
and observable for each k ,  k = 1,2,. . . , and if Ak + A,  
r k  + I?, c k  + C for some constant matrices A, r, and 
C as k -+ 03, with the steady-state system (A, I?, C )  being 
both complete@ controllable and observable, then the 
covariance of the error term Eko+l given in (7) tends to 
zero exponential@ as I + 03. 

This theorem can be easily verified by elementary 
limit arguments, but is very tedious in the 
mathematical expressions. Hence, we omit the details 
here. 

Finally, we remark that in case more than one 
single bit of data are missing, there will be infinitely 
many cases to be considered and it is impossible 
to discuss them very precisely. Besides, it is most 
unlikely that we can d o  (sub)optimal filtering under the 
condition that too much data information have been 
missed. Hence, we do not go any further beyond the 
scope of our investigation of the problem in this short 
note. 
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Fallacies in Computational Testing of Matrix Positive 
DefinitenesdSemidefinit eness 

Rounding out three prior critical comnents on 
pervasive misstatements of tests for matrix positive 

def in i teness/semide6ni te~~,  this work reveals yet other aspects 
where common fallacies have arisen in this critical area and this 

assertion is demonstated via a concrete yet transparently simple 
original counterexample. A corrected theoretical formulation as 
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well as a practical computational implementation for a proper 
version of a test of this property is also offered here. 

I. INTRODUCTION 

Some prevalent misconceptions on how to 
test matrices for positive semidefiniteness (both 
theoretically and computationally) were reviewed in 
111. Although the following sodesignated principal 
minor test for symmetric matrices being that “a matrix 
is positive semidefinite if and only if its determinant 
and the determinants of all its principal minors are 
nonnegative” is a familiar criterion, it is invalid (as 
discussed in [l]). As indicated in [l], there are already 
ample transparent counterexamples (as in [2], [3]) that 
demonstrate that just considering principal minors to 
confirm positive semidefiniteness does not suffice. 
Several engineering applications are described in 
[l,  1st paragraph of column 2, p. 5041. Moreover, in 
recent investigations of observability in 3dimensional 
“bearings-only” or “angle-only” applications [4, p. 2011, 
as a precursor to the valid use of an extended Kalman 
filter for target tracking, the prevalent computational 
test of “nonlinear observability” essentially reduced 
to a check on matrix positive semidefiniteness, thus 
providing prior conclusions which may now be 
suspect. 

An area of caution is that several prominent 
textbooks have stumbled into the same analytic pitfall 
of interpreting the test for positive semidefiniteness 
in too strong an  analogy with the valid principal 
minor test for positive definiteness (also referred to 
as “Sylvester’s criterion”). Other recent, otherwise 
mathematically rigorous, textbooks [5, Theorem 1.4.2, 
p. 14; 6, Note 11.2, p. 4681 have also fallen into this 
same trap. For positive semidefiniteness, all 2” - 1 
possible subminors ([3]) and not just the leading 
principal minors need to be considered in order to 
have a valid test that is both necessary and suflcient. 
In [l] for balance, several textbooks were identified 
that have a correct statement of the test for positive 
semidefiniteness. However, as discussed in [l], for 
practical problems of realistically higher dimensions, 
the evaluation of multiple minors or determinants 
as offered in these correct textbooks is not a 
computationally efficient approach for determining 
whether a matrix is positive definite, negative definite, 
semidefinite, or indefinite. A preferred approach is to 
make use of the singular value decomposition (SVD) 
in making such a determination, as explained in [l]. 
Since SVD has historically been observed to be the 
only computationally reliable method for establishing 
the rank of a matrix, the refinement of SVD, known as 
Aasen’s method, which exploits underlying symmetry of 
the matrices (and only requires on the order of n3/6 
operations, where n is the dimension of the square 
matrix under test) is the currently available test of 
least computational burden for numerically performing 
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these types of definiteness determinations, as discussed 
in 171. However, a direction is offered in Section 
VI1 for a faster test than this if it can be recast 
as a systolic array, as is currently being pursued by 
others. 

In [SI, simple counterexamples revealed that a 
recently offered partitioned test for demonstrating 
the positive semidefiniteness of a matrix (with the 
potential of being applied stagewise to the higher 
dimensional matrices encountered in industrial 
applications) is flawed. A proper version of such a 
test was uncovered, as historically developed by others 
within the totally different application context of matrix 
spectral factorization, but which is also valid in the 
simpler case considered in [ti], where the matrices of 
interest have constant numerical entries. All these 
prior aspects have already been raised and resolved 
in [l-3, 7, 81 but were reviewed here to support 
comparisons with the extension treated in Section 
VII. 

More fundamental aspects of symmetric positive 
definite matrices (encountered in applications involving 
covariance matrices) are examined here in Section 
I1 and prevalent “reasonableness tests,” recounted 
in Sections I11 and IV, are revealed in Sections V, 
VI to be fallacious via an original transparently 
simple counterexample. Again, a corrected theoretical 
formulation as well as a practical computational 
implementation for a proper version of a test of this 
property is provided in Section VII. 

11. ELEMENTARY STRUCTURAL CONSIDERATIONS 

Two well-known structural properties of an 
arbitrary covariance matrix (for a real random vector 
x = [ x 1 , ~ 2 ,  ..., xnIT) of the form: 

(where, in the above symmetric matrix, pij = Pji and 
E [ . ]  is the expectation operator) are reviewed here 
prior to discussing previously used but less transparent 
computational “reasonableness tests” in Sections 
I11 and IV. This review of elementary covariance 
structure is pursued here first in order to facilitate 
later demonstration in Sections V and VI that these 
historical “reasonableness tests” are fallacious by 
construction of a viable counterexample. 

As is fairly well known, any proper covariance 
matrix P can be represented in the following form ([9, 
p. 91, eq. (3-76)]): 

P =  

where the q ’ s  in the above are the standard deviations 
and where the correlation coefficients satisfy 

P i j  = Pj i  

since the above covariance matrix is always symmetric. 
Moreover, as is true of all correlation coefficients 
(defined in terms of the matrix entries of (1)): 

and their magnitudes should theoretically be 
constrained to 

(4) 

(as can be rigorously verified by applying the 
Cauchy-Schwarz inequality to the underlying scalar 
components of the vector random variables that 
correspond to the entries of P in (1) yielding 

which simplifies to be 

Rearranging (7) and using the definition of (4) yields 

Another standard structural observation is that a 
(5). 

covariance matrix P, such as that depicted in (2), can 

416 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 26, NO. 2 MARCH 1990 



be further decomposed as 

X 

I“ 

U1 

U2 0 

U3 

0 

U, 

p =  I 
X 

1 
Ill. AN HISTORICALLY USED TEST OF POSITIVE 

DEFl NlTEN ESS 

For two decades up to the present, I have 
frequently encountered the following test advertised 
as a computational sanity check or “reasonableness 
test” that has been used on the covariance of 
estimation error that arises in real-time Kalman filter 
applications (ranging from submarine navigation 
systems ([ll], [12]), to sonobouy tracking, to military 
aircraft navigation ([13]) and target tracking). The 
test essentially consists of first checking for the most 
obvious or flagrant violations by confirming that 
no diagonal term is nonpositive, then subsequently 
considering all possible 2 x 2 submatrices of the 
original n x n matrix P of (1) and testing that all 
entries of these (and the original matrix) satisfy 

lpikI2 < P i i p k k .  (12) 

Only if the above condition is satisfied for all i, k = 
1,. . . , n is the computed matrix P deemed acceptable. 
Usually, this is the only “test of goodness” for 
the P matrix in these real-time applications and 
the test is advertised as ostensibly being a test of 
positive definiteness (or, at worst, a test of positive 
semidefiniteness) having the major attraction of not 
requiring an exorbitant number of operations in the 
central processing unit (CPU) time-stingy real-time 
environment. 

The act of checking the inequality of (12) can 
be recast as merely calculating the determinant 

(’) 

(9) 

as long as the standard deviations are nondegenerate 
as nonnegativity: 

of the following 2 2 submatrix and testing it for 

(13) 
pii P i k  2 

6; > 0 for each i = 1,. . . , n. (10) 

It is well known that i f a  matrix B is positive definite, det [ Pik pkk] = P i i P k k  - P i k  > 
as denoted by 

B>O [as further recomputed for all possible 2 x 2 

then postmultiplying B by a full rank matrix A and 
premultiplying by the transpose of the same matrix A 
preserves positive definiteness as [lo, p. 131’ 

A ~ B A  > 0. (11) 

Therefore, when all standard deviations are given 
to be strictly greater than zero as in (lo), then P is 
positive definite if and only if B is positive definite. It 
then suffices to only check B for positive definiteness 
in order to infer whether P, as related to B via (9), 
is positive definite. Not only positive definiteness, 
but negative definiteness, semidefiniteness, and 
indefiniteness are preserved by transformations of the 
form of (9). This property is utilized in constructing 
the counterexample of Section V. 

‘For other insights into the algebra of validly manipulating positive 
definite matrices to preserve positive definiteness, please see (1 1, 
Appendix]. 

submatrices]. The-precise number of these 2 x 2 
minors D2 within a general n x n matrix, as n things 
(or entries) taken two at a time, is provided by the 
binomial coefficient being (n/2) = n!/(n - 2)! 2! = 
(n2 - n)/2. Using these combinatorics, offered here for 
analyzing the version of the test in (13), the number of 
operations can be seen to be 2 multiplies, a squaring 
(or another multiply), a subtraction, and a comparison 
for each of the (n2 - n)/2 matrix evaluations per an 
application of this test which, along with checking 
the main diagonal terms for nonpositive entries as 
n comparisons, yields a total of 4((n2 - n)/2) + n = 
2n2 - n operations. For the version of this test in 
(12), the combinatorics-based operations count is 
3((n2 - n)/2) + n = i n 2  - in since one less operation 
is used in (12). 

The above test described in this section has 
become a folk-theorem since it is pervasive, yet no 
pr-f hawetr;r been supplied of its validity. Conversely, 
no one has challenged its veracity or even questioned 
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its validity in the open literature or otherwise until 
now, as offered in Section V. 

IV. AN HISTORICALLY USED METHOD OF 

COMPUTED POSITIVE DEFINITE MATRICES 
ENFORCING WELL-CONDITIONING FOR 

It is fairly well known that the round-off and 
trunction errors encountered in the implementation 
of the otherwise ideal mathematical operations of 
addition, subtraction, division, and multiplication 
by a particular machine can frequently accrue to 
such an extent that computed matrices that would 
theoretically be positive definite can in fact become 
so ill-conditioned that main diagonal terms may 
actually become zero or perhaps even go negative 
(both Occurrences being immediate anathema or 
contradictory to having a theoretically positive definite 
matrix). 

Such illconditioning has a particularly disasterous 
effect in implementations of a Kalman filter covariance 
that is recursively propagated in time and which 
consequently adversely affects the calculation of the 
filter gain, which further adversely affects the quality 
of the filter estimates and can even compromise 
the stability of the filter proper (which relies on an 
associated Lyapunov function, constructed from the 
inverse of the ideal positive definite covariance of 
estimation error as the theoretical substantiation 
of the stability of the filter, as discussed in [14, 
Sect. 4.1, 4.2, Appendices A.l,  A.21 by causing a 
type of divergence [15]). In an attempt to avoid or, 
more accurately stated, to seek to benignly control 
possible ill-conditioning of the computed covariance 
matrix, one prevalent technique has emerged and is 
referred to here as covariance check (COVCHK). The 
COVCHK approach (usually included within a single 
COVCHK software routine) is to first test for zero 
elements on the principal diagonal. If any of these 
diagonal elements are zero (to within the precision 
of the machine) as a disasterous event that cannot be 
conveniently side-stepped, then the entire covariance is 
directly reinitialized via a PINIT procedure; otherwise, 
positivity of the main diagonal terms of the n x n 
matrix are routinely further enforced at each computed 
time-step by making the following assignments: 

p; t lpiil for i = 1 to n (14) 

(which can be seen to force all main diagonal 
terms to be nonnegative despite what was originally 
computationally obtained). Further, all the offdiagonal 
elements of P are revised by forming an auxiliary 
matrix P* in its stead according to the following rule: 

pL for i,k = 1 t o n  (15) Pi?& - 
Pi iPkk 
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then subsequently checking the auxiliary matrix P* to 
confirm that each 

Pi% I 1 (16) 
otherwise, if the condition of (16) is not satisfied, then 
an even more benign off-diagonal term is created of 
the form: 

for i = 1 to n (17) 

and the entire resulting matrix is checked (ostensibly 
for positive definiteness) using the test described in 
Section I11 as (12). The mathematical significance 
of using the above matrix alterations in an attempt 
to maintain positive definiteness of the covariance 
matrices being computationally encountered is 
described in Section VI. 

V. COUNTEREXAMPLE TO TEST OF SECTION Ill 

A crucial observation concerning the condition 
of (12) is that by dividing both sides by the positive 
quantities PjjP&& yields a result that corresponds to 
the condition of (5) (or (15) and (16)). The multiple 
calculations of the form of (12) (or (13)) amount to 
no more than merely confirming that the underlying 
cross-correlation coefficients have magnitudes less 
than 1. That it does no more than just this in seeking 
to offer protection as an advertised “reasonableness 
test” is demonstrated by the following counterexample. 

Consider the following specific 3 x 3 symmetric 
matrix: 

1 -1. 2 
2 4  

(18) 

This matrix will now be checked forpositive 
definiteness using the principal minor test ([S, pp. 
381-3821); also known as Sylvester’s criterion ([9, 131) 
consisting of the following three steps: 

Step 1 : 
bll = 1 > 0 (19) 

Step 2: 

Step 3: 
det[B1] = -& < 0. (21) 

If Step 1 through Step 3 above yielded all positive 
numbers, then B1 would have been demonstrated 
to be positive definite. However, since this was not 
the case, it is evident that B1 is not positive definite. 
Futher evidence is that when the above B1 is used 
as the weighting matrix in a scalar quadratic form 
f ( x )  = xTBlx, the resulting specific evaluations can 
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be both positive and negative depending on the choice 
of the vector since XI = [l, 1, lJT yields f ( x 1 )  = while 
x2 = [l,  1, - 1IT yields f ( x 2 )  = - 4. If B1 were indeed 
positive definite, all evaluations of the quadratic form 
would be positive for x # [O,O,OIT. The above two 
alternate characterizations used to dispute the positive 
definiteness of B1 was easier to invoke than actually 
calculating and exhibiting its eigenvalues since that 
would necessitate solving a general cubic equation that 
is avoided here by the approach used. 

Consider now the 3 x 3 case of matrix PI 
constructed according to (8) using an A1 having 
nonzero standard deviations: 

0 < ( ~ i  for each i = 1,2,3 (22) 
then P as  defined by (8) (of the form of (9)) using the 
above B1 of (18) would be 

1 0 0 T 1  - 4 ;  1 0 0  

P1= 0 2 0 
[o 0 I [-; ; :I[: : :I 

which, by the discussion at the end of Section 11, has 
the same definiteness as that possessed by B1! 

Now in performing the test of Section I11 on the 
matrix PI of (U), notice that the principal diagonal 
terms satisfy the first requirement of being positive. 
Notice from the form of the matrix B1 in (18), that 
all the correlation coefficients are exposed in the 
off-diagonal terms and that each has a magnitude less 
than 1 to satisfy the condition of (5) (or (15) and (16)) 
(and that the same can be said for the correlation 
coefficients of all its 2 x 2 submatrices), yet the B1 of 
(18) has been shown here to not be positive definite. 
Thus, the test of Section I11 is deficient or fallacious 
since the matrix PI of (23) satisfies all the conditions 
of this test of the form of (12) (or (13)) yet is not 
positive definite. As with the principle minor test for 
positive semidefiniteness, this test is also necessary but 
not sufficient and a matrix satisfying this test doesn't 
make it even close to having the desired property. 
This test can only rigorously be perceived as an initial 
weeding out of some undesirable matrices only if they 
are really grossly off. 

now that we can see via (7) (squared and rearranged) 
that it is a vacuuous test. However, to proceed further 
and give the approach of Section IV the benefit of the 
doubt for the moment, suppose that for a particular 
computed covariance matrix P so much roundoff and 
truncation error has accrued to the extent that even 
the fairly loose theoretical condition of (7) fails to be 
satisfied (as embodied in the equivalent (16) failing 
to be satisfied); then according to the subsequent 
construction recipe of (17): 

and from the last expression in (25) it is easily 
recognized that the quantity within the braces is 
of a magnitude less than 1 and greater than -1 
(independent of the actual entries of P) and therefore 
could be a valid correlation coefficient. Since this 
COVCHK methodology is evidently not sufficiently 
discriminating, every symmetric matrix satisfies these 
later stages of the COVCHK approach, even the PI of 
(23) defined in terms of the specific B1 of (18). 

Yet PI (and B1) is definitely structurally 
undesirable to propagate as a covariance matrix since 
it is not even positive semidefinite. Indeed, a further 
disaster that can be explicitly demonstrated is that 
this B1 of (18) (or Pl of (23)) would not be revealed 
as being structurely undesirable by the COVCHK 
test of Section IV since it would go unaltered pass 
all the conditions of (14)-(16) and would not even 
activate the more extreme compensation mechanism 
of (17), and in conclusion completely satisfies the 
critical condition of (12) in Section I11 that is invoked 
last. Thus, this single counterexample demonstrates 
that the underlying theory behind the software logic 
used in COVCHK is deficient by not accomplishing 
its intended purpose as stated in Section IV The 
mathematical significance of the matrix alterations 
described in (14)-(17) is apparently a n  engineering 
quick-fix (without finesse) in an attempt to maintain 
positive definiteness of the covariance matrices being 
provided computationally. A major objection is that 
the assignments of either (15) or (17) considerably 
alter the matrix beyond what would be considered to 
be reasonable limits that would normally be deemed 
acceptable as preserving any semblance of the original 
matrix. To further illustrate this charge, consider how 

VI. COUNTEREXAMPLE TO METHODOLOGY OF 
SECTION IV 

In general, the definition of (15) is equivalent to 

(24) P; d k  

by the definition of (4) substituted into (15). Further, 
the test of (16) should theoretically always be satisfied 
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the redefinition of (15) affects the B1 of (18) to yield 
1 1 2  

4 16 

B ; = [ i  2 1  1 11. (26) 

16 4 

This result is positive definite but is completely 
different from the original B1 since the offdiagonal 
terms are smaller (as the square of the original terms) 
and the negative signs are lost. 

VII. SUMMARY/CONCLUSlONS/OUTLOOK 

The status of computational tests for establishing 
matrix positive semidefiniteness and positive 
definiteness were reviewed in Section I. Two pervasive 
real-time “tests” were described in Sections I11 and 
IV that have been used for many years in varied 
applications in an attempt to ensure that computed 
covariances encountered in Kalman filter applications 
are positive definite. Structural representations of 
covariance matrices are reviewed in Section I1 as 
a prelude to constructing the counterexample and 
further demonstrating in Sections V and VI that it 
refutes, respectively? the two different approaches 
discussed, respectively, in Sections I11 and IV, so these 
unfortunately were bogus approaches despite the fact 
that they are pervasive. 

Such bogus tests as these evidently arose as an 
attempt to fill the need for a quick check (over the 
entire mission time) of the massive number of matrices 
computationally encountered in real-time applications. 
All early Kalman filter implementations prior to the 
development of Bierman’s sodesignated U - D - UT 
filter formulation ([16]) needed such monitoring 
since they were not numerically or computationally 
stable algorithms and, as such, tended to eventually 
become ill conditioned. As is now well known, the 
U - D - UT filter is numerically stable and can 
be run for extremely long time periods e mission 
times without exhibiting any ill-conditioning of the 
covariance (or constituent components U and 0) as 
previously requiring the quick fixes of Sections I11 
and IV to “check” and “remedy”. Unfortunately, the 
U - D - filter formulation is not as universally 
used as it should be since there are “application 
bastions” that resist change2 (even for the better) due 
to the vagaries of cost and tradition, 
bogus definiteness/semidefiniteness tests can still be 

versions of the 

2While it is more challenging to understand the inner workings of the 
U - D -UT version (as compared with that of a conventional Kalman 
filter), there is an easy answer to how to validate that a replacement 
U - D - u ~  version is implemented correctly in software code. 
Just compare outputs under common identical test conditions with 
those of the standard Kalman filter that previously existed for the 
application. The outputs should be identical in the near term but the 
U - D -UT should surpass the other for correctness in the long term. 

found in use. This Correspondence is to alert users to 
the potential dangers of using these nonrigorous tests. 

For situations other than Kalman filtering where 
online tests of positive definiteness may still be 
desired for computed symmetric covariance matrices? 
determinant evaluations of Sylvester’s criterion can be  
coded in hard-wired form for applications involving 
dimensions three (or less) using the “basket rule” 
([17, ex. 17, pp. 66-67), but use of the SVD for this 
purpose is definitely the preferred test for general 
dimension n, as already addressed in [l], [7]. Details 
for computationally handling SVD are addressed in 
[18, sect. 31. 

As discussed in Section I, the unadorned SVD 
of Aasen’s method is of order n3/6,  which may be 
too time consuming an operation for real-time use! 
The bogus test of Section I11 that is used in many 
real-time applications is of order n2, so presumably 
if a version of SVD could also be  made to be of order 
n2, then it would ostensibly serve as a now rigorous 
algorithmic replacement with no greater penalty in 
computation time than already exists. (Moreover, 
the combinatorics-based operations count of Section 
I11 being in2 as compared with the n3/6 of Aasen’s 
SVD method indicates that use of Aasen’s method is a 
lesser computational burden for applications with state 
sizes up to IS!) The only way to conveniently reduce 
a power of n in the fundamental SVD algorithm is to 
distribute the computations across n nearest-neighbor 
processors, as occurs in systolic array implementations. 
The good news is that such a recasting of SVD in 
terms of systolic arrays has already been initiated 
by others (as addressed in [19], [20]). Not to be 
overlooked, an alternative approach ([21]) is to use the 
systolic version of a QR algorithm to reveal the rank 
of a matrix. Other modem control applications that 
will also benefit from such a recasting of SVD beyond 
the. positive definiteness testing addressed here are 
discussed in [22], [Z]. 

THOMAS H. KERR 
M.1.1: Lincoln Laboratory 
244 Wood St. 
Lexington, MA 
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On Lyapunov Stability Analyses of the Switching 
Regulator/Filter System 

The stability design criteria for the fourth-order switching 

regulatorflow-pass filter system are obtained directly from the 
solution to the resultant simultaneous equations of the Lyapunov 
matrix equation 

Employing the matrix formulation of the second 
method of Lyapunov [l], a recent paper [2] performed 
a stability analysis on the fourth-order switching 
regulator/low-pass filter system, with the switching 
regulator modeled as a “linearized” negative resistance. 
This analysis included an examination of the Lyapunov 
matrix equation: 

Q = - ( A ~ B  + BA) 

where Q is symmetric positive semidefinite, B is 
symmetric positive definite, and A is constant and 
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