formulation of a simulation model shown as

$$
\begin{aligned}
& x=A x+B u \\
& y=C x+D u
\end{aligned}
$$

- x represents a vector of the simulation states.
- $\quad \mathrm{x}$ represents a vector of the simulation state derivatives.
- u represents a vector of the simulation controls (inputs)

Function Table

the numeral set of data points used to represent non-linear relationships between an independent variable based on (as a function of) one or more independent variables

EXAMPLE $\quad C_{L}(\alpha, \beta)$ is represented by a function table.

Gridded Table

a multi-dimensional function table in which the independent variable breakpoints do not change for different values of other independent variables

NOTE 1 This is sometimes called an orthogonal table
NOTE 2 All one-dimensional tables are gridded tables.

Ungridded Table

a multi-dimensional function table in which the independent variable breakpoints change for different values of other independent variables

NOTE This is sometimes called a non-orthogonal table.

5 Standard Simulation Axis Systems

5.1 Background / Philosophy

The axis system definitions discussed herein were taken from existing standards, the $A N S I / A I A A$ Recommended Practice for Atmospheric and Space Flight Vehicle Coordinate Systems (ANSI/AIAA R-004-1992) and the Distributed Interactive Simulation (DIS Application Protocols, Version 2, IST-CR-90-50, March 1994). AIAA R-004-1992 is based on ISO 1151-1:1988 and ISO 1151-3:1972.

Axis system standards are also reflected in the variable naming convention. When applicable, the axis system is included in the variable name (see Section 6).

5.1.1 Axis System Conventions

In general, ANSI/AIAA R-004-1992 should be referred to as the normative reference for axis system definitions. These axis systems are discussed in Table 1. However, it is important to emphasize the correlation of the AIAA document and the Distributed Interactive Simulation (DIS) axis systems. The
geocentric earth fixed axis system and body axis coordinate system axis system both are used in DIS and High Level Architecture (HLA) simulations.

5.1.1.1 Geocentric Earth Fixed-Axis System

The Geocentric Earth Fixed-Axis System (Axis System 1.1.3 of the table below) is identical to the DIS "Geocentric Cartesian Coordinate System" (also referred to as "World Coordinate System" in the DIS).

It is a system with both the origin and axis fixed relative to, and rotating with, the earth. The origin is at the center of the earth, the X_{G} axis being the continuation of the line from the center of the earth through the intersection of the Greenwich Meridian and the Equator, the z_{G} axis being the mean spin axis of the earth, positive the north, and the y_{G} axis completing the right hand triad.

All variables in the simulation referenced to this axis system refer to the "GE" for the Geocentric Earth Fixed-Axis System. This axis system is also frequently called "Earth Centered Earth Fixed".

5.1.1.2 Body Axis Coordinate System

Another standard axis system is the Body Axis System (axis system number 1.1.7 in ANSI/AIAA R-0041992). This is identical to the DIS "Entity Coordinates System".

The body axis system is referred to in the variable names as "Body".

5.1.1.3 Additional Axis Systems

In addition to the axis systems defined in ANSI/AIAA R-004-1992, this standard has added the Flat Earth and Locally Level axis systems. These axis system is are defined only for convenience onfor use in simple simulations and for creating validation data.

The Flat Earth axis system is a fixed, non-rotating, flat earth with no mapping to a round earth coordinate system, therefore, latitude and longitude are meaningless. The purpose of this coordinate system is to allow, if desired, vehicle checkout simulation to be performed in this axis system. This simplifies the use of this standard by the simulation facilities which do not normally use a round or oblate spheroid, rotating earth model.

The Flat Earth reference system is situated on the earth's surface directly under the cg of the vehicle at the initialization of the simulation. The x axis on the local frame points northwards and the y axis points eastward, with the z axis down. The x and y axis are parallel to the plane of the flat earth.

The flat earth axis system is referred to in the variable names as "FE".
The locally level axis system is also a simplified axis system convenient for simulation checkout and validation. The $-Z$ axis passes through the vehicle CG. If a flat earth, the X axis is in the plane of the surface and oriented toward true North. The Y axis is also in the plane of the surface and completes the right hand triad (East). If not at flat earth, the X axis is tangential to the smooth surface of the earth and oriented toward true North in the geometric earth model. The Y axis is tangential to the smooth surface of the earth completing the right hand triad (East).

The locally level axis system is referred to in variable names as "LL".

5.1.1.4 Complete List of Axis Systems

The axis systems that are referenced are taken largely from paragraph 1.1 of ANSI/AIAA R-004-1992. The flat earth and locally level axis systems for atmospheric flight simulation approximation are added to that reference. Table 1 is the comprehensive list of axis systems that may be used.

The first column in Table 1 provides the abbreviation used for each axis system. The axis system may be referenced in a variable name. See Section 6 on the variable naming convention.

Table 1 - Standard axis systems

Reference Abbreviation for Variable Names	$\begin{aligned} & \text { R-004-1992 } \\ & \text { Paragraph } \\ & \text { Number } \end{aligned}$	Term	Definition	Symbol
El (Earth centered inertial)	1.1.1	Geocentric inertial axis system (See Appendix D. 2 of R-004 for a modification of this system used for launch vehicles.)	An inertial reference system of the FK5 mean equator and equinox of J2000.0 has the origin at the center of the Earth, the X_{Γ} axis being the continuation of the line from the center of the Earth through the center of the Sun toward the vernal equinox, the Z_{Γ} axis pointing in the direction of the mean equatorial plane's north pole, and the Y_{Γ} axis completing the right-hand system. (See Figure 1A in R-004)	$x_{1} y^{\prime} z_{1}$
Not used, this forms a basis for other definitions	1.1.2	Earth-fixed axis system	A right-hand coordinate system, fixed relative to and rotating with the Earth, with the origin and axes directions chosen as appropriate.	$\mathrm{X}_{0} \mathrm{y}_{0} \mathrm{z}_{0}$
GE (also called ECEF for Earth centered Earth fixed)	1.1.3	Geocentric Earthfixed axis system	A system with both the origin and axes fixed relative to and rotating with the Earth (1.1.2). The origin is at the center of the Earth, the X_{G}-axis being the continuation of the line from the center of the Earth through the intersection of the Greenwich meridian and the equator, the z_{G}-axis being the mean spin axis of the Earth, positive to the north, and the y_{G}-axis completing the right-hand system. (See Appendix D. 3 in R-004-1992)	$\mathrm{X}_{G} \mathrm{y}_{\mathrm{G}} \mathrm{Z}_{\mathrm{G}}$
	1.1.4	Normal Earthfixed axis system	An Earth-fixed axis system (1.1.2) in which the z_{0}-axis is oriented according to the downward vertical passing through the origin (from the origin to the nadir). (See Figure 1C in R-004-1992)	$x_{0} y_{o} z_{0}$ ($x_{g} y_{g} z_{g}$ is an acceptable alternative)
VO	1.1.5	Vehicle-carried orbit-defined axis system ${ }^{\text {a }}$	A system with the origin fixed in the vehicle, usually the center of mass, in which the z_{0} axis is directed from the spacecraft toward the nadir, the y_{0}-axis is normal to the orbit plane (positive to the right when looking in the direction of the spacecraft velocity), and the x_{0}-axis completes the right-hand system. (See Figure 1A in R-004-1992)	$\mathrm{x}_{0} \mathrm{y}_{0} \mathrm{z}_{0}$
VE	1.1.6	Vehicle-carried normal Earth axis system ${ }^{\text {a }}$	A system in which each axis has the same direction as the corresponding normal Earthfixed axis, with the origin fixed in the vehicle, usually the center of mass.	$x_{0} y_{0} z_{0}$ $\left(x_{g} y_{g} z_{g}\right.$ is an acceptable alternative)
Body	1.1.7	Body axis system ${ }^{\text {a }}$	A system fixed in the vehicle, with the origin, usually the center or mass, consisting of the	$\chi_{B} y_{B} Z_{B}$

Reference Abbreviation for Variable Names	R-004-1992 Paragraph Number	Term	Definition	Symbol
		Longitudinal axis Lateral axis Normal axis	following axes: An axis in the reference plane or, if the origin is outside that plane, in the plane through the origin, parallel to the reference plane, and positive forward. ${ }^{\text {b }}$ In aircraft or missiles, this is normally from the CG forward towards the nose in the vertical plane of symmetry. It is also normally parallel to the waterline of the vehicle. An axis normal to the reference plane and positive to the right of the x-axis (henceforth, positive to the right). An axis which lies in or parallel to the reference plane, whose positive direction is chosen to complete the orthogonal, righthand system xyz.	X_{B} Ув Z_{B}
Wind (for wind axis system)	1.1.8	Air-path system ${ }^{\text {a }}$ x_{a}-axis; air-path axis Ya-axis; lateral air-path axis; cross- stream axis z_{a}-axis; normal air-path axis	A system with the origin fixed in the vehicle, usually the center of mass, consistent of the following axes: An axis in the direction of the vehicle velocity relative to the air (1.5.1). An axis normal to the air-path axis and positive to the right. An axis - in the reference plane or, if the origin is outside that plane, parallel to the reference plane, and - normal to the air-path axis. The positive direction of the z_{a}-axis is chosen so as to complete the orthogonal, right-hand system $\mathrm{x}_{\mathrm{a}} \mathrm{y}_{\mathrm{a}} \mathrm{z}_{\mathrm{a}}$.	$x_{w} y_{w} z_{w}$ x_{w} y_{w} z_{w}
SA (for stability axis system)	1.1.9	Intermediate axis system ${ }^{\text {a }}$ $x_{e} \text {-axis }$	A system with the origin fixed in the vehicle, usually the center of mass, consisting of the following axes. The projection of the air-path axis on the reference plane, or, if the origin is outside that lane, on the plane through the origin, parallel to the reference plane.	$x_{s} y_{s} z_{s}$ x_{s}

Reference Abbreviation for Variable Names	$\begin{aligned} & \text { R-004-1992 } \\ & \text { Paragraph } \\ & \text { Number } \end{aligned}$	Term	Definition	Symbol
		$\begin{aligned} & y_{\mathrm{e}} \text {-axis } \\ & \mathrm{z}_{\mathrm{e}} \text {-axis } \end{aligned}$	An axis normal to the reference plane and positive to the right, coinciding with or parallel to the lateral axis (1.1.7). An axis which coincides with or is parallel to the normal air-path axis so as to complete the orthogonal right-hand system.	y_{s} z_{s}
FP	1.1.10	Flight-path axis system ${ }^{\text {a }}$	A system with the origin fixed in the vehicle (usually the center of mass) and in which the x_{k}-axis is in the direction of the flight-path velocity relative to the Earth. The y_{k} axis is normal to the plane of symmetry and positive to the right. The z_{k} axis completes the orthogonal righthand system	$\mathrm{X}_{\mathrm{k}} \mathrm{y}_{\mathrm{k}} \mathrm{Z}_{\mathrm{k}}$
AA	1.1.11	Total-angle-ofattack axis system ${ }^{\text {a }}$ (USA practice: areoballistic axis system.)	A system with the origin fixed in the vehicle, usually the center of mass, in which the x_{Γ} axis is coincident with the x -axis in the body axis system (1.1.7). The y_{Γ} axis is perpendicular to the plane formed by the x_{Γ} axis and the velocity vector, positive to the right. The z_{Γ} axis is formed to complete the orthogonal, right-hand system.	$\mathrm{x}_{\Gamma} \mathrm{y}_{\Gamma} \mathrm{z}_{\Gamma}$
FE		Flat Earth system (not from R-0041992)	The Flat Earth reference system is situated on the earth's surface directly under the cg of the vehicle at the initialization of the simulation. The x axis on the local frame points northwards and the y axis points eastward, with the z axis down. The x and y axis are parallel to the plane of the flat earth.	$\mathrm{X}_{\mathrm{FE}} \mathrm{Y}_{\mathrm{FE} \text { I }} \mathrm{Z}_{\text {FE }}$
LL		Locally Level axis system (not from reference R-0041992)	A vehicle related axis system (1.1.6) with the origin on the smooth surface of the earth and moving with the vehicle. The $-Z$ axis passes through the vehicle CG. The X axis is tangential to the smooth surface of the earth and oriented toward true north in the geometric earth model. The Y axis is tangential to the smooth surface of the earth completing the right hand triad (East).	$\mathrm{x}_{\text {LLI }} \mathrm{yLLr} \mathrm{z}_{\text {LL }}$

a Usually the origins of the axis systems defined in 1.1.5 through 1.1.11 coincide. If that is not the case, it is necessary to distinguish the different origins by appropriate suffixes.

Reference Abbreviation for Variable Names	R-004-1992 Paragraph Number	Term	Definition	Symbol
b The reference plane should be a plane of symmetry, or a clearly specified alternative.				

5.2 Summary

This axis system standard should be followed for all future equations of motion. Additionally, it provides the naming convention to properly reference the definitions herein in simulation variable names.

5.3 References

ANSI/AIAA Recommended Practice R-004-1992, Atmospheric and Space Flight Vehicle Coordinate Systems, 28 February 1992.

Distributed Interactive Simulation (DIS Application Protocols, Version 2, IST-CR-90-50, March 1994)

6 Standard Simulation Variables

6.1 Background / Philosophy

6.1.1 Rationale for Having Standard Variable Name and Naming Conventions

The standard variable names and axis system definitions are part of the standard to facilitate communication. They provide a "common language" for information exchange. For example, it is not enough to exchange the lift coefficient function. As a minimum the independent variables used to define the function and their units, sign convention, and reference axis system must be defined. This is facilitated by having standard variable names and axis systems.

Therefore, if you exchange models using the standard variables, you don't have to define a variable that is part of the standard, just refer to the standard for the definition of that variable. Additionally, the variable naming convention is presented to allow the list of standard variables to grow as needed by the user community. Hopefully the convention will keep some consistency in the variable names and make them easier for users to interpret.

6.1.2 States and State Derivatives

Long-term maintenance of simulation software used to model the flight dynamics of an airplane is predicated upon identification of the states and controls in the simulation. The importance of this cannot be overstated. States and inputs (controls) are determined by the physics of the problem. Since the physics are immutable the identification of these variables is crucial in software maintenance.
Again, according to physics, all outputs which are used in simulation are derived from states and inputs.
By practice, anything in a simulation of interest is an output. To create an output, for example indicated airspeed, it is necessary to identify the states and inputs. Therefore, if the appropriate law of physics is known, the indicated airspeed may be correctly computed. Too often in simulation modeling these immutable fundamental concepts are forgotten. Approximations are made that commonly create states from outputs. Practically speaking, this is done because the states in the simulation cannot be determined. Since a simulation is an iterative process, it becomes unclear as to what variable is dependent upon what other variable.
Rigorous physics requires that everything is computed from states and inputs.
Now the question becomes which state, that is, state at what time? Again, physics and discrete math require that outputs at any time T are a function of the states and inputs at time T . Integration of the state
derivatives at time T results in states at time T plus delta T. State derivatives at time T are functions of the states and inputs at time T . It is crucial that variables at time T are not mixed with variables at time T plus delta T .

Practically speaking, for simulation standards, what this means is that all integrations must be done in a centralized location in each simulation loop, otherwise variables at time T are mixed with variables at time T plus delta T . The simulation industry has violated this mathematical principle for many years in the use of "in-line" difference equations for simulation filters and actuators, etc. This often works "OK" and "no harm is done". However, what is missed is that software maintenance becomes much more difficult when those states cannot be located because they are embedded-they are strung throughout the code. Therefore, the outputs cannot be properly created. Furthermore, when a modification comes to add a capability or to fix a bug, the key variables required to modify a simulation (again what would the states, state derivatives, and inputs) are impossible to find or inaccessible. Therefore, the fix made to the simulation is less than optimum and possibly creates more errors down the road for the next fix, etc., etc., ad infinitum.

The identification of states and state derivatives is simply for the purpose of encouraging good mathematical fundamentals and to facilitate software maintenance. Therefore this AIAA Simulation Variable standard identifies states and state derivatives as part of the naming convention.

Identification of controls (also called inputs), while a good idea, is very difficult because so many variables are controls and the controls change with the mode of operation of the simulation. As a consequence, identification of controls is optional but should be strongly considered for inclusion in the development of new dynamic simulation models.

6.2 Variable Naming Convention

This clause will discuss the convention and philosophy used for naming simulation variables. This explanation is intended to ensure that new variables defined in the future are consistent with existing variables.

The mixed case variable name convention is used with one exception. The standard uses an underscore to separate the prefix and suffix from the body of the variable name. The standard could also be followed using underscores to separate the parts of the variable names.

The following general rules for naming variables shall be followed.

- Variables shall have meaningful names.
- Mnemonics shall not be used.
- Standard abbreviations are permitted.
- The first word in the variable name (not including the prefix, if any) shall start with a lower case. Distinct words thereafter in variable names shall be capitalized (for example, angleofAttack_d).
- Variable names shall not exceed 63 characters in length. Brief, but complete names are most effective.
- Abbreviations are generally all capitals.

6.3 Variable Name Creation Methodology

The suggested method of creating the name is as follows.

- Each name has up to eight components.
- All components are not required to be used because in many cases they do not apply.
- These components are:

1. (prefix)
2. (variable domain)
3. (specific axis or reference)
4. (axis or reference system)
5. (core name)
6. Of (point on the vehicle)

NOTE Generally only for positions, velocities and accelerations
7. WRT (reference point or frame)

NOTE Generally only for positions, velocities and accelerations
8. _(units).

Very rarely, if ever, are all 8 components of a name used.

6.3.1 Prefix

The prefix is used to identify the most important dynamic variables in the simulation, the states and the state derivatives. (See Section 6.1.2)

The prefix shall be separated from the body of the variable by an underscore or as a separate component of a structure.

6.3.1.1 Identification of States and State Derivatives

The states and state derivatives are those variables which make the simulation dynamic and are the key variables in a real time flight simulation. Basically, anything that is integrated (mathematically) is a state derivative. The result of the integration is the state (integration of the state derivative results in the state). This is true for any integration in a simulation. If the user controls all the states, he controls the motion of the simulation. Also, these along with the controls (inputs) are the key variables for validation. All outputs are computed directly or indirectly from states and controls.

The formulation of the equations of motion and the model itself determines what variables are states. This naming convention is not meant to standardize on any variable as a state, just for the simulation engineer to explicitly identify them in the model implementation, making it easier to document and exchange the models.

Examples:
s_XBodyVelocity_fs_1 s_ prefix indicates that this variable is a state
sd_XBodyAcceleration_fs_2
sd_ prefix indicates that this variable is a state derivative

6.3.1.2 Identification of Controls (optional)

The controls are those variables which provide the pilot/crew or the simulation operator's inputs to the simulation. As with the states and state derivatives, the controls are the key variables for validation. All outputs are computed directly or indirectly from states and controls.

The formulation of the equations of motion and the model itself determines what variables are controls. This naming convention is not meant to standardize on any variable as a control, just for the simulation engineer to explicitly name them, making it easier to document and exchange the models.

Examples:
c_avgAileronDeflection_d c_ prefix indicates that this variable is a control
c_pilotLongControlPos_r c_ prefix indicates that this variable is a control

6.3.2 Variable Source Domain

This represents the domain in which the variable is calculated. In object oriented design, it could logically be the object. The domain is normally not included if it (or the object) is the vehicle or aircraft being simulated, for example, airspeed.

Some domain examples include:

- Aero
- Engine or Thrust
- Controls
- Guidance
- Navigation
- GNC
- Wheel
- Landing Gear
- Hydraulic
- Electrical
- IO (for input/output)
- Motion
- CL or Control Loading
- Radar
- Weapons
- AIM9X (as an example, for the AIM-9X missile)

NOTE Users should add as many domains as needed to clearly identify the variable.
Variable name examples using "aero" and "thrust" include:

- aeroXBodyForceCoefficient
- aeroXBodyForce_lbf
- thrustXBodyForce_lbf

6.3.3 Specific Axis or Reference

This is the specific axis or reference used within the axis system (axis systems are defined in Section 5). If the axis system is included in the name, the specific axis or reference should also be included. For example

- (X, Y, Z), (N, E, D) or (U, V, W) for linear/translational motion,
- (Pitch, Roll, Yaw) or (P, Q, R) for angular motion.

Variable name examples:
s_rollBodyRate_rs_1

UBodyTurbulenceVelocity_fs_1

YGEVelocity_ms_1

ZRunway22VelocityOfLeftWheelWRTTD_fs_1

where Body is the axis system and roll is the specific axis in the body axis system, roll indicating angular motion.

NOTE In this example rollBodyRate is designated as a state.
where Body is the axis system and U is the specific axis in the body axis system, U indicating longitudinal translational motion.
where GE is the axis system and Y is the specific axis, also indicating translational motion.
where Runway22 is the axis system (user defined) and Z is the specific axis, also indicating translational motion. LeftWheel is the point on the vehicle and TD (touchdown point) is the reference point.
where Body is the axis system and Y is the specific axis, also indicating translational motion. Design pilot head location is the point on the vehicle.

Alternatively, the specific axis or reference can logically be a vector or an array. When vectors are used, a right handed triad in order (x, y, z) shall be used to avoid confusion.

where element 1 would be about the X axis (pitch), element 2 would be about the Y axis (roll) and element 3 would be about the Z axis (yaw)

6.3.4 Axis or Reference System

This is the axis or reference system to which the variable is referenced. Table 1 specifies the standard axis system abbreviations that should be used. If no axis system pertains to the variable or the core variable name needs no reference system to be unambiguous (ex. Airspeed) then this part of the variable name may be omitted.

6.3.4.1 Conventions Used

Earth fixed frames and local reference frames by convention use X, Y, Z, Pitch, Roll, and Yaw for axis references. Local reference frame (FE for example) origin and orientation may be user defined. Local reference frames are meant for runway, test range, target reference, navigational aid, etc. coordinate systems. Body fixed frames may use U, V, W, Pitch, Roll, and Yaw for axis references.

6.3.4.2 Variable Name Examples

The following variable names are provided as examples.

```
- UBodyVelocity_fs_1 (or XBodyVelocity_fs_1, Body axis system)
```

- s_XGEVelocity_fs_1 (in the case where the equations of motion are formulated such that the variable is a state, Geometric Earth axis system)
- XGEVelocity_fs_1
(in the case where the equations of motion are formulated such that the variable is not a state)
- UBodyVelocity_ms_1
(or XBodyVelocity_ms_1)
— VBodyVelocity_fs_1 (or YBodyVelocity_fs_1)
- S_XLLVelocity_fs_1 (Locally Level axis system)
- S_XFEVelocity_fs_1 (Flat Earth axis system)
- pitchBodyRate_rs_1 (or YBodyAngularRate_rs_1)
- rollBodyRate_rs_1 (or XBodyAngularRate_rs_1)
- yawBodyAccel_rs_2 (or ZBodyAngularAccel_rs_1)

Note that the standard encourages $\mathrm{U}, \mathrm{V}, \mathrm{W}$, pitch, roll yaw for body frames in particular, since that is widely conventional. However, since the overall objective of the standard is to form a framework for clear communication between simulation facilities, the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ convention is also acceptable. The appropriate core variable name shall be used to be clear whether the variable is a linear or angular variable.

6.3.5 Core Variable Name

This is the most specific (hence core) name for the variable. All variable names shall include this component of the name. Core variable name examples are as follows.

- velocity
- rate
- accel
- forceCoefficient
- turbulenceVelocity
- angleOfAttack
- angleOfSideslip
- cosineOfAngleOfSideslip
- thrust
- torque
- aileronDeflection (aileron could be considered a domain and deflection the core name)

The following variable names are provided as examples.

- s_rollBodyRate_rs_1
- XBodyTurbulenceVelocity_fs_1
- ZGEVelocity_fs_1
- angleOfAttack_r
- angleOfSideslip_d
- cosineOfAngleOfSideslip
- aileronDeflection_d

6.3.6 Reference Point or location on the vehicle

This component of the name is designed to clarify positions, velocities and accelerations and is normally omitted if the variable is not a position, velocity or acceleration. However, it may be used for any variable if desired. This component describes which point or object on the vehicle is being specified. "Of" is used to specify the point or object.

For those who prefer shorter variable names, the standard uses the convention that if the point or location on the vehicle is the center of mass (by convention, center of gravity, or CG) then the reference point may be omitted. However, use of "OfCG" is encouraged for clarity.

Reference points may be defined by the user and depend on the object the variable is describing.
Examples of reference points are as follows.

- OfCG (CG is the default, so "OfCG" may be omitted in any variable name)
- OfPilot
- OfIMU
- OfSensor
- OfMRC (for moment reference center)
- OfPilotEye (for the pilot eye point)
- OfRadAlt (for radar Altimeter)
- OfTerrain

The following variable names are provided as examples.

- UBodyVelocityWRTWind_fs_1 (OfCG understood)
- UBodyVelocityOfCGWRTWind_fs_1 (same meaning as above)
- UBodyVelocityWRTInertial_fs_1 (inertial velocity of the CG along the X body axis)
- heightOfCGWRTTerrain_f (CG may be omitted since it is the default)
- heightOfRadAltWRTTerrain_f
- heightOfTerrainWRTSurfaceReference_f
- XBodyPositionOfPilotEyeWRTCG_f
- longitudeRateOfIMUWRTWGS84_ds_1
- longitudeOfIMUWRTWGS84_d
- bodyAccelOfPilot_fs_2(3)

6.3.7 External Reference Frame or Reference Point on the Reference Frame

The external reference frame is generally used in conjunction with "reference point or location on the vehicle" above. It is primarily used in variables describing position, velocities and accelerations. This component defines the external reference frame which the motion is relative to. If the reference frame is rotating or the variable is describing angular motion, this component should define a specific point in the reference frame. Stevens and Lewis (see Section 6.7) may be referred to for a more rigorous definition of "frames".

The standard uses the convention "WRT" to define the frame component of the variable name. For those who prefer shorter variable names, the inertial frame is default, and therefore while use of "WRTInertial" is encouraged it may be omitted. Some examples of reference frames are as follows.

- WRTInertial (WRTInertial is the default and may be omitted)
- WRTCG (this is commonly used to clarify definitions of positions)
- WRTMRC (moment reference center)
- WRTWGS84 (world geodetic system 84)
- WRTTD (ideal touchdown point)
- WRTImpact (the desired weapon impact point)
- WRTWind (the instantaneous wind velocity)
- WRTMeanSL

The following variable names are provided as examples.

- UBodyVelocityWRTWind_fs_1 (OfCG understood)
- UBodyVelocityOfCGWRTWind_fs_1 (same meaning as above)
— UBodyVelocityWRTInertial_fs_1 (inertial velocity of the CG along the X body axis. WRTInertial may be omitted since Inertial is the default reference frame)
- UBodyVelocity_fs_1 (inertial velocity of the CG along the X body axis, same meaning as above)
- bodyPositionOfPilotEyeWRTCG_f(3)
- longitudeOfIMUWRTWGS84_d
- longitudeOfCGWRTWGS84_d
- bodyPositionOfPilotEyeWRTCG_f(3)
- bodyPositionOfCGWRTMRC(3)
- ZRunway22Velocity0fLeftWheelWRTTD_fs_1
- heightOfRunwayWRTMeanSL_f
- UBodyVelocityWRTWind_fs_1
- totalVelocityWRTGround_fs_1
- GEVelocity_ms_1(3) (WRTInertial is omitted since inertial is the default)

6.3.8 Suffix - Units

The suffix is used to describe the units of the variable. The convention for the suffix is simple and is followed for all variables. This will allow the user, the programmer, and the reader of the code to check for homogeneity of the units and is self-documenting in this respect. Therefore, units shall be included in all variables except variables that are non-dimensional. Including units has the the added advantage of making this standard consistent and acceptable in countries utilizing the international system of units. For example, airspeed is just as acceptable as a standard both for the U.S. system of units and the International system of units.

The standard uses and analogy to exponential notation for the specification of units. A standard expression for feet cubed per second squared (for example) would be $f^{3} s^{-2}$. By eliminating the superscript we have f3s-2. However, a compiler would interpret this as subtracting 2 from f3s. Therefore instead of using the negative sign for exponents, we replace it with the underscore. Thus feet cubed per second squared can be represented as f3s_2. Feet per second is fs_1 and feet per second squared is fs_2. Every term in the denominator has an exponent. For example ($\mathrm{r} / \mathrm{s}^{2}$) /(f*lbf) would be expressed as rs_2f_1lbf_1.

Further examples are as follows.

- trueAirspeed_fs_1 for feet per second (f/s)
- trueAirspeed_ms_1for meters per second (m/s)
- trueAirspeed_nmih_1 for knots (nautical miles per hour)

This standard defines what the variable name for airspeed is, the user defines the units being used. The suffix shall be separated from the body of the variable name by an underscore. The standard unit notations are given in Table 2, SI units and standard abbreviations are included.

Table 2 - Abbreviations used to designate units in standard variable names

Unit	Abbreviation
Time	
hour	h
second	s
minute	min
millisecond	ms
Length	
inch	inch
foot	f
meter	m
nautical mile	nmi
statute mile	smi
kilometer	km
centimeter	cm
millimeter	mm
Force	

Unit	Abbreviation
pound force	lbf
Newton	N
Mass	
gilogram force	kgf
gram	g
kilogram	kg
pound mass	lbm
slug	slug
Plane Angle	
degrees (angular)	d
radians	r
revolution	rev
Temperature	
degrees Rankine	R
degrees Centigrade	C

Unit	Abbreviation
degrees Kelvin	K
Power, energy, work, heat	
British thermal unit	btu
erg	erg
calorie	Cal
joule	Jou
horsepower	Hp
Electrical	
volt direct current	vdc
volt alternating current	vac

Unit	Abbreviation
ampere	A
cycles	cyc
watt	watt
henry	hy
farad	fd
ohm Other	
candela (luminous intensity)	cd
mole (amt. of substance)	mol

6.4 Additional Discussion

Very rarely, if ever, are all 8 components of a name used. In the case of s_rollBodyRate_rs_1 the following 5 components were used:

- prefix [s] indicating that in this formulation of the equations of motion this variable is a state,
- specific axis or reference [Roll],
- axis or reference system [body],
- core name [Rate], and
- units suffix [rs_1].

In this case "variable source domain" was omitted because s_rollBodyRate_rs_1 is a variable defined by the laws of physics and there cannot be a body rate from aerodynamics and a body rate from the moments produced by the engine. If however, the user wanted to have a multi-body simulation, logically the "variable source domain" could be used to discriminate between different elements of the body, or, perhaps more logically, an array or structure would be used to define different elements in a multi-body or flexible structure problem.

The "Of" and "WRT" were omitted because the variable is describing motion about ("Of") the CG and it is relative to ("WRT") the inertial frame of reference.

The intent is to provide clear communication when exchanging models, not to force the universal use of these variable names. s_rollBodyRate_rs_1 is intended to be a clear, brief, unambiguous name for the variable.

6.4.1 Initial Condition Convention

A helpful convention that may be used is adding IC to the end of any variable name, but before the units, to designate that the variable is an initial condition specification. This can be added to virtually any variable, conceptually creating a constant, for example:

- s_rollBodyRateIC_rs_1
- grossWeightIC_kg

6.4.2 Discarded Conventions and Reasons

One convention considered was to have a prefix for simulation outputs as well as states and controls, but at the present time this has been discarded since the outputs required vary so widely, and there are
typically an extremely large number of outputs. Practically speaking, every variable in the model including states, state derivatives and controls (inputs) could be considered an output.

Also considered was eliminating the suffix when the units were one of the standard set, but this concept was discarded since always having the units attached to the variable will help the programmer/engineer have consistent units when they are programming and reduce programming errors due to mixing of the units improperly. It also should noticeably reduce the software maintenance effort after initial development when another software engineer is trying to understand the code to make bug fixes, offer enhancements, or reuse the code.

6.4.3 Relationship with Markup Grammar, DAVE-ML

At present, this variable naming convention is intended to be realized using DAVE-ML grammar of XML (see Section 7). In DAVE-ML, the state/state derivative designation and the units are identified in separate components from the variable names. Thus, including these in a variable name encoded in DAVE-ML would be redundant. .

The best practice is to strip these components (the prefix and suffix) from the variable name when encoding to DAVE-ML, and reinsert them into the variable name if code or model data is generated from the DAVE-ML. Following this convention will have two advantages.

1) Since the DAVE-ML grammar can be used with any variables, for those variables that do not conform to the naming convention and therefore do not have state/state derivative designation or units, DAVE-ML encourages the inclusion of this information which is critical to clear documentation of a model.
2) It allows XML processors to adopt the convention of automatically striping and adding the prefix and suffix to the variable names.

6.5 Standard Variable Name Table Example

Using the conventions discussed above, a set of standard variable names has been created. These are presented in Annex A. An excerpt of Annex A is given in Table 3 for illustrative purposes.

Interpretation of the standard variable name annex is best given by example. Table 3 presents the standard variable defining the Roll Euler Angle, its axis system and positive sign convention (+ = RWD, or right wing down). Four name examples are provided.

- The short name, PHI - the short name is included to accommodate standard variable definitions in legacy compilers with name length restrictions
- One or more full names using the standard units convention - generally one full name with American convention units and one with SI units

NOTE Any suitable units may be used and no attempt is made to include all possible unites in Annex A.

- A description of the variable - when applicable the description should include the axis system in which the variable is defined
- The POSITIVE sign convention of the variable
- Minimum and maximum values of the variable, normally only specified for angles

In addition this example also illustrates the pitch and yaw Euler angles.
Since roll, pitch and yaw may also conveniently be expressed as a vector, the shaded area is the standard definition of the Euler angle vector. Again, eulerAngle_r (3) would be the standard vector using radians as the units and is fully compliant with the standard.

The standard allows use of any of the standard set of units.
Table 3 - Standard variable name table example

Symbol	Short Name	Full Variable Name	Description	Sign Convention	Min Value	Max Value
Vehicle Positions and Angles						
$\underline{\varepsilon}$	EUL(3)	$\begin{aligned} & \text { eulerAngle_d(3) } \\ & \text { eulerAngle_r(3) } \end{aligned}$	Vector of the roll, pitch, and yaw Euler angles comprised of the elements defined below. LL (locally level) frame.			
Ф	PHI	```rollEulerAngle_d rollEulerAngle_r```	Roll Euler Angle, LL frame.	RWD	$-180,-\pi$	$180, \pi$
θ	THET	pitchEulerAngle_d pitchEulerAngle_r	Pitch Euler Angle, LL frame	ANU	$-90,-\pi / 2$	90, $\pi / 2$
ψ	PSI	yawEulerAngle_d yawEulerAngle_r	Yaw Euler Angle, LL frame	ANR	$-180,-\pi$	180, π
6.6 Summary						

While it is strongly recommended that this naming convention be followed for all future variables, the real key to a standard variable name is not the name, but the definition of the name. To exchange information between two or more organizations, the most important factor is not whether a variable is named airspeed or as, but what is the precise, unambiguous definition of the variable (true, indicated, or calibrated airspeed?, etc.), including units and axis system.

Using the standard variable name simply provides a common language and set of definitions within which to facilitate transfer of the model.

The simulation community is encouraged to propose additional standard variable names. Annex C describes the web site used to support this standard. There is an appropriate URL or email address for submitting additional names or for recommending clarification of existing names.

6.7 References

Stevens, Brian L., and Lewis, Frank L., Aircraft Control and Simulation, Second Edition. ISBN 978-0-471-37145-8, 2004, New York, J. Wiley and Sons, 2003, p. 3.

7 Standard Simulation Function Table Data Format and XML Implementation of the Standard: DAVE-ML

7.1 Purpose

This section explains the data requirements which a standard function table format must be able to satisfy. It includes the content of the information contained in the table and configuration management of the data in the table. As you will see, the definition of the table format includes data for all these components.

This document also discusses conceptually how the data table should be accessed in an executable program.

The standard is implemented in XML as specified by DAVE-ML, Annex B. Annex C provides links to example programs for loading and looking up data in the XML standard.

7.2 Philosophy

Probably the most immediate benefit of the standard to the simulation discipline is one that defines formats for the interchange of tabular data. Tabular data is used almost universally for non-linear function generation of aerodynamic, engine, atmospheric, and many other model parameters. The simple interchange of such data can greatly improve efficiency in the simulation community.

Most simulation developers and users have addressed this issue locally. In many simulation communities, a family of tools has been built around existing local function table standards. Thus, the intent of this standard is not to obsolete these local standards, but rather to define a format for communication which will allow each site to develop a single format converter to and from their local format. This is an exchange standard. It is hoped that this standard will eventually be adopted for local use as well, but that is not required for the standard to succeed.

7.3 Design Objective

The design objectives of the standard data table format were first and foremost to make a data format that would include all the information about real multi-dimensional data, not just the data values. This notably is the fact that, in the general case of the independent variables for a multi-dimensional table, the independent variables have different numbers of breakpoints, different breakpoints, and different valid ranges. An equally important design objective was to allow the table to contain information on where the data points come from (provenance, via reference), and a confidence interval for the data. Confidence intervals can be used for Monte Carlo simulations and to mathematically combine two different estimates of the same parameter at the same point. Therefore, confidence statistics are extremely valuable when attempting to update a data set (however the user must be careful as not all confidence intervals are equivalent, or even meaningful). Additionally, the table has to be easy to read by the computer and the human being, and be self-documenting as much as possible.

7.4 Standard Function Table Data - An Illustrative Example

Figure 1 presents a fairly standard three-dimensional set of data as is typical of aerodynamic data from flight test or from a wind tunnel. In the example given, lift coefficient is a function of angle-of-attack, Mach number, and a control position. More generally stated, a function output (dependent variable), CLALFA is dependent on three inputs (independent variables), angleOfAttack_d, mach, and
avgElevatorDeflection_d.
Close examination of the example data given will reveal the following characteristics.

1) The number of breakpoints of the independent variables varies for each independent variable. Not only are there a different number of angle-of-attack (angleOfAttack_d) breakpoints, but also a different number of Mach number (mach) and control position (avgElevatorDeflection_d) breakpoints. This standard defines this as an ungridded table. A gridded table is one where the number of breakpoints of a specific independent variable are the same for each of the other independent variables. For example, there are the same number of Mach breakpoints for each angle of attack breakpoint.
2) The values (breakpoints) of the independent variables are different. Again, an ungridded table.
3) The valid ranges of the independent variables are different (ungridded table).
4) The above three differences are not consistent for all data. For example, in the sample table the angleOfAttack_d, breakpoints for mach $=0.6$ and mach $=0.7$ and for delta SavgElevatorDeflection_d=-5 are identical.

Figure 1 - An illustration of a 3 dimensional function table, CLALFA (angleOfAttack_d, mach, avgElevatorDeflection_d)

For function data there is other information that is of significant importance to the user, without which the data is not very useful. In general this information is as follows.

- Where did the data come from? For example what report?
- How is it defined? For example, is this at a specific altitude? What configuration is it for?
- What are the engineering units of the output (the dependent variable) and the independent variables?
- What is the sign convention of the independent and dependent variables? For example, is the control position positive trailing edge up or trailing edge down? Exactly which control surface is it?
- Who created the table? Not where the data came from, but what person decided that this was the correct data for this table?
- How has it been modified and for what reason?
- How accurate is the data estimated to be? Or, mathematically what is the confidence interval of the data?
- By what method is the data intended to be interpolated? For example, linear interpolation or bi- cubic spline interpolation?
- By what method is the data intended to be extrapolated for data with different ranges?

The standard data format has data elements that contain all of the above information. It has been implemented in XML as seven major elements and is discussed in detail in Annex B. An introduction and overview will be provided here.

Additionally, DAVE-ML also includes the ability to automate static checks of the function data to allow spot checking of the function after it has been exchanged.

7.5 DAVE-ML Major Elements (reference Annex B)

These major elements are provided in the same order as they must be in the XML files. In general, most attributes and sub-elements are optional. In fact, only the fileHeader and variableDefmajor elements are required.

The logical flow of information is such that the lower major elements refer upward to information previously defined, in general, so that information (breakpoints, data points, provenance, etc.) that is reused in more than one function does not need to be repeated.

1) fileHeader - the fileHeader contains the file provenance (who created the file and how to contact that person or team), all references and overall description about all the functions in this particular file. The provenance of each particular function refers to the fileHeader.
2) variableDef - defines the signals used (variables) to generate the functions, at a minimum, the independent variables (inputs) and the dependent variables (outputs). Additionally, it includes the definition of any intermediate variables used to generate the functions, and defines any calculations that are to be performed (defined as MathML).
3) breakpointDef - here, all the breakpoints, or independent variable data points, for gridded tables are defined. One set of breakpoints may be used by many functions. This section does not apply to ungridded tables. They contain their breakpoints within the ungriddedTableDefmajor element. There may be a provenance for the breakpoints, which again may refer to the fileHeader.
4) griddedTableDef - contains the data points of the function. These data points use the breakpoints defined in the breakpointDef major element. The provenance of each set of data points may be explicitly defined here, and may refer to documents defined in the fileHeader.
5) ungriddedTableDef - contains the breakpoints and the data points of the ungridded tables. These are specified as sets of breakpoints and data points together and do not refer to the breakPointDef major element. As in griddedTableDef, the provenance of each set of data points may be explicitly defined here, and may refer to documents defined in the fileHeader.
6) function - combines the breakpoints with the data points, and defines which independent variables are used as inputs to the functions. This element also includes definition of how the function should be interpolated and extrapolated, and is the definitive element to include provenance on the particular function (where did the data for this function come, who decided this set of data points would be used for this function, etc.). The nonlinear function definition is complete at this point.
7) checkData - contains a set of static check cases to verify the functions. It includes an optional tolerance on the outputs. If the checkData element is used, it must include check cases for all outputs in the file (it cannot check some functions and not others).

Annex B contains a detailed description and examples of the data element definitions of the DAVE-ML function table standard. Appendix A of Annex B provides detailed XML element references and descriptions.

7.6 A Simple DAVE-ML Example

The easiest way to understand the standard is through an example. Annex B contains many more examples of the DAVE-ML implementation of the standard.

A simple one dimensional aero table is provided as an example, in this case pitching moment coefficient as a function of angle of attack, Table 4 and Figure 2.

Table 4 - A simple function

angleOfAttack_d	0	18	19	20	22	23	25	27	9
cm(angleOfAttack_d)	0.1	-0.1	-0.09	-0.08	-0.05	-0.05	-0.07	-0.15	-0

Figure 2 - The $\mathrm{C}_{\mathrm{m}}(\alpha)$ function - a simple one dimensional gridded function
The DAVE-ML implementation for this function could be as follows.
CmaExample.dml
<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE DAVEfunc PUBLIC "-//NASA//DTD for Flight Dynamic Models - Functions
2.0//EN" "DAVEfunc.dtd">
<DAVEfunc>
```
<!-- =========================== -->
<!--============= File Header Components ================->
<!-- =========================== -->
<fileHeader>
```
<!-- This is an example of the file header components of the derivative of Cm as a function of angle of attack. It must remembered that all fileheader components of all functions in the file must be grouped together into one file header area.

Also note that there is not much information in this header, Mainly because it is mean to be a simple example. In reality, probably the most important information is the
author, the reference and the modification record, because these data describe where the data came from and if it has been changed (and how). See annex B for more complete examples.
```
-->
```
<author name="Bruce Hildreth" org="SAIC" email="bruce.hildreth@saic.com"/> <fileCreationDate date="2006-03-18"/>
<description>
This is made up data to use as an example of a simple gridded function. </description>
<reference refID="BLHRpt1" author="Joe Smith"
title="A Generic Aircraft Simulation Model (does not really
exist)"
accession="ISBN 1-2345-678-9" date="2004-01-01"/>
<!-- no modifications so far, so we don't need a modificationRecord yet -->
 <!-- Input variable -->
 <variableDef name="Angle of attack" varID="angleOfAttack_d" units="deg" >
 <isStdAIAA/> <!-- Indicates that this variable is a standard
 variable, which is why the author omitted
 description and sign convention
 and any other info. (it certainly could
 be included here)
 </variableDef>
 <!-- Output (function value) -->
 <variableDef name="Pitching moment coefficient due to angle of attack"
 varID="CmAlfa" units="nondimensional" sign="+ANU">
 <description>
 The derivative of total pitching moment with respect to
 angle of attack.
 </description>
</variableDef>

<breakpointDef bpID="angleOfAttack_d_bp1">
 <!-

Note that the bpID can be any name for the breakpoints. The author here chose to use a name related to the independent
```
        variable that is expected to be used to look up the function. In
        fact, if this set of breakpoints were shared by many functions
        and different independent variables would be used to look up the
        function, then the bpID of "angleOfAttack_d_BP1" would be
        misleading and a more generic name like "AOA" would probably be
        better.
    -->
    <description>
    Angle of attack breakpoint set for CmAlfa, CdAlfa, and ClAlfa
</description>
    <bpVals> <!-- Always comma separated values -->
    0, 18, 19, 20, 22, 23, 25, 27, 90
</bpVals>
</breakpointDef>
```

```
<griddedTableDef gtID="CmAlfa_Table1">
    <description>
        The derivate of Cm wrt fuselage AOA in degrees
    </description>
    <provenance>
        <author name="Jake Smith" org="AlCorp"/>
        <functionCreationDate date="2006-12-31"/>
        <documentRef refID="BLHRpt1" /> <!-- This points back to the Header,
        which provides the information
        about BLHRpt1. -->
    </provenance>
    <breakpointRefs>
    <bpRef bpID="angleOfAttack_d_bp1" />
    </breakpointRefs>
    <uncertainty effect="percentage">
    <normalPDF numSigmas="3">
            <bounds>12</bounds>
            </normalPDF>
            <!-- This means that the 3 sigma confidence is +-12% on the Data. -->
    </uncertainty>
    <dataTable> <!-- Always comma separated values -->
    0.1,-0.1,-0.09, -.08, -0.05, -0.05, -0.07, -0.15, -0.6
    </dataTable>
</griddedTableDef>
<!-- ======================== = Flo===================-->
```
```
<!--
<!-- The function definition ties together input and output variables
        to table definitions. This allows a level of abstraction such
        that the table, with it's breakpoint definitions, can be reused
        by several functions (such as left and right aileron or multiple
        thruster effect tables).
-->
<function name="Cm_alpha_func">
    <description>
        Variation of pitching moment coefficient with angle of attack (example)
    </description>
    <independentVarRef varID="angleOfAttack_d"/>
    <dependentVarRef varID="CmAlfa"/>
    <functionDefn>
        <griddedTableRef gtID="CmAlfa_Table1"/>
    </functionDefn>
</function>
<!--
    =====================
<!-- =====================
<!-- Checkcase data provides automatic verification of the model by
        specifying the tolerance in output values for a given set of
        input values. One 'staticShot' is required per input/output
        mapping; in this case for a single input, single output model,
        we have a single input signal and a single output signal in each
        test point.
-->
<checkData>
    <staticShot name="case 1">
        <checkInputs>
            <signal>
            <varID>angleOfAttack_d</varID>
            <signalValue> 0.</signalValue>
            </signal>
        </checkInputs>
        <checkOutputs>
            <signal>
            <varID>CmAlfa</varID>
            <signalValue>0.01</signalValue>
            <tol>0.00001</tol>
            </signal>
        </checkOutputs>
    </staticShot>
    <staticShot name="case 2">
        <checkInputs>
            <signal>
            <varID>angleOfAttack_d</varID>
            <signalValue> 5.</signalValue>
            </signal>
```
```
    </checkInputs>
    <checkOutputs>
        <signal>
        <varID>CmAlfa</varID>
        <signalValue>0.04444</signalValue>
        <tol>0.00001</tol>
        </signal>
    </checkOutputs>
</staticShot>
<staticShot name="case 3">
    <checkInputs>
        <signal>
        <varID>angleOfAttack_d</varID>
        <signalValue>10.</signalValue>
        </signal>
    </checkInputs>
    <checkOutputs>
            <signal>
            <varID>CmAlfa</varID>
            <signalValue>-0.01111</signalValue>
            <tol>0.00001</tol>
            </signal>
    </checkOutputs>
</staticShot>
<staticShot name="case 4">
    <checkInputs>
            <signal>
            <varID>angleOfAttack_d</varID>
            <signalValue>15.</signalValue>
            </signal>
    </checkInputs>
    <checkOutputs>
            <signal>
            <varID>CmAlfa</varID>
            <signalValue>-0.06667</signalValue>
            <tol>0.00001</tol>
            </signal>
    </checkOutputs>
</staticShot>
<staticShot name="case 5">
    <checkInputs>
            <signal>
            <varID>angleOfAttack_d</varID>
            <signalValue>20.</signalValue>
            </signal>
    </checkInputs>
    <checkOutputs>
            <signal>
            <varID>CmAlfa</varID>
            <signalValue>-0.08</signalValue>
            <tol>0.00001</tol>
            </signal>
    </checkOutputs>
</staticShot>
```
```
    <staticShot name="case 6">
    <checkInputs>
            <signal>
            <varID>angleOfAttack_d</varID>
            <signalValue>25.</signalValue>
            </signal>
        </checkInputs>
    <checkOutputs>
            <signal>
            <varID>CmAlfa</varID>
            <signalValue>-0.07</signalValue>
            <tol>0.00001</tol>
            </signal>
    </checkOutputs>
</staticShot>
<staticShot name="case 7">
    <checkInputs>
            <signal>
            <varID>angleOfAttack_d</varID>
            <signalValue>50.</signalValue>
            </signal>
        </checkInputs>
        <checkOutputs>
            <signal>
            <varID>CmAlfa</varID>
            <signalValue>-0.31429</signalValue>
            <tol>0.00001</tol>
            </signal>
        </checkOutputs>
    </staticShot>
</checkData>
</DAVEfunc>
While the above seems incredibly long for a function with only 9 data points, keep in mind it also includes many instructional comments and optional, but very important information, such as units and where the data came from (provenance). Also, a very large complex function would only be expanded by the additional data points. The definitions and provenance information included with the function would probably not change much.

```

In the minimum, the same data can be represented as shown.
```

shorter_cma_example.dml
<?xml version="1.0" encoding="UTF-8" standalone="no"?> <!DOCTYPE DAVEfunc
PUBLIC "-//NASA//DTD for Flight Dynamic Models - Functions 2.0//EN"
"DAVEfunc.dtd"> <DAVEfunc>
<fileHeader>
<author name="Bruce Hildreth" org="SAIC"/>
<fileCreationDate date="2006-03-18"/>
</fileHeader>
<variableDef name="Angle of attack" varID="angleOfAttack_d"
units=""/>
<variableDef name="CMalpha" varID="CmAlfa" units=""/>
<breakpointDef bpID="angleOfAttack_d_bp1">

```
```

        <bpVals> 0, 18, 19, 20, 22, 23, 25, 27, 90 </bpVals>
    </breakpointDef>
    <griddedTableDef gtID="CmAlfa_Table1">
        <breakpointRefs>
            <bpRef bpID="angleOfAttack_d_bp1"/>
        </breakpointRefs>
        <dataTable> 0.1,-0.1,-0.09, -.08, -0.05, -0.05, -0.07, -0.15, -0.6
    </dataTable>
</griddedTableDef>
<function name="Cm_alpha_func">
<independentVarRef varID="angleOfAttack_d"/>
<dependentVarRef varID="CmAlfa"/>
<functionDefn>
<griddedTableRef gtID="CmAlfa_Table1"/>
</functionDefn>
</function>
</DAVEfunc>

```

\subsection*{7.7 Summary}

The DAVE-ML embodiment of the standard truly enables nearly effortless transfer of simulation aerodynamics models between simulation facilities or architectures. The addition of the Math-ML allows the formulation of algebraic equations, aero or engine model coefficient buildup equations, for example, to be included as data in the model. DAVE-ML is also suitable for use of transfer of tabular functions and supporting algebraic equations for any type of data, not just simulation models.

While the above paragraphs explained the concepts implemented in DAVE-ML, Annex B is the authoritative normal for this standard. It provides much more detail and examples on how to easily build a DAVE-ML compliant simulation. Annex C provides reference to the DAVE-ML web site that includes tools to facilitate using DAVE-ML based models in you particular simulation.

\section*{8 Future Work}

The AIAA Modeling and Simulation Technical Committee plans to continue its efforts in facilitation of the exchange of simulations and models throughout the user community. Comments and suggestions on this expansion are welcomed on the simulation standards discussion group. Visit http://daveml.nasa.gov for submittal information. The following sections describe the two tasks of primary interest.

\subsection*{8.1 Time History Information}

The immediate task that is being pursued is the transfer of validation data between facilities. This is for the purpose of sending time response validation data when a model is exchanged.

The approach being taken is to adopt a flight test data standard. This has the advantage of using an existing standard and facilitating the use of flight test data to validate a simulation. Lockheed Martin has an existing internal standard that they have released for use by the community. It is implemented in hierarchal data format (HDF) and has been adopted by the JSF community and other programs. It is the Modeling and Simulation Technical Committees intent to adopt this for the transfer of simulation validation data. Some work will be required to define the data elements that are required for the validation of a simulation. This is expected to be a subset of the data elements that comprise flight test data.

\subsection*{8.2 Dynamic Element Specification}

The addition of the specification of dynamics (e.g. continuous and discrete states) is being considered to expand the scope of the standard. This expansion would allow more of the domain of a flight vehicle model (flight controls as a good example) to be exchanged in a non-proprietary, facility-neutral way.

\section*{9 Conclusion}

This is a standard for the purpose of facilitating the exchange of simulation models between users. This purpose cannot be emphasized enough. It is not meant to enforce any standard simulation architecture. DAVE-ML provides the mechanism for exchange of the modeling data and equations; the standard variables and axis systems provide a common language to facilitate effective communication. The standard is also valuable for documenting a model, since the names and axis system definitions are clearly documented for the user.

A model can be DAVE-ML compliant without using any standard names or axis systems, but the exchange of such a model between users will be more difficult, since clear definitions will have to be exchanged also.

It is the earnest desire of the authors of this standard that the user community will employ the current standard for aerodynamic models, continue to suggest improvements to the standard, and develop tools to enhance the standard. Visit http://daveml.nasa.gov for information on how to be part of this effort and/or submit change or improvement recommendations.

\section*{Annex A Standard Variable Names (Normative)}

\section*{A. 1 General}

The table in this annex is meant to contain simulation variables that are independent of the particular vehicle type being simulated. These variables are tailored towards aircraft simulation. Visit http://DaveML.nasa.gov to suggest additional variables or changes to the existing list

\section*{A. 2 Table Explanation}

Interpretation of the standard variable name table is best given by example. In general the table has 7 columns. These are described below using the rollEulerAngle as an example:
1) The symbol for that variable, \(\Phi\)
2) The short name, PHI
3) One of more full names using the standard units conventions - generally, one full name with American convention units and one with SI units.

NOTE Any suitable units may be used. In the example for rollEulerAngle both the _d for degrees and the _r for radians are given. The "Full Variable Name" column does not necessarily provide all acceptable units for each variable.
4) A description of the variable, if applicable should always specify the axis system.
5) The POSITIVE sign convention of the variable - RWD indicates that positive rollEulerAngle is right wing down
6) Minimum value, normally only specified for angles
7) Maximum values of the variable, normally only specified for angles

This example also illustrates the pitch and yaw Euler angles.
Some variables may be used to represent variables referenced to more than one axis system. In this case the axis system is specified as \(x x\) and any axis system reference (refer to the body of this standard) may be substituted for the xx. For example, YxxVelocity_fs_1 may represent:
- YEIVelocity_fs_1 for the El axis system - Earth centered Inertial (also know as geocentric inertial) axis system
- YECEFVelocity_fs_1 for the ECEF axis system - Earth centered Earth Fixed (also known as Geocentric Earth [GE] axis system, YGEVelocity_fs_1 is the same as YECEFVelocity_fs_1)
— YVOVelocity_fs_1 for the VO axis system - Vehicle carried, Orbit defined axis system
Since roll, pitch and yaw may also conveniently be expressed as a vector, the shaded area is the standard definition of the Euler angle vector. Again, eulerAngle_r[3] would be the standard vector using radians as the units and is fully compliant with the standard.
\begin{tabular}{|c|l|l|l|c|c|c|c|}
\hline Symbol & \begin{tabular}{c}
Short \\
Name
\end{tabular} & Full Variable Name & \multicolumn{1}{|c|}{ Description } & \multicolumn{1}{c|}{\begin{tabular}{c}
Sign \\
Convention
\end{tabular}} & \begin{tabular}{c}
Min \\
Value
\end{tabular} & \begin{tabular}{c}
Max \\
Value
\end{tabular} \\
\hline\(\underline{\varepsilon}\) & EUL[3] & \begin{tabular}{l}
eulerAngle_d[3] \\
eulerAngle_r[3]
\end{tabular} & \begin{tabular}{l}
Vector of the roll, pitch, and yaw Euler angles comprised of the \\
elements defined below. LL (locally level) frame.
\end{tabular} \\
\hline\(\Phi\) & PHI & \begin{tabular}{l}
rollEulerAngle_d \\
rollEulerAngle_r
\end{tabular} & \begin{tabular}{l}
Roll Euler Angle, LL \\
frame.
\end{tabular} & RWD & \(-180,-\pi\) & \(180, \pi\) \\
\hline\(\theta\) & THET & \begin{tabular}{l}
pitchEulerAngle_d \\
pitchEulerAngle_r
\end{tabular} & \begin{tabular}{l}
Pitch Euler Angle, LL \\
frame
\end{tabular} & ANU & \(-90,-\pi / 2\) & \(90, \pi / 2\) \\
\hline\(\Psi\) & PSI & yawEulerAngle_d \\
yawEulerAngle_r & \begin{tabular}{l}
Yaw Euler Angle, LL \\
frame
\end{tabular} & ANR & \(-180,-\pi\) & \(180, \pi\) \\
\hline
\end{tabular}

The variable name table below does not specify which variables are states, state derivatives, inputs or initial conditions. These specifications may be added to any appropriate variable. See the body of this standard.

\section*{A. 3 Standard Variable Name Tables}

Table A. 1 - Vehicle Positions and Angles
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Short Name & Full Variable Name & Description & Sign Convention & Intial Value & Min Value & \begin{tabular}{l}
Max \\
Value
\end{tabular} \\
\hline \(\underline{\varepsilon}\) & EUL & \[
\begin{aligned}
& \text { eulerAngle_d[3] } \\
& \text { eulerAngle_r[3] }
\end{aligned}
\] & \multicolumn{5}{|l|}{Vector of the roll, pitch, and yaw Euler angles defined below. LL (locally level) frame.} \\
\hline \(\Phi\) & PHI & rollEulerAngle_d rollEulerAngle_r & Roll Euler Angle, LL frame. & RWD & From vehicle trim & -180 & 180 \\
\hline \(\theta\) & THET & pitchEulerAngle_d pitchEulerAngle_r & Pitch Euler Angle, LL frame & ANU & From vehicle trim & -90 & 90 \\
\hline \(\psi\) & PSI & yawEulerAngle_d yawEulerAngle_r & Yaw Euler Angle, LL frame & ANR & From vehicle trim & -180 & 180 \\
\hline \(\sin \Phi\) & SPHI & rollEulerAngleSine & Sine Of Euler Roll Angle & RWD & & -1.0 & 1.0 \\
\hline \(\cos \Phi\) & CPHI & rollEulerAnglecosine & Cosine Of Euler Roll Angle & RWD & & -1.0 & 1.0 \\
\hline \(\sin \theta\) & STHT & pitchEulerAngleSine & Sine Of Euler Pitch Angle & ANU & & -1.0 & 1.0 \\
\hline \(\cos \theta\) & CTHT & pitchEulerAngleCosine & Cosine Of Euler Pitch Angle & ANU & & -1.0 & 1.0 \\
\hline \(\sin \psi\) & SPSI & yawEulerAngleSine & Sine Of Euler Yaw Angle & ANR & & -1.0 & 1.0 \\
\hline \(\cos \psi\) & CPSI & yawEulerAngleCosine & Cosine Of Euler Yaw Angle & ANR & & -1.0 & 1.0 \\
\hline \(\underline{T}_{\text {FE/B }}\) & & FEToBodyT[3,3] & \multicolumn{5}{|l|}{The FE to Body transformation matrix composed of the elements defined below} \\
\hline \(\mathrm{T}_{\text {FE/B }}(1,1)\) & T11 & FEToBodyT11 & CTHT*CPSI (FE To B) axis transformation element & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & \begin{tabular}{l}
Short \\
Name
\end{tabular} & Full Variable Name & Description & Sign Convention & Intial Value & Min Value & \begin{tabular}{l}
Max \\
Value
\end{tabular} \\
\hline \(\mathrm{T}_{\text {FE/B }}(2,1)\) & T21 & FEToBodyT21 & SPHI*STHT*CPSI - CPHI*SPSI (FE To B) axis transformation element & & & & \\
\hline \(\mathrm{T}_{\text {FE/B }}(3,1)\) & T31 & FEToBodyT31 & CPHI*STHT*CPSI + SPHI*SPSI (FE to B) axis transformation element & & & & \\
\hline \(\mathrm{T}_{\text {FE/B }}(1,2)\) & T12 & FEToBodyT12 & CTHT*SPSI (FE to B) axis transformation element & & & & \\
\hline \(\mathrm{T}_{\text {FE/B }}(2,2)\) & T22 & FEToBodyT22 & \begin{tabular}{l}
SPHI*STHT*SPSI \\
+CPHI CPSI (FE to B) axis transformation element
\end{tabular} & & & & \\
\hline \(\mathrm{T}_{\text {FE/B }}(3,2)\) & T32 & FEToBodyT32 & CPHI*STHT*SPSI - SPHI*CPSI (FE to B) axis transformation element & & & & \\
\hline \(\mathrm{T}_{\text {FE/B }}(1,3)\) & T13 & FEToBodyT13 & ```
-STHT (FE to B)
axis
transformation
element
``` & & & & \\
\hline \(\mathrm{T}_{\text {FE/B }}(2,3)\) & T23 & FEToBodyT23 & SPHI*CTHT (FE to B ) axis transformation element & & & & \\
\hline \(\mathrm{T}_{\text {FE/B }}(3,3)\) & T33 & FEToBodyT33 & \begin{tabular}{l}
CPHI*CTHT (FE \\
to B ) axis transformation element
\end{tabular} & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & \begin{tabular}{l}
Short \\
Name
\end{tabular} & Full Variable Name & Description & Sign Convention & Intial Value & Min Value & \begin{tabular}{l}
Max \\
Value
\end{tabular} \\
\hline \(V_{V}\) & GAMV & \begin{tabular}{l}
flightPathAngle_r \\
flightPathAngle_d
\end{tabular} & Flight Path Angle Above Horizon & ANU & & \[
\begin{aligned}
& -p / 2 \\
& -90
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{p} / 2 \\
& 90
\end{aligned}
\] \\
\hline \(\mathrm{Y}_{\mathrm{H}}\) & GAMH & \begin{tabular}{l}
flightPathAzimuth_r \\
flightPathAzimuth_d
\end{tabular} & Flight Path Angle In Horizon Plane, from North & CWFN & & \[
\begin{gathered}
\hline-p \\
-180
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{p} \\
180
\end{gathered}
\] \\
\hline h & ALT & \begin{tabular}{l}
altitudeMSL_f \\
altitudeMSL_m
\end{tabular} & Geometric altitude of vehicle altimeter above Mean Sea Level & UP & & & \\
\hline & XLON & \begin{tabular}{l}
longitudeWRTzzz_r \\
longitudeWRTzzz_d
\end{tabular} & Longitude of Vehicle CG with respect to the zzz reference frame & WEST & & & \\
\hline & XLAT & \begin{tabular}{l}
latitudeWRTzzz_r \\
latitudeWRTzzz_d
\end{tabular} & Latitude of Vehicle CG with respect to the zzz reference frame & NORTH & & & \\
\hline & XLONIMU & \begin{tabular}{l}
longitudeOfIMUWRTzzz_r \\
longitudeOfIMUWRTzzz_d
\end{tabular} & Longitude of Vehicle IMU with respect to the zzz reference frame. & NORTH & & & \\
\hline & XLATIMU & \begin{tabular}{l}
latitude0fIMUWRTzzz_r \\
latitudeOfIMUWRTzzz_d
\end{tabular} & Latitude of Vehicle IMU with respect to the \(z z z\) reference frame. & NORTH & & & \\
\hline \multicolumn{8}{|c|}{EXAMPLE} \\
\hline & & \begin{tabular}{l}
longitudeOfIMUWRTWGS84_d \\
latitudeOfIMUWRTWGS84_d
\end{tabular} & Longitude and latitude of the vehicle IMU in the World Grid System 1984 reference frame & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & \begin{tabular}{l}
Short \\
Name
\end{tabular} & Full Variable Name & Description & Sign Convention & Intial Value & Min Value & \begin{tabular}{l}
Max \\
Value
\end{tabular} \\
\hline & HGT_RWY & runwayHeightAboveSL_ft runwayHeightAboveSL_m & Height Of Runway w.r.t. mean Sea Level & Above & & & \\
\hline \multicolumn{3}{|r|}{\begin{tabular}{l}
General Definition \\
xxPositionOfyyyWRTzzz_f[3] \\
xxPositionOfyyyWRTzzz_m[3] \\
For Example: \\
xxPosition_f[3] \\
is the same as \\
xxPositionOfCG_f[3]
\end{tabular}} & \multicolumn{5}{|l|}{\begin{tabular}{l}
General Definition \\
Vector of positions of yyy with respect to zzz ( a user defined reference point or frame) in the \(x x\) axis system. The lengths of \(x x, y y y, z z z\) are not restricted to 2 and 3 characters respectively. \\
The axis system, xx , must always be defined. If the yyy is not defined the definition defaults to the vehicle cg. If the zzz is not defined the reference point defaults to the origin of the axis system. \\
Comprised of the three components as defined below.
\end{tabular}} \\
\hline & XCG & \begin{tabular}{l}
XxxPositionOfyyyWRTzzz_f \\
XxxPositionOfyyyWRTzzz_m \\
or \\
XxxPosition_f
\end{tabular} & \begin{tabular}{l}
\(X\) position of yyy with respect to zzz (a user defined reference point) in the \(x x\) axis system. \\
Defaults to th CG and origin of the axis system.
\end{tabular} & (yyy -zzz) & & & \\
\hline & YCG & \begin{tabular}{l}
YxxPositionOfyyyWRTzzz_f YxxPositionofyyyWRTzzz_m \\
or \\
YxxPosition_f
\end{tabular} & \begin{tabular}{l}
Y position of yyy with respect to zzz (a user defined reference point) in the \(x x\) axis system. \\
Defaults to th CG and origin of the axis system.
\end{tabular} & (yyy-zzz) & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Short Name & Full Variable Name & Description & Sign Convention & Intial Value & Min Value & \begin{tabular}{l}
Max \\
Value
\end{tabular} \\
\hline \multicolumn{3}{|r|}{bodyPositionOfPilotEyeWRTCG_f[3] bodyPositionOfPilotEyeWRTCG_f[3]} & \multicolumn{5}{|l|}{Vector of positions of the pilot's eye with respect to the CG in the body axis system. Comprised of the three components as defined below.} \\
\hline & XPLT2CG & \begin{tabular}{l}
XBodyPositionOfPilotEyeWRTCG_f \\
XBodyPositionOfPilotEyeWRTCG_f
\end{tabular} & X position of pilot eye point w.r.t. CG, in the body axis system & Eye FWD of CG & & & \\
\hline & YPLT2CG & \begin{tabular}{l}
YBodyPositionOfPilotEyeWRTCG_f \\
YBodyPositionOfPilotEyeWRTCG_f
\end{tabular} & Y position of pilot eye point w.r.t. CG, in the body axis system & Eye Right of the CG & & & \\
\hline & ZPLT2CG & \begin{tabular}{l}
ZbodyPositionOfPilotEyeWRTCG_f \\
ZbodyPositionOfPilotEyeWRTCG_f
\end{tabular} & Z position of pilot eye point w.r.t. CG, in the body axis system & Eye below CG & & & \\
\hline \multicolumn{8}{|c|}{EXAMPLE} \\
\hline \multicolumn{3}{|r|}{\begin{tabular}{l}
Runway22Position_f[3] \\
indicates position of the CG with respect to the origin of the Runway22 axis system \\
Runway22PositionOfFwdLeftMainWheelWRTTD_f[3] \\
indicates position of the forward left main wheel with respect to the touchdown point in the Runway 22 axis system \\
NOTE All are user defined
\end{tabular}} & \multicolumn{5}{|l|}{Vector of positions of the vehicle CG relative to the Runway 22 (a user defined axis system) touchdown reference point. Comprised of the three components as defined below.} \\
\hline & XCGTD & \begin{tabular}{l}
XRunway22PositionOfCGWRTTD _f \\
XRunway22PositionOfCGWRTTDD_m
\end{tabular} & CG X-position w.r.t. Runway touchdown point in the specified (Runway22) axis system. & CG Down the runway from the reference point & & & \\
\hline & YCGTD & YRunway22PositionOfCGWRTTD _f YRunway22PositionOfCGWRTTD_m & CG Y-position w.r.t. Runway touchdown point in the specified (Runway22) axis system. & CG to the right of the reference point & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & \begin{tabular}{l}
Short \\
Name
\end{tabular} & Full Variable Name & Description & Sign Convention & Intial Value & \[
\begin{gathered}
\text { Min } \\
\text { Value }
\end{gathered}
\] & \[
\begin{gathered}
\text { Max } \\
\text { Value }
\end{gathered}
\] \\
\hline & ZCGTD & \begin{tabular}{l}
ZRunway22PositionOfCGWRTTD _f \\
ZRunway22PositionOfCGWRTTD _m
\end{tabular} & CG Z-position w.r.t. Runway touchdown point in the specified (Runway22) axis system(this variable is normally negative) & CG below the TD point & & & \\
\hline & RE & smoothEarthRadius_f smoothEarthRadius_m & Radius of Earth (center to smooth surface which is mean sea level) round earth model or oblate spheroid under the aircraft. & & & & \\
\hline & RALT & heightOfCGWRTTerrain_f heightOfCGWRTTerrain _m & Height of the aircraft CG above the terrain & NSG & & & \\
\hline & HTERRAIN & heightOfTerrainWRTSurfaceReference_f heightOfTerrainWRTSurfaceReference_m & Height of the terrain under the A/C CG. It is the terrain height above the smooth surface of of the earth, regardless whether a flat, round or oblate spheroid model is used. & & & & \\
\hline
\end{tabular}

Table A. 2 - Vehicle velocities and angular rates
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & \begin{tabular}{l}
Short \\
Name
\end{tabular} & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & Max Value \\
\hline \(\underline{\omega}_{B}\) & OMB & \begin{tabular}{l}
bodyAngularRate_rs_1[3] \\
bodyAngularRate_ds_1[3]
\end{tabular} & \multicolumn{5}{|l|}{Vector of body axis angular rates comprised of the three components as defined below. Motion is always wrt the inertial frame unless otherwise specified.} \\
\hline \(\mathrm{p}_{\mathrm{B}}\) & PB &  & Vehicle roll velocity, body axis system & RWD & & & \\
\hline \(\mathrm{q}_{\mathrm{B}}\) & QB & pitchBodyRate_rs_1 pitchBodyRate_ds_1 & Vehicle pitch velocity, body axis system & ANU & & & \\
\hline \(\mathrm{r}_{\mathrm{B}}\) & RB & yawBodyRate_rs_1 yawBodyRate_ds_1 & Vehicle yaw velocity, body axis system & ANR & & & \\
\hline \(\underline{\underline{E}}\) & EULD & \[
\begin{aligned}
& \hline \text { eulerAngleRate_ds_1[3] } \\
& \text { eulerAngleRate_rs_1[3] }
\end{aligned}
\] & \multicolumn{5}{|l|}{Vector of the roll, pitch, and yaw Euler angle rates defined below. LL (locally level) axis system} \\
\hline \(\phi\) & PHID & rollEulerAngleRate_rs_1 & Euler roll rate, LL axis system & RWD & & & \\
\hline 6 & THETD & pitchEulerAngleRate_rs_1 & Euler pitch rate, LL axis system & ANU & & & \\
\hline \[
\sqrt{2}
\] & PSID & yawEulerAngleRate_rs_1 & \begin{tabular}{l}
Euler yaw rate, \\
LL axis system
\end{tabular} & ANR & & & \\
\hline \multicolumn{3}{|r|}{\begin{tabular}{l}
General Definition \\
XxxVelocity0fyyyWRTzzz_fs_1 XxxVelocityOfyyyWRTzzz_ms_1 \\
YxxVelocity0fyyyWRTzzz_fs_1 YxxVelocity0fyyyWRTzzz_ms_1 \\
ZxxVelocity0fyyyWRTzzz_fs_1 ZxxVelocityOfyyyWRTzzz_ms_1
\end{tabular}} & \multicolumn{5}{|l|}{\begin{tabular}{l}
General expression for velocities along the \(\mathrm{X}, \mathrm{Y}\) and Z axes of the xx coordinate system. yyy indicates the reference point on the vehicle and the Ofyyy may be omitted if it is the CG. zzz represents the frame that the vehicle is moving with repect to and the WRTzzz may be omitted if it is the inertial frame. \\
So XFEVelocity_fs_1 is the inertial velocity of the vehicle CG along the \(X\) axis of the FE coordinate system and is the short version of XFEVelocityOfCGWRTInetial_fs_1.
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Short Name & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & Max Value \\
\hline \(\underline{V}_{B}\) & VELB & \begin{tabular}{l}
bodyVelocityWRTWind_fs_1[3] \\
bodyVelocityWRTWind_ms_1[3] \\
can also be expressed as: \\
bodyVelocityOfCGWRTWind_fs_1[3]
\end{tabular} & \multicolumn{5}{|l|}{Vector of body axis velocities of the cg with respect to the instantaneous wind comprised of the three components as defined below.} \\
\hline \(\mathrm{U}_{\mathrm{B}}\) & \(U B\) & UBodyVelocityWRTWind_fs_1 UBodyVelocityWRTWind_ms_1 & X-velocity Body axis system. & FWD & & & \\
\hline \(\mathrm{V}_{\mathrm{B}}\) & \(V B\) & \begin{tabular}{l}
VBodyVelocityWRTWind_fs_1 \\
VBodyVelocityWRTWind_ms_1
\end{tabular} & Y-velocity Body axis system & RT & & & \\
\hline \(\mathrm{W}_{\text {B }}\) & WB & WBodyVelocityWRTWind_fs_1 WBodyVelocityWRTWind_ms_1 & Z-velocity Body axis system & DWN & & & \\
\hline \(\underline{V}_{B_{I}}\) & VELB & ```
bodyVelocity_fs_1[3]
bodyVelocity_ms_1[3]
can also be expressed as:
bodyVelocityOfCGWRTInertial_fs_1
[3]
``` & \multicolumn{5}{|l|}{Vector of body axis inertial translational velocities of the cg comprised of the three components as defined below.} \\
\hline \(\mathrm{UB}_{\mathrm{B}_{1}}\) & UBI & UBodyVelocity_fs_1 UBodyVelocity_ms_1 & X-velocity Body axis system. & FWD & & & \\
\hline \(\mathrm{V}_{\mathrm{B}_{1}}\) & VBI & \begin{tabular}{l}
VBodyVelocity_fs_1 \\
VBodyVelocity_ms_1
\end{tabular} & Y-velocity Body axis system & RT & & & \\
\hline \(\mathrm{W}_{\mathrm{B}_{1}}\) & WBI & \begin{tabular}{l}
WBodyVelocity_fs_1 \\
WBodyVelocity_ms_1
\end{tabular} & Z-velocity Body axis system & DWN & & & \\
\hline \(\underline{V}_{F E}\) & VELFE & \begin{tabular}{l}
FEVelocity_fs_1(3) \\
FEVelocity_ms_1(3)
\end{tabular} & \multicolumn{5}{|l|}{Vector of Flat Earth (FE) axis translational velocities comprised of the three components as defined below.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Short Name & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & \begin{tabular}{l}
Max \\
Value
\end{tabular} \\
\hline \(\mathrm{V}_{\mathrm{N}}\) & VNFE & \begin{tabular}{l}
NfeVelocity_fs_1 \\
NfeVelocity_ms_1
\end{tabular} & Northward Velocity Over Flat Earth (FE) axis system [flat, nonrotating earth] & NORTH & & & \\
\hline \(V_{E}\) & VEFE & \begin{tabular}{l}
EfeVelocity_fs_1 \\
EfeVelocity_ms_1
\end{tabular} & Eastward Velocity Over Flat Earth (FE) axis system [flat, nonrotating earth] & EAST & & & \\
\hline \(V_{D}\) & VDFE & \begin{tabular}{l}
DfeVelocity_fs_1 \\
DfeVelocity_ms_1
\end{tabular} & Downward Velocity Toward Earth Ctr,.(FE) axis system [flat, nonrotating earth] & DOWN & & & \\
\hline \(\underline{V}_{x x}\) & VELxx & \[
\begin{aligned}
& \text { xxVelocity_fs_1(3) } \\
& \text { xxVelocity_ms_1(3) }
\end{aligned}
\] & \multicolumn{5}{|l|}{Vector of vehicle cg inertial translational velocities in the specified \(x x\) axis system comprised of the three components as defined below.} \\
\hline \(\mathrm{V}_{\mathrm{xx}}\) & VXxx & \begin{tabular}{l}
XxxVelocity_fs_1 \\
XxxVelocity_ms_1
\end{tabular} & X component of velocity with respect to the inertial reference frame in the specified (xx) axis system & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & \begin{tabular}{l}
Short \\
Name
\end{tabular} & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & Max Value \\
\hline \(\mathrm{V}_{Y_{x x}}\) & VYxx & \begin{tabular}{l}
YxxVelocity_fs_1 \\
YxxVelocity_ms_1
\end{tabular} & Y component of velocity with respect to the inertial reference frame in the specified (xx) axis system & & & & \\
\hline \(\mathrm{V}_{\mathrm{zxx}}\) & VZxx & \begin{tabular}{l}
ZxxVelocity_fs_1 \\
ZxxVelocity_ms_1
\end{tabular} & Z component of velocity with respect to the inertial reference frame in the specified (xx) axis system & & & & \\
\hline \multicolumn{8}{|c|}{EXAMPLES} \\
\hline & & XGEVelocity_fs_1 & X inertial velocity in the geocentric earth (GE) axis system in ft/sec & & & & \\
\hline & & ZRunway22VelocityOfFwdLeftWheelW RTTD_fs_1 & \(Z\) axis velocity of the "forward left wheel" (user defined) in the "runway22" (user defined) coordinate system in f/s & Down & & & \\
\hline \(V_{T}\) & VTzzz & TotalVelocityWRTzzz_fs_1 TotalVelocityWRTzzz_ms_1 & Total Velocity with respect to the reference frame zzz & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Short Name & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & Max Value \\
\hline \(V_{G}\) & VG & \begin{tabular}{l}
TotalVelocityWRTGround_fs_1 \\
TotalVelocityWRTGround_ms_1 \\
GroundSpeed_fs_1 \\
GroundSpeed_ms_1
\end{tabular} & Vehicle velocity with respect to the ground under the vehicle cg & & & & \\
\hline \(M_{N}\) & XMACH & mach & Mach Number of the vehicle & & & & \\
\hline & & \begin{tabular}{l}
xxVelocityWRTWind_fs_1[3] \\
xxVelocityWRTWind_ms_1[3] \\
or \\
xxVelocityOfCGWRTWind_fs_1[3]
\end{tabular} & \multicolumn{5}{|l|}{Vector of translational velocities of the CG wrt the instantaneous wind in the specified (xx) axis system comprised of the three components as defined below.} \\
\hline & VXRWxx & XxxVelocityWRTWind_fs_1 XxxVelocityWRTWind_ms_1 & \begin{tabular}{l}
X Relative \\
Velocity of the CG with respect to the instantaneous wind in the \(x x\) axis system.
\end{tabular} & (CG velocity wind velocity) & & & \\
\hline & VYRWxx & YxxVelocityWRTWind_fs_1 YxxVelocityWRTWind_ms_1 & Y Relative Velocity of the CG with respect to the instantaneous wind in the \(x x\) axis system. & (CG velocity wind velocity) & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Short Name & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & Max Value \\
\hline & VZRWxx & \begin{tabular}{l}
ZxxVelocityWRTWind_fs_1 \\
ZxxVelocityWRTWind_ms_1
\end{tabular} & Z Relative Velocity of the CG with respect to the instantaneous wind in the \(x x\) axis system. & (CG velocity wind velocity) & & & \\
\hline \(\dot{h}\) & ALTD & \begin{tabular}{l}
AltitudeRate_fs_1 \\
AltitudeRate_ms_1
\end{tabular} & Geometric altitude time rate of change. & DOWN & & & \\
\hline & XLOND & \begin{tabular}{l}
longitudeRateWRTzzz_r \\
longitudeRateWRTzzz_d
\end{tabular} & \begin{tabular}{l}
Rate of change of longitude of Vehicle \\
CG with respect to the zzz reference frame.
\end{tabular} & WEST & & & \\
\hline & XLATD & \begin{tabular}{l}
latitudeRateWRTzzz_r \\
latitudeRateWRTzzz_d
\end{tabular} & \begin{tabular}{l}
Rate of change of latitude of Vehicle \\
CG with respect to the zzz reference frame.
\end{tabular} & NORTH & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & \begin{tabular}{l}
Short \\
Name
\end{tabular} & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & \begin{tabular}{l}
Max \\
Value
\end{tabular} \\
\hline & XLONDIMU & \begin{tabular}{l}
longitudeRateOfIMUWRTzzz_r \\
longitudeRateOfIMUWRTzzz_d
\end{tabular} & \begin{tabular}{l}
Rate of change of longitude of Vehicle \\
IMU with respect to the zzz reference frame.
\end{tabular} & WEST & & & \\
\hline & XLATDIMU & \begin{tabular}{l}
latitudeRateOfIMUWRTzzz_r \\
latitudeRateOfIMUWRTzzz_d
\end{tabular} & \begin{tabular}{l}
Rate of change of latitude of Vehicle \\
IMU with respect to the zzz reference frame.
\end{tabular} & NORTH & & & \\
\hline \multicolumn{8}{|c|}{EXAMPLE} \\
\hline & & \begin{tabular}{l}
longitudeRateOfIMUWRTWGS84_ds_1 \\
latitudeRateOfIMUWRTWGS84_ds_1
\end{tabular} & Rate of change of longitude and latitude of the vehicle IMU in the World Grid System 1984 reference frame & & & & \\
\hline \(\mathrm{p}_{\mathrm{s}}\) & PS & \begin{tabular}{l}
rollSARate_rs_1 \\
rollSARate_ds_1
\end{tabular} & Roll about the \(X\) axis in the SA (stability) axis system, also known as stability axis roll rate. & RWD & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|l|l|l|l|}
\hline Symbol & \begin{tabular}{c}
Short \\
Name
\end{tabular} & \multicolumn{1}{|c|}{ Full Variable Name } & \multicolumn{1}{c|}{\begin{tabular}{c}
Description \\
Convention
\end{tabular}} & \begin{tabular}{l}
Initial \\
Value
\end{tabular} & \begin{tabular}{c}
Min \\
Value
\end{tabular} & \begin{tabular}{c}
Max \\
Value
\end{tabular} \\
\hline \(\mathrm{r}_{\mathrm{s}}\) & RS & yawSARate_rs_1 \\
& yawSARate_ds_1 & \begin{tabular}{l}
Yaw about the Z \\
axis in the SA \\
(stability) axis \\
system, also \\
known as the \\
Stability Axis \\
yaw rate
\end{tabular} & ANR & & \\
\hline
\end{tabular}

Table A. 3 - Vehicle linear and angular accelerations
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & \begin{tabular}{l}
Short \\
Name
\end{tabular} & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & \begin{tabular}{l}
Max \\
Value
\end{tabular} \\
\hline \(\underline{\underline{\sigma}_{D}}\) & OMBD & \begin{tabular}{l}
bodyAngularAccel_rs_2[3] \\
bodyAngularAccel_ds_2[3]
\end{tabular} & \multicolumn{5}{|l|}{Vector of body axis angular accelerations comprised of the three components as defined below.} \\
\hline \(p_{\square}\) & PBD & \[
\begin{aligned}
& \text { rollBodyAccel_rs_2 } \\
& \text { rollBodyAccel_ds_2 }
\end{aligned}
\] & Vehicle Roll Acceleration, Body axis system & RWD & & & \\
\hline \[
\Phi
\] & QBD & \begin{tabular}{l}
pitchBodyAccel_rs_2 \\
pitchBodyAccel_ds_2
\end{tabular} & Vehicle Pitch Accel, Body axis system & ANU & & & \\
\hline \[
\overline{F_{0}}
\] & RBD & yawBodyAccel_rs_2 yawBodyAccel_ds_2 & Vehicle Yaw Acceleration, Body axis system & ANR & & & \\
\hline & & \[
\begin{aligned}
& \text { bodyAccel_fs_2[3] } \\
& \text { bodyAccel_ms_2[3] }
\end{aligned}
\] & \multicolumn{5}{|l|}{Vector of accelerations of the cg of the vehicle wrt the interital frame in the body axis system. Therefore does not include the gravity vector. Comprised of the three components as defined below.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & \begin{tabular}{l}
Short \\
Name
\end{tabular} & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & \begin{tabular}{l}
Max \\
Value
\end{tabular} \\
\hline \(\dot{U}_{B}\) & UBD & \begin{tabular}{l}
UBodyAccel_fs_2 \\
UBodyAccel_ms_2
\end{tabular} & Lonngitudinal acceleration (along the X body axis) & FWD & & & \\
\hline \(\dot{v}_{B}\) & VBD & \begin{tabular}{l}
VBodyAccel_fs_2 \\
VBodyAccel_ms_2
\end{tabular} & Right Sideward Acceleration, (along the Y Body axis) & RT & & & \\
\hline \(\dot{W}_{B}\) & WBD & \begin{tabular}{l}
WBodyAccel_fs_2 \\
WBodyAccel_ms_2
\end{tabular} & Downward Acceleration, Body axis & DOWN & & & \\
\hline \(\dot{V}_{T}\) & VTD & \begin{tabular}{l}
totalAccel_fs_2 \\
totalAccel_ms_2
\end{tabular} & Rate of change of total velocity of the CG in the inertial frame & & & & \\
\hline \[
\underline{\underline{V}}_{x x}
\] & & xxAccel_fs_2 xxAccel_ms_2 & \multicolumn{5}{|l|}{Vector of vehicle cg inertial translational accelerations in the specified (xx) axis system comprised of the three components as defined below.} \\
\hline \[
\dot{V}_{X_{x x x}}
\] & VXD & \begin{tabular}{l}
XxxAccel_fs_2 \\
XxxAccel_ms_2
\end{tabular} & Acceleration along the X axis & & & & \\
\hline \[
\dot{V}_{Y x x}
\] & VYD & \begin{tabular}{l}
YxxAccel_fs_2 \\
YxxAccel_ms_2
\end{tabular} & Acceleration along the Y axis & & & & \\
\hline \(\dot{V}_{Z X x}\) & VZD & \begin{tabular}{l}
ZxxZAccel_fs_2 \\
ZxxAccel_ms_2
\end{tabular} & Acceleration along the \(Z\) axis & & & & \\
\hline \(\underline{\underline{V}}_{F E}\) & & \begin{tabular}{l}
FEAccel_fs_2 \\
FEAccel_ms_2
\end{tabular} & \multicolumn{5}{|l|}{Vector of vehicle cg translational accelerations in the FE (Flat Earth) axis system comprised of the three components as defined below.} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & \begin{tabular}{l}
Short \\
Name
\end{tabular} & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & Max Value \\
\hline d & ALFD & angleOfAttackRate_rs_1 & Angle Of Attack Rate, Body axis & ANU & & & \\
\hline \[
\bar{\beta}
\] & BETD & angleOfSideslipRate_rs_1 & Sideslip Angle Rate & ANL & & & \\
\hline \(\sin \alpha\) & SALPH & sineAngleOfAttack & Sine Of Angle Of Attack & ANU & & -1.0 & 1.0 \\
\hline \(\cos \alpha\) & CALPH & cosineAngleOfAttack & Cosine Of Angle Of Attack & ANU & & -1.0 & 1.0 \\
\hline \(\sin \beta\) & SBETA & sineAngleOfSideslip & Sine Of Sideslip Angle & ANL & & -1.0 & 1.0 \\
\hline \(\cos \beta\) & CBETA & cosineAngleOfSideslip & Cosine Of Sideslip Angle & ANL & & -1.0 & 1.0 \\
\hline \(\mathrm{V}_{\text {cal }}\) & VCAL & calibratedAirspeed_nmih_1 & Calibrated Air Speed, knots & FWD & & & \\
\hline \(\mathrm{V}_{\mathrm{EQ}}\) & VEQ & equivalentAirspeed_nmih_1 & Equivalent Air Speed & FWD & & & \\
\hline VIND & VCAL & indicatedAirspeed_nmih_1 & Calibrated Air Speed, & FWD & & & \\
\hline \(\mathrm{V}_{\mathrm{RW}}\) & VRW & trueAirspeed_fs_1 trueAirspeed_ms_1 trueAirspeed_ nmih_1 & Vehicle Velocity relative to the local wind (true airspeed) & FWD & & & \\
\hline \(\bar{q}\) & QBAR & \begin{tabular}{l}
dynamicPressure_lbff_2 \\
dynamicPressure_Nm_2
\end{tabular} & Dynamic Pressure & NSC & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Short Name & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & Max Value \\
\hline \(\bar{q}_{\text {c }}\) & QBARC & \begin{tabular}{l}
impactPressure_lbff_2 \\
impactPressure_Nm_2
\end{tabular} & Impact Pressure & NSC & & & \\
\hline \(\rho\) & RHO & \begin{tabular}{l}
airDensity_lbmf_3 \\
airDensity_kgpm_3
\end{tabular} & Air Density, At Altitude of the vehicle & NSC & & & \\
\hline & DENALT & densityAltitude_f densityAltitude_f & Density altitude & & & & \\
\hline a & SOUND & \begin{tabular}{l}
speedOfSound_fs_2 \\
speedOfSound_ms_2
\end{tabular} & Velocity Of Sound At Altitude of the vehicle & NSC & & & \\
\hline \(\mathrm{T}_{\text {TOT }}{ }_{\text {R }}\) & TR & \begin{tabular}{l}
totalTempRatio_C \\
totalTempRatio_K
\end{tabular} & \begin{tabular}{l}
Total \\
Temperature Ratio
\end{tabular} & NSC & & & \\
\hline \(\mathrm{P}_{\text {TOT }}\) & PR & \begin{tabular}{l}
totalPressureRatio_C \\
totalPressureRatio_K
\end{tabular} & Total Pressure Ratio & NSC & & & \\
\hline \(\mathrm{T}_{\text {AMB }}\) & TAMB & ambientTemperature_C ambientTemperature_K & Ambient Temperature at altitude & NSC & & & \\
\hline \(\mathrm{P}_{\text {AMB }}\) & PAMB & ambientPressure_lbff_2 ambientPressure_Nm_2 & Ambient Pressure at altitude & NSC & & & \\
\hline \[
\mathrm{P}_{\mathrm{AMBB}_{R}}
\] & PAMBR & ambientPressureRatio & Ratio Of ambient pressure at altitude to sea level ambient pressure & NSC & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & \begin{tabular}{l}
Short \\
Name
\end{tabular} & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & Max Value \\
\hline \(\mathrm{T}_{\text {AMB }{ }_{\mathrm{R}}}\) & TAMBR & ambientTemperatureRatio & Ratio Of ambient temperature at altitude to sea level ambient temp. & NSC & & & \\
\hline \(\mathrm{T}_{\text {TOT }}\) & TTOT & \begin{tabular}{l}
totalTemp_C \\
totalTemp_K
\end{tabular} & \begin{tabular}{l}
Total \\
Temperature at altitude
\end{tabular} & NSC & & & \\
\hline \(\mathrm{P}_{\text {tot }}\) & PTOT & \begin{tabular}{l}
totalPressure_lbff_2 \\
totalPressure_Nm_2
\end{tabular} & Total Pressure at altitude & NSC & & & \\
\hline & TAMB_R & \begin{tabular}{l}
ambientTemperatureAtAlt_K \\
ambientTemperatureAtAlt_R \\
ambientTemperatureAtAlt_C
\end{tabular} & Ambient temperature, at the altitude of the CG & & & & \\
\hline & TTOT_R & \begin{tabular}{l}
totalTemperatureAtAlt_K \\
totalTemperatureAtAlt_R \\
totalTemperatureAtAlt_C
\end{tabular} & Total temperature at the altitude of the CG & & & & \\
\hline & ALT_SET & InstrumentAltimeterSetting_inchMerc ury & \begin{tabular}{l}
Cockpit \\
Altimeter setting (Kohlsman window)
\end{tabular} & 29.92 is standard day & & & \\
\hline & P_ALT & \begin{tabular}{l}
PressureAltitude_f \\
PressureAltitude_m
\end{tabular} & Pressure altitude at the CG & & & & \\
\hline & RHO_SL & seaLevelAirDensity_lbfpf3 & Air density at sea level & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & \begin{tabular}{l}
Short \\
Name
\end{tabular} & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & Max Value \\
\hline & TAMB_SL & \begin{tabular}{l}
seaLevelAmbientTemp_K \\
seaLevelAmbientTemp_R \\
seaLevelAmbientTemp_C
\end{tabular} & Ambient temperature at mean sea level & & & & \\
\hline & PAMB_SL & seaLevelAmbientPressure_lbff2 seaLevelAmbientPressure_Nm2 & Ambient pressure at sea level & & & & \\
\hline
\end{tabular}

Table A. 5 - Atmospheric disturbances and turbulence
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Short Name & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & Max Value \\
\hline & WIND_SPEED & steadyStateWindVelocity_fs_1
steadyStateWindVelocity_ms_1 & Total velocity of steady wind & & & & \\
\hline & WIND_DIRECTION & steadyStateWindDirection_d & Steady wind heading (blowing FROM true North) & Wind blowing from & & & \\
\hline \(\underline{V}_{B_{\text {Turb }}}\) & VELBT & bodyTurbulenceVelocity_fs_1[3] bodyTurbulenceVelocity_ms_1[3] & Vector of body of the three com & translational tu ents as define & ence ve low. & es co & prised \\
\hline \(u_{B_{\text {Turb }}}\) & UBTURB & UbodyTurbulenceVelocity_fs_1 UbodyTurbulenceVelocity_ms_1 & \begin{tabular}{l}
X-velocity Turb. \\
Component, \\
Body axis
\end{tabular} & FWD & & & \\
\hline \(V_{B_{\text {Turb }}}\) & VBTURB & VbodyTurbulenceVelocity_fs_1 VbodyTurbulenceVelocity_ms_1 & Y-velocity Turb. Component, Bodyaxis & RT & & & \\
\hline & WBTURB & WbodyTurbulenceVelocity_fs_1 WbodyTurbulenceVelocity_ms_1 & Z-velocity Turb. Component, Body axis & DWN & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Short Name & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & \begin{tabular}{l}
Max \\
Value
\end{tabular} \\
\hline \(\underline{V}_{W_{X X}}\) & VWxx & \begin{tabular}{l}
xxWindVelocity_fs_1S[3\} \\
xxWindVelocity_ms_1[3]
\end{tabular} & \multicolumn{5}{|l|}{Vector of wind velocities velocities in the specified (xx) axis system comprised of the three components as defined below. Only applies to earth fixed axis systems.} \\
\hline \(\mathrm{W}_{\mathrm{N}}\) & VNWxx & \begin{tabular}{l}
NxxWindVelocity_fs_1 \\
NxxWindVelocity_ms_1
\end{tabular} & North component of wind velocity in xx axis system & To the North & & & \\
\hline \(\mathrm{W}_{\mathrm{E}}\) & VEWxx & \[
\begin{aligned}
& \text { ExxWindVelocity_fs_1 } \\
& \text { YxxWindVelocity_ms_1 }
\end{aligned}
\] & East component Of wind velocity in \(x x\) axis system. & To the East & & & \\
\hline \(\mathrm{W}_{\mathrm{D}}\) & VDWxx & \begin{tabular}{l}
ExxWindVelocity_fs_1 \\
ExxWindVelocity_ms_1
\end{tabular} & \begin{tabular}{l}
Down \\
Component Of Wind Velocity in xx axis system.
\end{tabular} & To Downward & & & \\
\hline \[
W_{T_{X X}}
\] & VTWxx & xxTotalwindVelocity_fs_1 xxTotalwindVelocity_ms_1 & Total Wind Velocity, in xx axis system. & NSC & & & \\
\hline & & \begin{tabular}{l}
netWindVel_fs_1[3] \\
netWindVel_ms_1[3]
\end{tabular} & \multicolumn{5}{|l|}{Vector of the net wind velocities impinging on the vehicle. Comprised of the three components as defined below.} \\
\hline & VTWN & netWindVelFromNorth_fs_1 netWindVelFromNorth_ms_1 & \begin{tabular}{l}
Net wind velocity from North. \\
Net wind is the steady state winds plus any turbulences and shears.
\end{tabular} & From the North & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Short Name & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & \[
\begin{gathered}
\text { Max } \\
\text { Value }
\end{gathered}
\] \\
\hline & VTWE & netWindVelFromEast_fs_1 netWindVelFromEast_ms_1 & \begin{tabular}{l}
Net wind velocity from East. \\
Net wind is the steady state winds plus any turbulences and shears.
\end{tabular} & From the East & & & \\
\hline & VTWD & netWindVelFromBelow_fs_1 netWindVelFromBelow_ms_1 & \begin{tabular}{l}
Net wind velocity from below. \\
Net wind is the steady state winds plus any turbulences and shears.
\end{tabular} & From below & & & \\
\hline & & \begin{tabular}{l}
turbulence_fs_1[3] \\
turbulence_ms_1[3]
\end{tabular} & \multicolumn{5}{|l|}{Vector of the wind turbulence velocities impinging on the vehicle. Comprised of the three components as defined below.} \\
\hline & VNTURB & turbulenceFromNorth_fs_1 turbulenceFromNorth_ms_1 & North component of turbulence & From the North & & & \\
\hline & VETURB & \begin{tabular}{l}
turbulenceFromEast_fs_1 \\
turbulenceFromEast_ms_1
\end{tabular} & East component of turbulence & From the East & & & \\
\hline & VDTURB & turbulenceFromBelow_fs_1 turbulenceFromBelow_ms_1 & Vertical component of turbulence & From below & & & \\
\hline & & bodyAngularTurbulence_ds_1[3] bodyAngularTurbulence_rs_1[3] & \multicolumn{5}{|l|}{Vector of angular turbulence velocities comprised of the three components as defined below. Body axis system.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|l|l|l|l|l|}
\hline Symbol & Short Name & Full Variable Name & Description & \begin{tabular}{c}
Sign \\
Convention
\end{tabular} & \begin{tabular}{c}
Initial \\
Value
\end{tabular} & \begin{tabular}{c}
Min \\
Value
\end{tabular} & \begin{tabular}{c}
Max \\
Value
\end{tabular} \\
\hline & PTURB & \begin{tabular}{l}
rollBodyTurbulenceRate_ds_1 \\
rollBodyTurbulenceRate_rs_1
\end{tabular} & \begin{tabular}{l}
Body axis roll \\
turbulence
\end{tabular} & \begin{tabular}{c}
The turbulence \\
would move \\
the aircraft \\
right wing \\
down
\end{tabular} & & \\
\hline & QTURB & \begin{tabular}{l}
pitchBodyTurbulenceRate_ds_1 \\
pitchBodyTurbulenceRate_rs_1
\end{tabular} & \begin{tabular}{l}
Body axis pitch \\
turbulence
\end{tabular} & \begin{tabular}{l}
The turbulence \\
would move \\
the aircraft \\
nose up
\end{tabular} & & & \\
\hline & RTURB & \begin{tabular}{l}
yawBodyTurbulenceRate_ds_1 \\
yawBodyTurbulenceRate_rs_1
\end{tabular} & \begin{tabular}{l}
Body axis yaw \\
turbulence
\end{tabular} & \begin{tabular}{l}
The turbulence \\
would move \\
the aircraft \\
nose right
\end{tabular} & & & \\
\hline
\end{tabular}

Table A. 6 - Vehicle physical characteristics
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & \begin{tabular}{l}
Short \\
Name
\end{tabular} & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & \begin{tabular}{l}
Max \\
Value
\end{tabular} \\
\hline 1 & & bodyMomentOfInertia_slugf2[3,3] bodyMomentOfInertia_kgm2[3,3] & \multicolumn{5}{|l|}{Matrix of the total moments of inertia of the vehicle. This is wrt the CG and includes everything in or attached to the vehicle (stores, passengers, crew, fuel, etc.). It is comprised of the components below.} \\
\hline \(\mathrm{I}_{\text {xx }}\) & XIXX & \begin{tabular}{l}
bodyXXMomentOfInertia_slugf2 \\
bodyXXMomentOfInertia_kgm2
\end{tabular} & Vehicle Roll Moment Of Inertia about Cg, body axis system & NSC & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & \begin{tabular}{l}
Short \\
Name
\end{tabular} & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & \[
\begin{aligned}
& \text { Max } \\
& \text { Value }
\end{aligned}
\] \\
\hline & ZCGREF & \begin{tabular}{l}
ZBodyPositionOfCG_f \\
ZBodyPositionOfCG_m
\end{tabular} & C.g. Position w/r/t the waterline reference of the vehicle (usually WL 0 , see ZBodyWaterline_) & CG below the a/c waterline reference & & & \\
\hline & & \begin{tabular}{l}
bodyPositionOfCGWRTMRC_f[3] \\
bodyPositionOfCGWRTMRC_m[3]
\end{tabular} & \multicolumn{5}{|l|}{Vector of the distance from the Moment Reference center to the CG position of the vehicle in the body axis system. Comprised of the three components as defined below.} \\
\hline \(\Delta \mathrm{X}_{\mathrm{cg}}\) & DXCG & \begin{tabular}{l}
XPositionOfCGWRTMRC_f \\
XPositionOfCGWRTMRC _m
\end{tabular} & Cg Displacement From the aerodynamic force and moment reference center, + is CG fwd of the Moment Reference Center (MRC). The MRC is the reference point that the aero model forces and moments act upon the vehicle. & FWD & & & \\
\hline \(\Delta \mathrm{Y}_{\mathrm{cg}}\) & DYCG & YPositionOfCGWRTMRC _f YPositionOfCGWRTMRC _m & Cg Displacement From the aerodynamic force and moment reference center, + is CG to the right of the ARC & RT & & & \\
\hline \(\Delta \mathrm{Z}_{\mathrm{cg}}\) & DZCG & ZPositionOfCGWRTMRC_f ZPositionOfCGWRTMRC_m & Cg Displacement From the aerodynamic force and moment reference center, + is CG below the the ARC & DWN & & & \\
\hline & & \begin{tabular}{l}
bodyPositionOfMRC_f[3] \\
bodyPositionOfMRC_m[3]
\end{tabular} & \multicolumn{5}{|l|}{Vector of the location of the moment reference center (MRC) of the vehicle in the body axis system. Comprised of the three components as defined below.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & \begin{tabular}{l}
Short \\
Name
\end{tabular} & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & \begin{tabular}{l}
Max \\
Value
\end{tabular} \\
\hline & XMRC & \begin{tabular}{l}
XBodyPositionOfMRC_f \\
XBodyPositionOfMRC_m
\end{tabular} & X MRC Position w.r.t L.e. Of the mean aerodynamic chord & MRC AFT of LEMAC & & & \\
\hline & YMRC & \[
\begin{aligned}
& \text { YBodyPositionOfMRC_f } \\
& \text { YBodyPositionOfMRC_m }
\end{aligned}
\] & Y MRC Position w.r.t. the centerline of the vehicle & MRC Right of the \(\mathrm{a} / \mathrm{c}\) centerline & & & \\
\hline & ZMRC & \[
\begin{aligned}
& \hline \text { ZBodyPositionOfMRC_f } \\
& \text { ZBodyPositionOfMRC_m }
\end{aligned}
\] & Z MRC Position w.r.t. the waterline reference of the vehicle (usually WL 0, see ZBodyWaterlinePositio n_) & MRC below the a/c waterline reference & & & \\
\hline & ZWL & ZBodyWaterlinePosition_f ZBodyWaterlinePosition_m & The waterline (vertical) reference position on the \(\mathrm{a} / \mathrm{c}\) body. This is a constant used to locate the vertical cg and MRC postion to the vehicle. Waterline reference position is normally 0 but does not have to be. & NSC & & & \\
\hline M & XMASS & totalMass_slug totalMass_kg & Total mass of vehicle (including fuel, crew, cargo, stores, passengers, etc.) & NSC & & & \\
\hline W & WEIGHT & grossWeight_lbf grossWeight_N & Vehicle gross weight (mass*gravity), including all fuel, occupants, stores, etc. & NSC & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & \begin{tabular}{l}
Short \\
Name
\end{tabular} & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & \begin{tabular}{l}
Max \\
Value
\end{tabular} \\
\hline A & AREA & \begin{tabular}{l}
referenceWingArea_f2 \\
referenceWingArea_m2
\end{tabular} & Reference wing area & NSC & & & \\
\hline b & SPAN & referenceWingSpan_f referenceWingSpan_m & Reference wing span & NSC & & & \\
\hline c & CHORD & \begin{tabular}{l}
referenceWingChord_f \\
referenceWingChord_m
\end{tabular} & Mean aerodynamic chord (reference wing chord) & NSC & & & \\
\hline & & engineMomentOfInertia_slugf2 engineMomentOfInertia_kgm2 & \multicolumn{5}{|l|}{Matrix of the moments of inertia of the rotating engine, for an engine with a propeller, includes the propeller and drive train. This convention is for rotation of the engine about the X axis. For a propeller driven aircraft it is for rotaton of the propeller about the X axis. For multi-engine vehicles is for one engine. It is comprised of the components below.} \\
\hline IExx & IEXX & engineXXMomentOfInertia_slugf2 engineXXMomentOfInertia_kgm2 & \begin{tabular}{l}
Moment of inertia about the X-axis Of Rotating Eng, for an engine with a propeller, includes the propeller. \\
This is w.r.t. the rotational axis of the engine
\end{tabular} & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & \begin{tabular}{l}
Short \\
Name
\end{tabular} & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & Max Value \\
\hline IEyy & IEYY & engineYYMomentOfInertia_slugf2 engineYYMomentOfInertia_kgm2 & \begin{tabular}{l}
Moment of inertia about the Y -axis Of Rotating Eng, for an engine with a propeller, includes the propeller. \\
This is w.r.t. the rotational axis of the engine
\end{tabular} & & & & \\
\hline \(\mathrm{I}_{\text {Ezz }}\) & IEZZ & engineZZMomentOfInertia_slugf2 engineZZMomentOfInertia_kgm2 & \begin{tabular}{l}
Moment of inertia about the Z-axis Of Rotating Eng, for an engine with a propeller, includes the propeller. \\
This is w.r.t. the rotational axis of the engine
\end{tabular} & & & & \\
\hline IExz & IEXZ & engineXZProductOfInertia_slugf2 engineXZProductOfInertia_kgm2 & \begin{tabular}{l}
Product of inertia about the XZ-axis Of Rotating Eng, for an engine with the propeller, includes the propeller \\
This is w.r.t. the rotational axis of the engine
\end{tabular} & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Short Name & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & Max Value \\
\hline \(\mathrm{I}_{\text {EXY }}\) & IEXY & ```
engineXYProductOfInertia_slugf2
engineXYProductOfInertia_kgm2
(engine_xy_product_of_inertia_s
lugf2)
``` & \begin{tabular}{l}
Product of inertia about the XY -axis Of Rotating Eng, for an engine with the propeller, includes the propeller \\
This is w.r.t. the rotational axis of the engine
\end{tabular} & & & & \\
\hline IEyz & IEYZ & engineYZProductOfInertia_slugf2 engineYZProductOfInertia_kgm2 (engine_yz_product_of_inertia_s lugf2) & \begin{tabular}{l}
Product of inertia about the \(Y Z\)-axis Of Rotating Eng, for an engine with the propeller, includes the propeller \\
This is w.r.t. the rotational axis of the engine
\end{tabular} & & & & \\
\hline & & \begin{tabular}{l}
fuelInTank_lbm[number of fuel tanks] \\
fuelInTank_kg[number of fuel tanks]
\end{tabular} & Vector of fuel weight by tank. Each vehicle tank is normally numbered and the vector should be ordered according to fuel tank number. In the absence of tank numbering the convention of port to starboard, upper to lower, then front to rear should be used. & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & \begin{tabular}{l}
Short \\
Name
\end{tabular} & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & Max Value \\
\hline & & ```
fuelTankCentroid_f[number of
fuel tanks,3]
fuelTankCentroid_m[number of
fuel tanks,3]
``` & Matrix used to locate the centoids of the fuel tanks. Each vehicle tank is normally numbered and the matrix should be ordered according to fuel tank number. The second component is the \(x, y\) and \(z\) moment arms from the moment reference center to the tank centroid in the body axis. In the absence of tank numbering the convention of port to starboard, upper to lower, then front to rear should be used. & Tank centroid behind, right, and below the moment reference center. & & & \\
\hline
\end{tabular}

Table A. 7 — Vehicle control position
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & \begin{tabular}{l}
Short \\
Name
\end{tabular} & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & Max Value \\
\hline & & pilotLongControlPos_d pilotLongControlPos_r & Longitudinal control position of the pilot. & AFT & & & \\
\hline & & ```
pilotLatControlPos_d
pilotLongControlPos_r
``` & Lateral control position of the pilot. & RT & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Short Name & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & Max Value \\
\hline & & pilotPedalControlPos_d pilotPedalControlPos_r & Net Directional control position of the pilot. Normally, Right pedal - left pedal. & Pedal in or clockwise twist of a sidestick & & & \\
\hline & & \begin{tabular}{l}
pilotRightPedalControlPos_d \\
pilotRightPedalControlPos_r
\end{tabular} & Right Directional control position of the pilot. & Pedal in. & & & \\
\hline & & \begin{tabular}{l}
pilotLeftPedalControlPos_d \\
pilotLeftPedalControlPos_r
\end{tabular} & Left Directional control position of the pilot. & Pedal in. & & & \\
\hline & & pilotCollectiveControlPos_d pilotCollectiveControlPos_r & Pilot collective control position. & UP & & & \\
\hline & & \begin{tabular}{l}
pilotAvgThrottleControlPos_d \\
pilotAvgThrottleControlPos_r
\end{tabular} & Average pilot throttle control position. & FWD & & & \\
\hline & & ```
pilotThrottleControlPos_d [number
of engines]
pilotThrottleControlPos_r [number
of engines]
``` & Individual pilot throttle control positions. Order is outboard port (left) to outboard starboard. & FWD & & & \\
\hline & & copilotLongControlPos_d copilotLongControlPos_r & Longitundal control position of the copilot. & AFT & & & \\
\hline & & ```
copilotLatControlPos_d
copilotLongControlPos_r
``` & Lateral control position of the copilot. & RT & & & \\
\hline & & copilotPedalControlPos_d copilotPedalControlPos_r & Net Directional control position of the copilot. Nornally, Right pedal - left pedal. & Pedal in or clockwise twist of a sidestick. & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & \begin{tabular}{l}
Short \\
Name
\end{tabular} & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & Max Value \\
\hline & & copilotRightPedalControlPos_d copilotRightPedalControlPos_r & Right Directional control position of the copilot. & Pedal in. & & & \\
\hline & & copilotLeftPedalControlPos_d copilotLeftPedalControlPos_r & Left Directional control position of the copilot. & Pedal in. & & & \\
\hline & & copilotCollectiveControlPos_d copilotCollectiveControlPos_r & Copilot collective control position. & UP & & & \\
\hline & & copilotAvgThrottleControlPos_d copilotAvgThrottleControlPos_r & Average copilot throttle control position. & FWD & & & \\
\hline & & \begin{tabular}{l}
copilotThrottleControlPos_d [number of engines] \\
copilotThrottleControlPos_r [number of engines]
\end{tabular} & Individual copilot throttle control positions. Order is outboard port (left) to outboard starboard. & FWD & & & \\
\hline & & avgThrottleControlPos_d avgThrottleControlPos_r & Average pilot and copilot throttle control position. & FWD & & & \\
\hline & & \begin{tabular}{l}
throttleControlPos_d[number of engines] \\
throttleControlPos_r[number of engines]
\end{tabular} & Individual throttle control position (pilot and copilot average). Order is outboard port (left) to outboard starboard. & FWD & & & \\
\hline & & avgPropControlPos_d avgPropControlPos_r & Average pilot and copilot propeller blade pitch control position. & FWD & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & \begin{tabular}{l}
Short \\
Name
\end{tabular} & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & Max Value \\
\hline & & avgLeadingEdgeFlapDeflection_d & Leading edge flap/slat deflection. Average for all deflected leading edge flap/slat surfaces. & LED & & & \\
\hline & & differentialLeadingEdgeFlapDeflecti on_d & Measure of roll control due to leading edge flap deflection differences in vehicles with multiple control surfaces, usually (left deflections-right deflections) & RWD control & & & \\
\hline & & spoilerDeflection[number of spoiler control surfaces] & Vector of spoiler control positions, one for each surface deflected. Order is outboard port (left) to outboard starboard. & TEU & & & \\
\hline & & avgSpoilerDeflection_d & Spoiler deflection. Average for all deflected spoilers & TEU & & & \\
\hline & & differentialSpoilerDeflection_d & Measure of roll control due to spoiler deflection differences in vehicles with multiple control surfaces, usually (right deflections-left deflections) & RWD control & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Short Name & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & \begin{tabular}{l}
Max \\
Value
\end{tabular} \\
\hline & & aileronDeflection[number of aileron control surfaces] & Vector of aileron control positions, one for each surface deflected. Order is outboard port (left) to outboard starboard. & TEU & & & \\
\hline & & avgAileronDeflection & Differential aileron deflection, right-left & Right aileron TEU & & & \\
\hline & & rudderDeflection_d[number of rudder control surfaces] & Vector of rudder control positions, one for each surface deflected. Order is outboard port (left) to outboard starboard. & TEL & & & \\
\hline & & avgRudderDeflection_d & Average rudder deflection & TEL & & & \\
\hline & & differentialRudderDeflection_d & Measure of yaw control due to rudder deflection differences in vehicles with multiple control surfaces, usually (right deflections-left deflections) & & & & \\
\hline & & rudderTabDeflection_d[number of rudder tab control surfaces] & Vector of rudder tab control positions, one for each surface deflected. Order is outboard port (left) to outboard starboard. & TEL & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Short Name & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & \begin{tabular}{l}
Max \\
Value
\end{tabular} \\
\hline & & avgRudderTabDeflection_d & Average rudder tab deflection & TEL & & & \\
\hline & & differentialRudderTabDeflection_d & Measure of yaw control due to rudder tab deflection differences in vehicles with multiple control surfaces, usually ( right deflections-left deflections) & & & & \\
\hline & & elevatorDeflection_d[number of elevator control surfaces] & Vector of elevator (or stabilizer/stabilator) control positions, one for each surface deflected. Order is outboard port (left) to outboard starboard. & TEU & & & \\
\hline & & avgElevatorDeflection_d & Average elevator (or stabilizer/stabilator) deflection & TEU & & & \\
\hline & & differentialElevatorDeflection_d & Measure of roll control due to elevator (or stabilizer/stabilator) deflection differences in vehicles with multiple control surfaces, usually (right deflections-left deflections) & Right control TEU & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & \begin{tabular}{l}
Short \\
Name
\end{tabular} & Full Variable Name & Description & Sign Convention & Initial Value & \[
\begin{gathered}
\text { Min } \\
\text { Value }
\end{gathered}
\] & \[
\begin{gathered}
\text { Max } \\
\text { Value }
\end{gathered}
\] \\
\hline & & elevatorTabDeflection_d[number of elevator tab control surfaces] & Vector of elevator (or stabilizer/stabilator) tab control positions, one for each surface deflected. Order is outboard port (left) to outboard starboard. & TEU & & & \\
\hline & & avgElevatorTabDeflection_d & Average elevator (or stabilizer/stabilator) tab deflection & TEU & & & \\
\hline & & differentialElevatorTabDeflection_d & Measure of roll control due to elevator (or stabilizer/stabilator) tab deflection differences in vehicles with multiple control surfaces, usually (right deflections-left deflections) & Right control TEU & & & \\
\hline & & canardDeflection_d[number of canard control surfaces] & Vector of canard control positions, one for each surface. Order is outboard port (left) to outboard starboard. & TED & & & \\
\hline & & avgCanardDeflection_d & Average canard deflection & TED & & & \\
\hline  & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & \begin{tabular}{l}
Short \\
Name
\end{tabular} & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & \begin{tabular}{l}
Max \\
Value
\end{tabular} \\
\hline & & differentialCanardDeflection_d & Measure of roll control due to canard deflection differences in vehicles with multiple control surfaces, usually (right deflections-left deflections) & Right control TED & & & \\
\hline & & canardTabDeflection_d[number of canard tab control surfaces] & Vector of canard tab control positions, one for each surface. Order is outboard port (left) to outboard starboard. & TED & & & \\
\hline & & avgCanardTabDeflection_d & Average canard tab deflection & TED & & & \\
\hline & & differentialCanardTabDeflection_d & Measure of roll control due to canard tab deflection differences in vehicles with multiple control surfaces, usually (right deflections-left deflections) & Right control TED & & & \\
\hline & & speedbrakeDeflection_d & Speedbrake deflection & Extended & & & \\
\hline  & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Short Name & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & Max Value \\
\hline & & landingGearPosition[number of landing gear struts] & Vector of landing gear positions, one for each strut. Order is outboard port (left) to outboard starboard. & \[
\begin{aligned}
& 0=\text { up and } \\
& \text { locked } \\
& \text { 1= full } \\
& \text { extension } \\
& \text { with no } \\
& \text { weight on } \\
& \text { wheels }
\end{aligned}
\] & & & \\
\hline & & ```
landingGearWeightOnWheels_lbf
[number of landing gear struts]
landingGearWeightOnWheels_kg
{number of landing gear struts]
``` & Vector of landing gear weight on wheels, one for each strut. Order is outboard port (left) to outboard starboard. & & & & \\
\hline & & landingGearWheelSpeed_rs_1[number of landing gear struts, number of trucks, number of wheels per truck] & Array of landing gear wheel speeds by strut, one for each strut. Order of struts is outboard port (left) strut, to outboard starboard. Order of trucks is front to rear. Order of wheels on each truck is port to starboard. & & & & \\
\hline
\end{tabular}

Table A. 8 - Vehicle aerodynamic characteristics
\(\left.\begin{array}{|c|c|c|c|c|c|c|}\hline \text { Symbol } & \begin{array}{c}\text { Short } \\ \text { Name }\end{array} & \text { Full Variable Name } & \text { Description } & \begin{array}{c}\text { Sign } \\ \text { Convention }\end{array} & \begin{array}{c}\text { Initial } \\ \text { Value }\end{array} & \begin{array}{c}\text { Min } \\ \text { Value }\end{array}\end{array} \begin{array}{c}\text { Max } \\ \text { Value }\end{array}\right\}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & \begin{tabular}{l}
Short \\
Name
\end{tabular} & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & \begin{tabular}{l}
Max \\
Value
\end{tabular} \\
\hline \(\mathrm{F}_{\text {AY }}\) & FAY & aeroYBodyForce_lbf aeroYBodyForce_N & Total Y-body Force due to aerodynamic loads, includes stores (Body axis) & RT & & & \\
\hline \(\mathrm{F}_{\text {AZ }}\) & FAZ & aeroZBodyForce_lbf aeroZBodyForce_N & Total Z-body Force due to aerodynamic loads, includes stores (Body axis) & DOWN & & & \\
\hline & & thrustBodyForce_lbf[3] thrustBodyForce_N[3] & \multicolumn{5}{|l|}{Vector of total net propulsion system forces in the body axis system (includes installion losses, inlet efficieny and propeller efficiency). Comprised of the three components as defined below.} \\
\hline \(\mathrm{F}_{\text {EX }}\) & FEX & thrustXBodyForce_lbf thrustXBodyForce_N & Total net engine thrust Force, X-body axis & FWD & & & \\
\hline \(\mathrm{F}_{\mathrm{EY}}\) & FEY & thrustYBodyForce_lbf thrustYBodyForce_N & Total net engine thrust Force, Y-body axis & RT & & & \\
\hline \(\mathrm{F}_{\mathrm{Ez}}\) & FEZ & thrustZBodyForce_lbf thrustZBodyForce_N & Total net engine thrust Force, Z-body axis & DOWN & & & \\
\hline & & gearBodyForce_lbf[3] gearBodyForce_N[3] & \multicolumn{5}{|l|}{\begin{tabular}{l}
Vector of total landing gear ground reaction forces in the body axis system. Does NOT include aerodynamic forces on the landing gear which are included in aeroBodyForce defined above. \\
Comprised of the three components as defined below.
\end{tabular}} \\
\hline FGX & FGX & gearXBodyForce_lbf gearXBodyForce_N & Total landing gear ground reaction force, X-body axis & FWD & & & \\
\hline \(\mathrm{F}_{G Y}\) & FGY & \begin{tabular}{l}
gearYBodyForce_lbf \\
gearYBodyForce_N
\end{tabular} & Total landing gear ground reaction force, Y-body axis & RT & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & \begin{tabular}{l}
Short \\
Name
\end{tabular} & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & Max Value \\
\hline \(\mathrm{F}_{\mathrm{Gz}}\) & FGZ & gearZBodyForce_lbf gearZBodyForce_N & Total landing gear ground reaction force, Z-body axis & DOWN & & & \\
\hline & & \[
\begin{aligned}
& \text { totalBodyForce_lbf[3] } \\
& \text { totalBodyForce_N[3] }
\end{aligned}
\] & \multicolumn{5}{|l|}{Vector of total forces in the body axis system. Includes all forces exerted upon the aircraft. Comprised of the three components as defined below.} \\
\hline \(\mathrm{F}_{\text {хтот }}\) & FX & totalXBodyForce_lbf totalXBodyForce_N & Total Forces On a/c, Xbody axis & FWD & & & \\
\hline \(\mathrm{F}_{\text {утот }}\) & FY & totalYBodyForce_lbf totalYBodyForce_N & Total Forces On a/c, Ybody axis & RT & & & \\
\hline \(\mathrm{F}_{\text {zTOT }}\) & FZ & \begin{tabular}{l}
totalZBodyForce_lbf \\
totalZBodyForce_N
\end{tabular} & Total Forces On a/c, Zbody axis & DOWN & & & \\
\hline & & aeroBodyMomentCoefficient[3] & \multicolumn{5}{|l|}{Vector of total aerodynamic moment coefficients in the body axis system, including stores. Comprised of the three components as defined below.} \\
\hline \(C_{1}\) & CLL & aeroRollBodyMomentCoefficient & Total Aerodynamic Rolling Moment Coefficient including stores. Moment about the X-body axis & RWD & & & \\
\hline \(\mathrm{C}_{\mathrm{m}}\) & CLM & aeroPitchBodyMomentCoefficient & Total Aerodynamic Pitching Moment Coefficient, including stores. Moment about the Y -body axis & ANU & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & \begin{tabular}{l}
Short \\
Name
\end{tabular} & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & \begin{tabular}{l}
Max \\
Value
\end{tabular} \\
\hline \(\mathrm{C}_{\mathrm{n}}\) & CLN & aeroYawBodyMomentCoefficient & Total Aerodynamic yawing Moment Coefficient, including stores. Moment about the Z-body axis & ANR & & & \\
\hline & & ```
aeroBodyMoment_flbf[3]
aeroBodyMoment_Nm[3]
``` & \multicolumn{5}{|l|}{Vector of total aerodynamic moments in the body axis system, including stores. Referenced to the moment reference center. Comprised of the three components as defined below.} \\
\hline \(\mathrm{L}_{\text {A }}\) & TAL & aeroRollBodyMoment_flbf aeroRollBodyMoment_Nm & Total Aerodynamic Rolling moment (including attached stores), about the X body axis & RWD & & & \\
\hline \(\mathrm{M}_{\text {A }}\) & TAM & aeroPitchBodyMoment_flbf aeroPitchBodyMoment_Nm & Total Aerodynamic pitching moment (including attached stores), about the Y body axis & ANU & & & \\
\hline \(\mathrm{N}_{\text {A }}\) & TAN & aeroYawBodyMoment_flbf aeroYawBodyMoment_Nm & Total Aerodynamic yawing moment (including attached stores), about the Zbody axis & ANR & & & \\
\hline & & \begin{tabular}{l}
thrustBodyMoment_flbf[3] \\
thrustBodyMoment_Nm[3]
\end{tabular} & \multicolumn{5}{|l|}{Vector of total net propulsion system moments in the body axis system (includes installation losses, inlet efficiency and propeller efficiency). Referenced to the moment reference center. Comprised of the three components as defined below.} \\
\hline \(\mathrm{L}_{\mathrm{E}}\) & TEL & thrustRollBodyMoment_flbf thrustRollBodyMoment_Nm & Total Engine Rolling Moment, about the Xbody axis & RWD & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & \begin{tabular}{l}
Short \\
Name
\end{tabular} & Full Variable Name & Description & Sign Convention & Initial Value & Min Value & Max Value \\
\hline ME & TEM & ```
thrustPitchBodyMoment_flbf
thrustPitchBodyMoment_Nm
[thrust_body_pitch_moment_flbf]
``` & Total Engine pitching Moment, about the Y body axis & ANU & & & \\
\hline \(\mathrm{NE}_{\mathrm{E}}\) & TEN & thrustYawBodyMoment_flbf thrustYawBodyMoment_Nm & Total Engine yawing Moment, about the Xbody axis & ANR & & & \\
\hline & & \begin{tabular}{l}
landingGearBodyMoment_flbf[3] \\
landingGearBodyMoment_Nm[3]
\end{tabular} & \multicolumn{5}{|l|}{Vector of total landing gear ground reaction moments in the body axis system. Referenced to the moment reference center. Does NOT include aerodynamic moments on the landing gear which are included in aeroBodyMoment defined above. Comprised of the three components as defined below.} \\
\hline Lg & TGL & landingGearRollBodyMoment_flbf landingGearRollBodyMoment_Nm & Total Landing Gear Rolling Moment, about the X -body axis & RWD & & & \\
\hline \(M_{G}\) & TGM & \begin{tabular}{l}
landingGearPitchBodyMoment_flbf \\
landingGearPitchBodyMoment_Nm
\end{tabular} & Total Landing gear Pitch Moment, about the Y -body axis & ANU & & & \\
\hline \(N_{G}\) & TGN & landingGearYawBodyMoment_flbf landingGearYawBodyMoment_Nm & Total Landing Gear Yawing Moment, about the Z-body axis & ANR & & & \\
\hline & & \begin{tabular}{l}
totalBodyMoment_flbf[3] \\
totalBodyMoment_Nm[3]
\end{tabular} & \multicolumn{5}{|l|}{Vector of total moments in the body axis system. Referenced to the moment reference center. Includes all moments exerted upon the aircraft. Comprised of the three components as defined below.} \\
\hline \(L_{\text {тот }}\) & TTL & totalRollBodýMoment_flbf totalRollBodyMoment_Nm & Total Rolling Moment, about the X-body axis & RWD & & & \\
\hline & & totalPitchBodyMoment_flbf totalPitchBodyMoment_Nm & Total Pitching Moment, about the Y -body axis & ANU & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & \begin{tabular}{c}
Short \\
Name
\end{tabular} & \multicolumn{1}{|c|}{ Full Variable Name } & Description & \begin{tabular}{c}
Sign \\
Convention
\end{tabular} & \begin{tabular}{c}
Initial \\
Value
\end{tabular} & \begin{tabular}{c}
Min \\
Value
\end{tabular} & \begin{tabular}{c}
Max \\
Value
\end{tabular} \\
\hline NTOT & TTN & \begin{tabular}{l}
totalYawBodyMoment_flbf \\
totalYawBodyMoment_Nms
\end{tabular} & \begin{tabular}{l}
Total Yawing Moment, \\
about the Z-body axis
\end{tabular} & ANR & & & \\
\hline
\end{tabular}

Table A. 9 - Simulation control parameters

\section*{Annex B Dynamics Aerospace Vehicle Exchange Markup Language (DAVE-ML) Reference (Normative)}

For the latest update to the DAVE-ML Reference document, please see http://daveml.nasa.gov.

\section*{Annex C DAVE-ML Website (Informative)}

The "official" DAVE-ML site is http://daveml.nasa.gov/. This link contains all DAV-ML documentation and links and information on DAVE-ML tools and applications. Additional information is available at http://www.aiaa.org/
```

