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Abstract 
This summarizes and explicitly documents all the topics TeK associates recently discussed with Boeing in 2003 and 
we offer our further assistance with the Tasks discussed in Sec. 9. We need inputs from Boeing to know how to 
properly bound the effort so that we can offer corresponding costs and schedules. The Boeing inputs that we solicit 
pertain to how many different cases should be run to have sufficient coverage (otherwise the evaluation task could 
be somewhat open-ended and we would need to bill for time and materials as cost plus fixed fee). 
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1. Application Constraints: estimating target states using Kalman Filter–like algorithms 
 
For a purely linear system (with Gaussian white process and measurement noises and Gaussian 
independent initial condition) using an optimal linear Kalman filter (with an identical underlying 
linear system model) for tracking the state as depicted in Fig. 1, the exact conditional distribution 
of the true (nx1) state vector x(t), given the measurements up to time t, is described by the 
following multidimensional Gaussian probability density function: 
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where  is the outputted Kalman filter state estimate at time t (i.e., the optimal being the 
conditional expectation) and P(t) is the covariance Matrix computed on-line within the Kalman 
filter, generated using the recursive Matrix Riccati Equation. 
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Figure 1: Overview Functional Block Diagram of the Internal Structure of a Kalman Filter, or 

of an Extended Kalman Filter, or of every likely candidate NMD target tracking algorithm 
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Equation 1 is the solution to the Fokker-Planck equation (also called the forward Kolmogorov 
equation): 
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that the ideal pdf of an optimal estimator, such as the Kalman filter, satisfies (as discussed in [1, 
pp. 129-135]). In Eq. 1, the covariance matrix P(t) is not diagonal in general so cross-correla-
tions exist between the various variables that constitute the underlying system state x(t), as 
conveyed in the associated pdf underlying estimation algorithm mechanization. The NMD 
application departs somewhat from the above idealization, as discussed next. 
 
NMD has nonlinear target and observation models and currently provides a target tracking 
function by expedient approximate nonlinear filtering via use of an EKF that is, of necessity, 
suboptimal in order to be tractably mechanized in real-time. Arguments supporting a Gaussian 
assumption for tractably assessing Covariance fidelity are offered here; and, moreover, can be 
numerically confirmed by specified statistical hypothesis tests of Normality before proceeding 
any further. In Figs. 1 and 2, NMD target system dynamics are described by an ordinary differ-
enttial equation of the following form: dx(t)/dt = f(x(t)), with x(to) being merely unknown and 
not random (but frequently do possess some randomness in the actual UEWR because of how the 
initial condition is provided, as deduced from pulse pairs on the same target [23]). Discrete-time 
radar sensor measurements are described by a vector algebraic equation: z(ti) = h(x(ti)) + v(ti), 
where v(ti) is white Gaussian noise. The tracking estimate  is obtained from the approximate 
nonlinear filtering tracking algorithm (where it is approximate for reasons of practicality so it 
will yield real-time results). 

ˆ ( )itx

 
Figure 2: Consequences of either a Linear or Nonlinear System Structure on Output Statistics 

 
Referring to Fig. 2, if the system were totally linear, then a transition matrix could be used to 
propagate all the states throughout. However, since an exoatmospheric target trajectory is 
nonlinear, its solution is calculated directly using Runge-Kutta integration in simulations and 
within the EKF target tracker model. The exoatmospheric target trajectory can be viewed as 
purely deterministic. The state variables describing the motion are not redundant because, by the 
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definition of what constitutes an adequate state variable model, they consist of the minimum 
number of variables (not necessarily unique) needed to completely describe the state of the 
system. The ballistic target described by this system model is accelerating (decelerating) because 
inverse squared gravity is present along with its harmonic of gravity J2, which accounts for the 
oblateness of the earth (i.e., its departure from a perfectly spherical earth due to flattening at the 
poles) and its presence induces two more characteristic motions known as the “regression of 
nodes’’ and the “rotation of Apsides’’.  
 
As mentioned above, initial condition specification and the gravity profile experienced cause the 
output of the exatmospheric trajectory modeled within UEWR to be purely deterministic and 
then Gaussian observation noise is added to represent what the UEWR radar receiver sees as a 
response to the presence of a target. UEWR tends to rely on position (range) being very good 
(due to design trade-offs having been historically made that favor high position accuracy over 
reaping good Doppler information). A factor is introduced in the tracking filter representation of 
the observation vector to better account for and compensate for the presence of significant range-
Doppler ambiguity errors and the current system still utilizes this because it improves tracking 
filter performance [3]-[5]. This compensation is accomplished by modeling the radar range 
measurements as nonlinear observations of the target motions, as viewed from Earth-fixed 
Cartesian coordinates erected in the face plane of the UEWR. Measurements received after 
passing through the radar receiver electronics, matched filters, Automatic Gain Control (AGC) 
and associated signal processing have noisy spiky output. It's a random process with a significant 
deterministic component being the ballistic target of interest.  
 
The tracking filter is then applied which better reconstructs the target of interest by smoothing 
out the effect of the noise spikes but does still correspond to a level of noise being present in the 
system. Moreover, to effectively increase the tracking filter's bandwidth, there is a nonzero 
process noise covariance intensity level parameter Q included in the tracking filter as an artifice 
that corresponds to a fictitious process noise level even though there is no process noise present 
in the actual ballistic target model. The outputs of the 6-state tracking filter are the 6 state 
estimates as a function of time and the accompanying covariances that serve as a rough on-line 
gauge of their quality, as both depicted in Fig. 1. The almost linear EKF used as a tracking filter 
operates on its input random process and yields this output random process. (The EKF possesses 
a linear filter structure, except that the Jacobian derivatives of the nonlinear system and 
measurement models are linearized about the state estimate from the last previously available 
time step thus making on-line Covariance and subsequent gain calculation no longer purely 
linear, an aspect that is also inherited by the outputted state estimate too as a consequence.) All 6 
states are correlated in general and this feature is confirmable by the outputted covariance not 
being exclusively zero in the block off-diagonal terms. 
 
The nonlinearities mentioned above constitute nonlinear operation on a Gaussian-like process 
(that yields a non-Gaussian output in general). However, it may be argued that the operations of 
an EKF are “almost” linear and so can be approximated as yielding a Gaussian process output 
but with a bias (which is unknown but can be estimated from realistic Monte-Carlo simulations 
at each time point ti, of interest). This non-stationary aspect or time varying trend can be handled 
entirely within the framework offered here by comparison to non-central Chi-square statistics. 
(There are two different tests of Normality within The Math Work’s Statistics Toolbox as well as 
programs to handle non-central Chi-Square, all to be identified explicitly in Sec. 7.) 
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2. Seeking Uniformity in Test Conditions Imposed in Performing Covariance Fidelity Tests 

A somewhat obvious observation is that covariances provided on-line by the tracking filter 
exhibit greater accuracy when sensor measurements (radar target returns) are made available 
more frequently (by the Radar Scheduler) and used within the tracking filter more frequently as 
measurement updates. It is reminded that the associated track filter outputted estimates have 
correspondingly improved accuracy as well. What is to be tested is how well the on-line 
covariances compare to the accuracy of the outputted estimates (under the same conditions) as a 
measure of consistency. Since the outputted covariances are looked to as an indicator of quality 
of associated tracking estimates or estimate accuracy (since the true state is not available for 
comparison in the application scenario), expressing how reliable such interpretations can be 
based on viewing indications only from the covariance is called Covariance fidelity. The 
common source of both entities (as shown in Fig. 1) is the tracking algorithm being used. 
 

Both tracking errors and covariances must be obtained from the same tracking algorithm in 
common under controlled conditions. To obtain an apples-to-apples comparison, results should 
be based on a particular single target track (with no other targets present that would otherwise 
complicate the effect with interactions and conflicts of radar resources allotted), in a particular 
trajectory, as viewed from a particular designated radar, (no matter which are used) as long as it 
is the same throughout (with all other pertinent underlying parameters fixed, e.g., target detection 
threshold setting, antenna pattern, electronic and atmospheric noise levels, etc). The target pulse 
return history on target should be identically the same (as much as practicable) in order to cross-
compare the performance of alternative tracking algorithms as yet another use of this same 
statistical test defined below.  
 

3. Impact of Covariance Fidelity on System Performance 

As depicted in Fig. 3, having reasonably truthful covariances as the output of the tracking 
algorithm (Covariance Fidelity) is important in setting adequate gates for comparing new returns 
with existing target tracks previously started by the multi-target tracking algorithm since these 
available, less computationally intense covariances are used within the Multi-Hypothesis Test 
(MHT) for this purpose. (Once a track has persisted long enough to be declared mature by the 
MHT, its entire [saved] time history of detected returns above the detection threshold is run 
through the iterative Batch algorithm for an improved track estimate and better [possessing 
greater veracity] associated covariance [21]. It is only this Batch covariance that is used for 
interceptor handover.) However, before the target track is designated as mature by the MHT, 
“handover” on the same target as it comes into view from another face of the same radar uses the 
tracking algorithm’s covariance. In this critical role of correctly categorizing the accuracy of the 
estimates that they accompany as an interpretation gauge, the goal is to have covariances that are 
neither larger than justified (i.e., being too pessimistic or conservatively large) or smaller than 
justified (i.e., being too optimistic in the quality of the estimates) but to better reflect the true 
situation (without compromising the accuracy already achieved by the tracking algorithm’s 
estimates). Since tracker covariances are used in its gain calculation, better covariances should 
improve the accuracy of outputted estimates as well.  
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There are many system roles that would be improved by availing better tracker accuracy 
throughout or by meeting tight tracker accuracy goals earlier. The superior state vector 
estimation accuracy of an algorithm deemed worthy of replacing the existing UEWR filters, in 



particular its more precise velocity estimate, is a direct benefit to the UEWR portion of the 
mission because it: 

• Would enable earlier launch of the interceptor merely by satisfying accuracy guidelines 
sooner and therefore would provide more accurate in-flight-target-update (IFTU) for the 
kinetic kill vehicle; 

• Would provide earlier support for phase-ambiguity-resolution and contextual feature 
discrimination; 

• Would estimate better orbital elements for space object identification, and would thereby 
result in better satellite vs. missile discrimination;  

• Would offer better launch and impact accuracy for legacy early warning functions; 
• Would be potentially more robust in the ionospheric scintillation, range, and Doppler error 

environment; 
• Should offer considerable dB savings of radar energy exerted to achieve a specified level of 

success in comparison with current EKF object tracking. 

Regarding the first item above, the more accurate (non-optimistic) on-line prediction of 1-sigma 
bounds of the improved target tracking algorithm should help properly constrain the region that 
the interceptor needs to search for target acquisition. Use of an optimistic bound in this role 
would result in limiting search to too small a volume of space and therefore risk missing the 
target although supporting theoretical numerical calculations would falsely assure success 
(because they expect the available 1-sigma to be trustworthy, which it is not in general for earlier 
EKFs). 

 

Figure 3: Simplified High Level Overview of the UEWR Processing Architecture 
 
4. An Appealing Candidate Approach to Covariance Fidelity Testing  

This test is a gauge of how consistent a particular tracking algorithm’s covariance time history is 
with the algorithm’s accompanying estimation errors accrued. Covariance fidelity is to be 
determined by performing a Monte-Carlo experiment to gather tracking algorithm state 
estimates, whose errors (or departure from the true target trajectory as the reference), are sample 
statistics that are then compared within this framework to the analytical covariance matrix also 
obtained from the on-line track algorithm under scrutiny. 
 
The Mahalanobis normalized distance, familiar from Pattern Recognition, is defined here for a 
single target’s track error at time t as: i
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where 
( )ir t  is the Mahalanobis distance (a scalar), 
( )ite  the Mahalanobis error vector consists of either all the (6x1) state errors at once or 

consists of 3 position error components in one evaluation along with 3 velocity 
error components in a separate evaluation for this NMD application, 

( )itP  is the corresponding submatrices of the (6x6) covariance matrix associated with 
position and velocity estimates to correspondingly match the grouping ultimately 
selected for the Mahalanobis error vector above. 

 
At each test time, ti, the intermediate quantity to be calculated for the test is the squared 
Mahalanobis distance:  
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where 
ˆ( ) ( ) ( )i it t −j j truee x x = constituents of Mahalanobis error vector, defined above.        (5) 

For an on-line covariance P(ti) generated within the tracking algorithm, there should be no 
additional diagonal loading or weighting used other than what comes from the tracking algorithm 
itself. A sampled estimate S2(ti) of the covariance P(ti) could be used instead within Eq. 4, as 
now calculated exclusively from sample statistics. In using a sampled S2(ti), a sufficient number 
of Monte-Carlo trials, N, should be used for this estimated P(ti) to ensure that this sample matrix 
S2(ti) is satisfactory to use by being invertible. The fact that S2(ti) needs to be inverted in Eq. 4 
means that it is more sensitive to errors. 
 
5. History of Mahalanobis Distance use and Its Interpretation 
The Mahalanobis “distance” measure arises naturally within pattern recognition problems 
involving discriminant analysis, statistical communication and statistical detection theory, and 
more fundamentally in statistics. The simplest case is for an underlying scalar 1-D situation 
involving two different Gaussian populations, each of the same variance but with two different 
means, as depicted in Fig. 4. Since an obvious separating hyperplane can be erected at the origin 
that enables decisions with the smallest errors of the 1st and 2nd kinds, respectively, because of 
the symmetry exhibited in this problem. A random sample can be taken and its parent population 
or affiliation is decided based on whether the sample realization is to the left or right of the 
separating hyperplane (in this case the origin). There would be no decision error if the two 
Gaussian pdfs did not overlap but they do. This choice of a decision criterion gauges the 
effectiveness of the test by minimizing the decision error incurred and the critical spread is  

|mean1-mean2|/standard deviation = 1 2µ µ
σ
−

. 

 
Figure 4: Decision to be made for two underlying Gaussian 

Populations with same variance but different means 
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For statistical decision situations involving two underlying multidimensional Gaussians, the 
above idea of what constitute the critical parameters underlying the making of correct decisions 
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recognized to be the Mahalanobis distance measure. 
 
Now addressing the use of the name “distance” measure for this concept. It is well known from 
textbooks on Hilbert Space, like that of Paul Halmos or Berberian, that in a complete finite 
dimensional linear vector space, the following constitutes an inner product on the space when 
defined for any two points x and y as (x|y) = xTWy, where W is symmetric and positive definite. 
Moreover, a norm can be defined in terms of the underlying inner product as 

( ) ( ) ( )T|x y x y x y x y x y− − − = − W − and a distance measure can be defined in terms of 

the norm as ( ) ( ) ( )T( , ) | Wd x y x y x y x y x y x y− = − − = − −  and these definitions are 
good for any x and y within the entire vector space. 
 
Now for the vector space of random vectors, let W in the above be the inverse of the positive 
definite variance P, then a similar structure arises as 

( ) ( ) ( )T -1( , ) | Pd x y x y x y x y x y x y− = − − = − − but this expression is only appropriate 

for ( ) ( ) ( )T -1
1 2 1 2 1 2 1 2 1 2 1 2( , ) | Pµ µ µ µ µ µ µ µ µ µ µ µ− = − − = − −d and is not a significant 

measure of distance for all other elements in the underlying vector space. 
 
Brief theoretical motivation for using this statistic and its relationship to Chi-square is provided 
next. For an ideal mean 

E[ ] = x( )ˆ ix t true (ti)                (6) 
and the True Covariance:  

P(ti) E[( (tx̂ i) - xtrue(ti))T( (tx̂ i) - xtrue(ti))],                     (7) 
define the following coordinate transformation (that is time-varying in general but with the time 
index being suppressed here for clarity) by letting 
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and if (  - xx̂ true) is Gaussianly distributed, then the linear transformation of Eq. 8 on a 
Gaussianly distributed random vector is again Gaussianly distributed, with mean zero, and unity 
variance. Moreover, the following scalar measure 
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has statistics that are time-invariant and is central Chi-square with n degrees-of-freedom, hence 
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Now consider the following specific scalar test statistic with time index no longer suppressed:  
( ) ( ) ( )ˆi i true is t x t x t

Τ
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where each item above is a function of time ti and so should correspondingly be plotted as a 
function of time. This test statistic s can be compared to 1, 22, 32, or whatever value desired, 
depending, respectively, on whether spec compliance dictates minimum acceptable performance 
within 1-, 2-, 3-, or whatever-sigma's away from the xtrue for each particular candidate target 
tracking algorithm. Please see Fig. 8 in Sec. 7 for how we propose to view the time-history of s 
evaluations in comparison to K2-sigma levels reached or passed through. 
 
The same statistic can apparently also be applied to the results of an ensemble average when the 
covariance is treated as unknown by summarizing estimator performance as the following: 
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where the unbiased sample mean and sample variance, respectively, are defined next 

for the state vector estimate ,     (15) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 5 6ˆ ˆ ˆ ˆ ˆ ˆ ˆi i i i i it x t x t x t x t x t x t=   
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Whether the test point  is within the bounding ellipsoid of K-sigma's at each calculation time 
point  depends (as an if and only if statement) on whether the calculated statistic s of Eqs. 13 or 
14 is less than or equal to K

x̂
it

2. If s exceeds K2, then the test point is outside the K-sigma ellipsoid 
centered on xtrue. One can plot the instantaneous s vs. time (see Fig. 8 below) and just look at the 
possible crossing trend relative to horizontal lines at ordinate 1, ordinate 22, or ordinate 32, 
representing, respectively, 1-, 2- or 3-sigma's away from the goal of xtrue (where the ellipsoid is 
centered). 
 
There is no need to perform this covariance fidelity test on the well-known standard expressions 
for the sampled mean and sampled variance (as, respectively, Eqs. 16 and 17) since they both 
should be obtained from the exact same Monte-Carlo data set in common and not be at odds with 
each other. However, since this Covariance Fidelity test is a likely candidate for abuse if Eq. 17 
were used in Eq. 4 instead of the covariance obtained from within the particular tracking 
algorithm under scrutiny, an obligation exists to discuss the differences that underlie these two 
different situations.   
 
When Eq. 4 is evaluated using the P(ti) from the tracking algorithm, it is treated as an underlying  
covariance that is known beforehand and tested for consistency against the sampled errors 
accrued afterwards from Eq. 16. If Eq. 17 were used in Eq. 4 along with the errors from Eq. 16, 
both the mean and variance are now effectively being treated as unknown and are both inferred 
from the Monte-Carlo data. The statistics underlying the latter test are more challenging and 
more complex if both are treated as unknown and needing to be inferred than if just one is treated 
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as unknown to be inferred. This situation arises because of the distribution of the statistics 
themselves. Both Eqs. 16 and 17 are functions of the random vector x(ti) and as such are random 
themselves with particular distributions and exhibiting a particular resulting realization. Only if 
x(ti) is Gaussian distributed do Eqs. 16 and 17 have well-known distributions that are tractable 
and the distribution for Eq. 16 is simpler if the underlying population covariance P(ti) is known 
beforehand [2, Table 8.5, pp. 232-233].  
 
A corroborating reference for this topic of relating these statistics to the appropriate corres-
ponding probabilities is [6]. In case the correct associated theoretical covariance matrix is not 
known in Eqs. 3 and 13, Ref. [6] shows on page 129 when to use the Hotelling T-distribution, as 
the multidimensional analog of Student's t-distribution (and also provides its underlying 
connection with the well-tabulated F-distribution of Snedecor for numerical evaluations). 
 
We will return to the test statistic formulation of Eq. 14 above in Sec. 7 and explain why, 
although particularly appealing on the face of it, a more robust version should be used instead to 
better match the NMD application. The appropriate covariance that should be used (in the middle 
of Eq. 13) also varies with each Monte-Carlo trial as a result of on-line linearization (unlike the 
case for an exclusively  linear Kalman filter, where it would be identically the same for each 
trial) and so must be included within the averaging statistics in order to be correct. 
 
6. Specifying reasonable alternative confidence regions and revealing the interrelationships 
between the two 3-D (for position and velocity separately) and 6-D (both handled jointly) 
For Gaussian random vectors, two components being uncorrelated means that they are indeed 
independent in the statistical sense. For more general random variables other than Gaussian, 
being uncorrelated is not enough to conclude that they are statistically independent. (There are 
many existing examples in statistics books that illustrate this aspect.)  When random variables 
are independent and their joint and individual pdfs exist, their joint pdf factors into the product of 
the individual pdfs. 
 
A multidimensional Gaussian probability density function (pdf) for a general n-dimensional 
random vector x is of the following form: 
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where P is the covariance and x is the mean. For a known specified (nxn) covariance matrix P, 
the associated (nxn) normalized eigenvector matrix U is known to diagonalize P in the following 
way: 

1 2 n= diag( , , , )λ λ λTU  P U …             (19) 
and also 

1 2

1 1 1= diag( , , , )
nλ λ λ

T -1U  P  U …            (20) 

Now when the following linear transformation is applied to the original random vector x (using 
the above described normalized eigenvector as a rotation of the underlying coordinate axes) as: 

U=w x               (21) 
the result is  
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The final expression is the product of individual scalar Gaussian pdfs for each of the coordinate 
directions defined by the eigenvector matrix and just represents a rotation of the original 
coordinate axes. The resulting axes are still orthogonal in n-dimensional space. Since the pdfs are 
all Gaussian, being uncorrelated, they are now independent in the resulting coordinate system 
since their joint pdf can be represented as the product of individual pdfs. 
 
Within NMD, there is a precedent in the use of two different collections of 3 states each (as 3 
position states and 3 velocity states) when examining and evaluating mission performance 
measures but there is nothing theoretically wrong with handling all 6 states together as a joint 
consideration. Indeed, when only the two 3 state collections are utilized (as, say, 3 position 
states and 3 velocity states), cross-correlations between these groupings is being ignored in 
the evaluations that is present in the covariance from the tracking algorithm. 
 
The equation of a K-sigma tilted (non-diagonal covariance P) ellipsoid in 6-dimensions about the 
point [ ] is: T

1 2 3 6x , x , x , , x…
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and the corresponding n-dimensional Gaussian pdf is of the following form: 
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with its corresponding countour as depictured in Fig. 5. 
 

 
Figure 5: The pdf of an 6-dimensional Gaussian with non-diagonal covariance P (n=6) 

 
Notice that the pdf of the 6-dimensional Gaussian is a scalar function of 6-variables. The 
appropriate confidence regions of constant pdf align perfectly with the underlying ellipsoidal 
contours in defined by the structure of the covariance matrix P. 6ℜ
  
For the following three different confidence region interior and boundaries in : 6ℜ

[ ]

1 1

2 2
2

1 1 2 2 3 3 6 6 3 3

6 6

, , , ,  

x x
x x

K x x x x x x x x x x

x x

− 
 −  ′  ≥ − − − − − 
  
 
 − 

-1
1 12
T

12 2

P P
P P

… ,       (25) 

[ ] [ ]
1 1

-12
1 1 2 2 3 3 1 2 2

3 3

, ,  
x x

K x x x x x x x x
x x

− 
′ ≥ − − − −
 − 

P 
 ,         (26) 

[ ] [ ]
4 4

-12
4 4 5 5 6 6 2 5 5

6 6

, ,  
x x

K x x x x x x x x
x x

− 
 ′ ≥ − − − − 
 − 

P ,          (27) 

where, in the above, the score value , the vector entries 2K ′ [ ] , and  are 

all 

T
1 2 3 6, , , ,x x x x… 1 12

T
12 2

 
 
 

P P
P P

particular known fixed constants but the values of x1, x2, …, x6 are variables that define the 
specific unique confidence regions for that particular score value ( ) and center located at 2K ′

[ ]T
1 2 3 6, , , ,x x x x… . 
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Recall that in order to prove that one set, say, A is a subset of another set B (as ) it 
suffices to show that for any arbitrary element of A it is also an element of B or, equivalently, 
that any element of B

⊂A B

⊂Ac implies that it is also a member of Ac (since ), where 
superscript c denotes the set’s complement. In seeking to establish a rigorous connection or 
relationship, please consider the following proof that uses the following four intermediate 
Lemmas as stepping-stones. We relegate the proofs of these four Lemmas to Appendix B to 
avoid obscuring our primary thrust here in the main body. 

⊂ ⇔c cB A B




 
We first need a standard result from the partitioning of a matrix and its inverse as  

Lemma 1:   (28) 
( ) ( )

( ) ( )
11 12

T
12 2

 ,
   
    =    

        

-1 T -1 T -1
1 12 2 12 12 2 12 1 12

-1 T -1 T T -1
2 12 1 12 2 12 2 12 1 12

-1 -1

-1 -1
3

3

P - P P P -P P P - P P P

-P P P - P P P P - P P P

P P
P P

I 0
0 I

where the matrix inverse is unique and the block diagonal inverses depicted above also exist by 
virtue of intermediate steps encountered in the proofs of Lemmas 2 to 4 below. (A proof is also 
in [7, p. 28]. However, for the reader’s benefit, we still include a simple abbreviated proof here 
in Appendix B to make this document more self-contained.) 

Lemma 2: The partitioned square matrix is positive definite (and therefore 

invertible) if and only if all four of the following are true:  

1 12
T
12 2

 


 

P P
P P

( ) ( )-1 T T -1
1 12 2 12 2 12 1 12 1 2

-1 -1
 P - P P P > 0, P - P P P > 0, P > 0, P > 0 ,             (29) 

where the “greater than” symbol appearing here is in the sense of matrix positive definiteness.  

Lemma 3: (              (30) ) .≥-1 T -1
1 12 2 12 1

-1
P - P P P P

Lemma 4: (              (31) ) .≥T -1 -1
2 12 1 12 2

-1
P - P P P P

Again, the simple proofs of these four Lemmas have been relegated to Appendix B. 
 
Using these Lemmas, we will now establish how the above three confidence regions of Eqs. 25-
27 are related as subsets and offset subspaces. First recall that for confidence regions, the interior 
and boundary is where the right hand side (RHS) quadratic form is less than or equal to ( ≥) 
as in Eqs. 25-27 and that the exterior of the confidence region is correspondingly where the RHS 
quadratic form is switched to be greater than the specific score value ( <) as given by: 

2K ′

2K ′

[ ]

1 1

-1 2 2
1 122

1 1 2 2 3 3 6 6 3 3T
12 2

6 6

, , , ,  

x x
x x

K x x x x x x x x x x

x x

− 
 −  ′  < − − − − − 
  
 
 − 

P P
P P

… ,         (32) 

[ ] [ ]
1 1

-12
1 1 2 2 3 3 1 2 2

3 3

, ,  
x x

K x x x x x x x x
x x

− 
 ′ < − − − − 
 − 

P ,            (33) 
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[ ] [ ]
4 4

-12
4 4 5 5 6 6 2 5 5

6 6

, ,  
x x

K x x x x x x x x
x x

− 
 ′ < − − − − 
 − 

P ,            (34) 

Case 1: Notice that for arbitrary [ ] [{T 3
1 2 3 1 2 3, , , ,x x x x x x′ ′ ′ ∈ℜ − ] }T that satisfies Eq. 33 by virtue of 

being in the 3-dimensional offset subspace (i.e., manifold) with coordinates 4 4 5 5, ,x x x x′ ′= = and 

6x x′ = 6  as fixed, specified constants: ∀ ∈ , where [ ]T
1 2 3 1, ,x x x′ ′ ′ F

[ ] [ ] ( )

T T
1 1 1 1 1 1 1 1 1 1

-1 -13 2 2
1 2 2 2 2 1 2 2 2 2 1 2 2

3 3 3 3 3 3 3 3 3 3

 , 35
x x x x x x x x x x
x x K x x x x K x x x x
x x x x x x x x x x

  ′ ′  − − − −                          ′ ′ ′∈ℜ − < − − ⇒ < − −              
    ′ ′           − − − −              

F P ′P

also satisfies Eq. 32 with [ ] ∈T
1 2 3 4 5 6, , , , ,x x x x x x′ ′ ′ [ ]{ }T6

1 2 3 6, , , ,x x x x…ℜ − since  

[ ] [ ]( )

( )

T

1 1

2 2

3 3

1 1 1 1
2

1 1 2 2 3 3 2 2 1 1 2 2 3 3 2 2

3 3 3 3

1

0

0

0

, , , ,

x x

x x

x x

x x x x
K x x x x x x x x x x x x x x x x

x x x x

′ −

′ −

′ −

′ ′− −   
   ′ ′ ′ ′ ′ ′ ′ ′ ′< − − − − ≤ − − − −   

′ ′   − −   

 
 
 
 

=  
 
 
 
  

-1 -1 T
1 1 12 2 12

-1 T -1 T -1
1 12 2 12 12 2 12 1

-1

-1

P P - P P P

P - P P P -P P P - P P P( )
( ) ( )

T

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

-1
1 12
T

12 20 0 0

0 0 0

0 0 0

x x x x x x

x x x x x x

x x x x x x

′ ′ ′− − −

′ ′ ′− − −

′ ′ ′− − −

     
     
               =                      
     
          

12

-1 T -1 T T -1
2 12 1 12 2 12 2 12 1 12

-1

-1 -1

P P
P P-P P P - P P P P - P P P

                 (36) 
Please notice in the above that the result of Lemma 3 was used in establishing Eq. 36 and that 

 

T

1 1 1 1

2 2 2 2

3 3 3 3

1 1

2 2
-1

3 3 1 126 2
T

4 4 12 2

5 5

6 6

0 0

0 0

0 0

x x x x

x x x x

x x x x

x x
x x
x x

K
x x
x x
x x

− −

− −

− −

                                        ′∈ℜ − <          
         

        
        

               

C
1

P P
P P 1,




 ⇒ ⊂ ⇔ ⊂

 
 
 
  

C C
1 1 1F A AA ,     (37) F
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and 

T

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

6 6 6 6

1 1

2 2
-1

3 3 1 126 2
T

4 4 12 2

5 5

6 6

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x
x x
x x

K
x x
x x
x x

− −

− −

− −

− −

− −

− −

       
       
      
          ′∈ℜ <        

       
      
      

            

−c P P
D

P P

        ⇒ ⊂ ⇔ ⊂  
  
  
  

   

C C
1 1A D D A ,(38)  

since DC is less restricted in its domain than is A1
C by allowing it to take on any values in 

[ ]{ }T
1 2 3 4 5 6, , , , ,x x x x x x6ℜ − . 

Case 2: Notice that for arbitrary [ ] [{T 3
4 5 6 4 5 6, , , ,x x x x x x′ ′ ′ ∈ℜ − ] }T that satisfies Eq. 34 by virtue of 

being in the 3-dimensional offset subspace (i.e., manifold) with coordinates 1 1 2 2, ,x x x x′ ′= = and 

3x x′ = 3  as fixed, specified constants: ∀ ∈  [ ]T
4 5 6, ,x x x′ ′ ′ C

2F

[ ] [ ]

T T
4 4 4 4 4 4 4 4 4 4

-1 -13 2 2
5 5 5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6 6 6

 ,(39)
x x x x x x x x x x
x x K x x x x K x x x x
x x x x x x x x x x

  ′ ′  − − − −                          ′ ′ ′∈ℜ < − − ⇒ < − −              
    ′ ′           − − − −              

−C
2 2F P ′2P

also satisfies Eq. 32 with [ ]T
1 2 3 4 5 6, , , , ,x x x x x x′ ′ ′ ∈ [ ]{ }T6

1 2 3 4 5 6, , , , ,x x x x x xℜ − since  

[ ] [ ]( )

( )

T

4 4

5 5

6 6

4 4 4 4
2

4 4 5 5 6 6 5 5 4 4 5 5 6 6 5 5

6 6 6 6

1

0

0

0

, , , ,

x x

x x

x x

x x x x
K x x x x x x x x x x x x x x x x

x x x x

′ −

′ −

′ −

′ ′− −   
   ′ ′ ′ ′ ′ ′ ′ ′ ′< − − − − ≤ − − − −   

′ ′   − −   

 
 
 
 

=  
 
 
 
  

-1 T -1
2 2 12 1 12

-1 T -1 T -1
1 12 2 12 12 2 12 1

-1

-1

P P - P P

P - P P P -P P P - P P P( )
( ) ( )

P

T

4 4 4 4 4 4

5 5 5 5 5 5

6 6 6 6 6 6

-1
1 12
T

12 2

0 0 0

0 0 0

0 0 0
.

x x x x x x

x x x x x x

x x x x x x

′ ′ ′− − −

′ ′ ′− − −

′ ′ ′− − −

     
     
               =                      
     
          

12

-1 T -1 T T -1
2 12 1 12 2 12 2 12 1 12

-1

-1 -1

P P
P P-P P P - P P P P - P P P

                 (40) 
Please notice in the above that the result of Lemma 4 was used in establishing Eq. 40 and that 
  

T

4 4 4 4

5 5 5 5

6 6 6 6

1

2
-1

3 1 126 2
T

4 12 2

5

6

1

2

3

4

5

6

0 0

0 0

0 0

x x x x

x x x x

x x x x

x
x
x

K
x
x
x

x
x
x
x
x
x

− −

− −

− −

                                    ′∈ℜ − <         
         

        
        

               

C
2

P P
A

P P




 ⇒ ⊂ ⇔ ⊂

 
 
 
  

C C
2 2 2F A A F2 ,      (41) 

and 
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T

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

6 6 6 6

1 1

2 2
-1

3 3 1 126 2
T

4 4 12 2

5 5

6 6

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x
x x
x x

K
x x
x x
x x

− −

− −

− −

− −

− −

− −

       
       
      
          ′∈ℜ − <        

       
      
      

            

c P P
D

P P

        ⇒ ⊂ ⇔ ⊂  
  
  
  

   

C C
2 2A D D A ,       (42) 

since DC is less restricted in its domain than is A2
C by allowing it to take on any values in 

[ ]{ }T6
1 2 3 4 5 6, , , , ,x x x x x xℜ − . 

 
Now from both Cases 1 and 2 above,  and F A (where D⊂ ⊂C C

2 2F A DC C

C

D

D

D

⊂ ⊂C C
1 1 D C is the same 

identical set in Cases 1 and 2) so that 
( )1∪ ⊂ ∪ ⊂ ∪ =C C C C C C

2 1 2F F A A D D D ,       (43) 
and by de Morgan’s laws yields 

( ) ( )1∩ ⊃ ∩ = ∪ ⊃ =C C C
2 1 2 2 1

c c
F F A A A A D ,      (44) 

and all the more  
( ) ( )1⊃ ∩ ⊃ ∩ ⊃2 2 1 2F F F A A ,        (45) 

and 
( ) ( )1⊃ ∩ ⊃ ∩ ⊃1 2 1 2F F F A A .        (46) 

Q.E.D. 
 
Now please consider Table 1 below. 
 

Probability of being within an uncertainty ellipsoid 
(for a Gaussian Distribution) both centered on the mean for: 

Dimension: 
N 

Probability of 
1-sigma 

containment 

Probability of 
3-sigma 

containment 

Probability of 
4-sigma 

containment 
1 0.68269 0.9973 0.9999 
3 0.19876 0.9707 0.9989 
6 0.01439 0.8264 0.9863 

Table 1: Multivariate Gaussian containment probabilities within K-sigma 
 

Notice from Table 1 that the value of K-sigma to use when considering the 3 position states and 
the 3 velocity states together within a single joint 6-dimensional confidence region in order to 
have 0.99 containment in (6-D) is 4-sigma. The same containment probabilities are provided for 
3-D collections with slightly greater than 3-sigma ellipsoids. Use of 4-sigma for a 3-dimensional 
confidence region provides 0.9989 probability of containment. (Table 1 was prepared using Chi-
square statistics for 1-, 3-, and 6-degrees-of-freedom from [8, Table 26.7] and crosschecked 
using the computer program chi2cdf.m from The Math Work’s Statistics Toolbox for MatLab, 
Ver. 6.5, Release 13. The row entries for N=1 allows a useful cross-check with what is usually 
already familiar to most technologist for the Gaussian scalar case.) 
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For  or 4-sigma in Table 1, and for the following set nestings established above:  ( )22 4K ′ =

( ) ( ) ( ) ( ) ( ) ( )1 1

0.98630.9989

Prob Prob Prob Prob⊃ ∩ ⊃ ∩ ⊃ ⇒ ≥ ∩ ≥ ∩ ≥1 2 1 2 1 2 1 2F F F A A D F F F A A D (47) 

as expected; and similarly by parallelism for  
( ) ( ) ( ) ( ) ( ) ( )1 1

0.98630.9989

Prob Prob Prob Prob⊃ ∩ ⊃ ∩ ⊃ ⇒ ≥ ∩ ≥ ∩ ≥2 2 1 2 2 2 1 2F F F A A D F F F A A D (48) 

Notice that the probability that both 3-dimensional confidence regions are satisfied simultane-
ously is upper and lower bounded as a bracketed quantity (both from above and below) in Eqs. 
47 and 48 and that this probability is less than any one of the 3-dimensional confidence regions 
being satisfied when considered all by itself. 

 
Figure 6: Utility of decision provided by one 2-D Ellipsoid Inclusion Test versus conclusion of 

decisions provided by Two independent scalar inclusion tests administered component-by-
component 

 
While the gist of the above discussion has been to show that both 3-dimesional confidence 
regions are nested subsets of what would otherwise be handled in a full consideration of the 6-
dimensional confidence region, and moreover, each 3-dimensional confidence region just views 
an offset subspace of the full confidence region, the main idea that we are warning about here is 
that this myopic view of concentrating only on the two larger confidence regions misses valuable 
information there (that is, in effect, ignored). While it is impossible to drawn pictures of the 6-
dimensional space and pictures of the 3 dimensional subspaces and represent that in a 2-dimen-
sional flat picture here, it is still rather easy to conceptualize it using the analogy of Figs. 5 and 6, 
moreover, it doesn’t elude the rigorous but tedious simple proof offered here. 
 

 16 



 
 

Figure 7: Point P is contained in both lower dimensional 2-D projections  
yet is not actually contained in higher dimensional 3-D ellipsoid 

 
The actual underlying situation depicted in Fig. 6 is an ellipse in 2-space and conclusions drawn 
on two simplified tests performed in the 2 constituent scalar subspaces incur increased errors of 
the first and second kind of “incorrectly thinking there is membership when there isn’t” and “in-
correctly thinking there is no membership when there is”. Fig. 7 depicts the wrong conclusion 
about containment being arrived at for point P (outside the 3-D ellipsoid) although both 2-D 
elliptical projections appear to contain it. This figure uses perspective in an attempt to adequately 
portray an ellipsoid in 3-space and its elliptical projections in a plane not yielding satisfactory 
decisions for the same reason of not seeing the whole story even when the 3-space ellipsoid is 
projected onto two separate planes (for a total of 4-dimensions) that are still not availed of the 
true full 3-dimensional view. A similar example can be concocted with 3 misleading 2-D 
projections, all orthogonal. (Recall in the standard engineering drawing class that three 
orthogonal planar perspectives were usually needed to remove the ambiguity in most 3-D objects 
[for a total of 6-D] and that still there are famous objects for which hidden lines still caused 
ambiguity to arise almost as if it were from an M. C. Escher painting). 
 
7. A More Robust Test Statistic Recommended for use to Avoid Ill-Conditioning 
 
The appropriate generalization of the statistic introduced in Sec. 4 as Eq. 13, applicable to the 
results of an ensemble average, representing NMD tracking algorithm estimator performance is: 

( ) ( ) ( ) ( ) ( ){ }1 ˆ ˆ
Nis t     =     ∑

N T

j i true i j i j i true i
j=1

-1
x t - x t P (t ) x t - x t  ,     (49) 

where all the entries in the ensemble average are scalars and all the realizations of the covariance 
matrix obtained from the target tracking algorithm should be invertible. The subscript j in the 
above represents the different sample realizations or trials (and not the vector components). Each 
covariance instantiation, obtained from the particular tracking algorithm under scrutiny 
should be positive definite (and not merely non-negative definite) because: 

jP ( )it
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1. it is the covariance for the entire state estimate, whose underlying filter model has 
independent constituents as a valid state variable model (only linearly dependent random 
vectors have an accompanying covariance that is not of full rank); 

2. as the covariance outputted from the tracking algorithm that is ostensibly a stable tracker, 
as a necessary condition for estimator stability, the associated Lyapunov function used to 
argue stability for the tracker is of the standard form:                                                                              

                                                    (50)  
and, as such, should possess an invertible covariance matrix. The above is necessary and 
sufficient for Kalman filter stability when there is an underlying linear system as detailed 
in [9, Sec. 4.2 and App. A], [10, App. C]  

ˆ ˆ( ) ˆV  =  
T

i j i i

-1
x x (t ) P (t ) (tx )

 
Another possible variation of the above that comes to mind (a variant of Eq. 14 that is even less 
appropriate to use for NMD) is of the form: 

( ) ( ) ( )( ) ( ) ( )( )
N

j
j 1

1
1ˆ ˆs ( )
Ni it t

=

−
 
 
 

∑
Τ

i true i i true ix t - x t P x t - x t ,              (51) 

where P(ti) is obtained from the Target tracking algorithm and not from sampled statistics and, as 
such, each should be positive definite and invertible (so the sum should be invertible as well and 
scaling by 1/N does not alter the outcome of being invertible). However, this version in Eq. 51 
isn’t theoretically justified and shouldn’t be used even though an appealing aspect is that the 
averaging sum of the Monte-Carlo estimates (Eq. 16) would likely go to Gaussian in distribution 
(by an invocation of the Central Limit Theorem) for a large enough N even if the underlying 
estimates from approximate nonlinear filtering algorithm were not Gaussian. 
 
Whether the test point x̂  is within the bounding ellipsoid of K-sigma's at each calculation time 
point  depends (as an if and only if statement) on whether the calculated statistic s is less than 
or equal to K. If s exceeds K, then the test point is outside the K-sigma ellipsoid centered on x

it
true. 

One can plot the instantaneous s vs. time (see Fig. 8 below) and just look at the possible crossing 
trend relative to horizontal lines at ordinate 1, ordinate 22, or ordinate 32, representing, 
respectively, 1-, 2- or 3-sigma's away from the goal of xtrue (where the ellipsoid is centered). 
 

Multiplier of uncertainty ellipsoid (for a Gaussian Distribution)  
both centered on the mean for: 

Dimension
: 
N 

Probability of 
Containment 

= 0.75 

Probability of 
Containment 

= 0.98 

Probability of 
Containment 

= 0.99 
1 K2 = (1.150217)2 =1.323 K2 = (2.326156)2 = 5.4119 K2 = (2.575849)2 = 6.635 
3 K2 = (2.02682)2 = 4.1083 K2 = (3.136463)2 = 9.8374 K2 = (3.368234)2 = 11.345 
6 K2 = (2.80018)2 = 7.8408 K2 = (3.877267)2 = 15.0332 K2 = (4.100244)2 = 16.812 

Table 2: K-sigma’s for specific Multivariate Gaussian containment probabilities 
 
(Table 2 was prepared using Chi-square statistics from [11, Table 2] and cross-checked using the 
computer program chi2inv.m from The Math Work’s Statistics Toolbox for MatLab, Ver. 6.5, 
Release 13. An alternate title for Table 2 would be “Score Values for Chi-Squared.”) 
 
From statistical considerations (assuming the errors are Gaussian, as can be explicitly tested for 
beforehand as discussed below), it follows from the supporting theory that: 
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N
2
j

j=1

1 ( )
N ir t∑ ∼ χ2

 with 6+N-1 degrees-of-freedom.    (52)  

 
Although the tracking filter approximation to ideal non-linear filtering looks to be linear if it is a 
variant of Extended Kalman Filtering (EKF), in reality it is nonlinear since internal parameters 
are linearized about the EKF’s previous estimate of the state. So this is yet another nonlinear 
operation on a Gaussian-like process (that yields a non-Gaussian output in general). However, it 
may be argued that the operations of an EKF are “almost” linear and so can be approximated as 
yielding a Gaussian process output but with a bias (which is unknown but can be estimated from 
realistic Monte-Carlo simulations at each time point ti, of interest). Later, this non-stationary 
aspect or time varying trend can be handled entirely within this framework by comparison to 
non-central Chi-square statistics. (There are two different tests of Normality within The Math 
Work’s Statistics Toolbox [jbtest.m, the Bera-Jarque parametric hypothesis test of composite 
normality, lillietest.m, single sample Lilliefors’ hypothesis test of composite normality] and 
programs there as well to handle non-central Chi-Square [ncx2cdf.m and ncx2inv.m] and both 
assume that the population’s true mean and variance are unknown and thus utilize Eqs. 16 and 17 
in deducing whether to accept or reject the null hypothesis H0 with significance level  that the 
sample is Gaussian [35].) 

α

 
If sufficient Monte-Carlo evaluation trials substantiate (from applying the averaging of Eq. 16) 
that: 

( ) ( )iˆE[ t ]  t ,≠ truex x i

i

              (53) 
by revealing that the particular estimation algorithm under test has a pronounced bias at the 
designated time point ti after the start of track for a specific target trajectory and designated 
radar sensor location, then this nonzero mean can be used with non-central Chi-square statistics 
replacing the indicated Chi-square statistics/table usage to be used throughout all of the above 
Eqs. 8 to12, 49, and 52. The appropriate scalar non-centrality parameter to be used in the look-up 
tables is: 

( ) ( ) ( )2
i it = t t ,δ Tb b               (54) 

where the algorithm’s bias at the specific time point for the designated algorithm, target 
trajectory, and radar sensor location is: 

( ) ( ) ( )
N

i i i j
j=1

1ˆ ˆt E[ t ] -  t ( ) ( )
N i it t − ∑true trueb x x x x .         (55) 

Please see discussion just before Eq. 53 above on recommended computer programs to perform 
calculations for non-central chi-square statistics. 

 
Figure 8: Comparisons of test statistic s to constant levels reveals when estimates are acceptably 

close to goal of xtrue 
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Notice from Eq. 49 that when the sample test statistic is below a designated threshold, as 
, this situation corresponds to: 2( )is t K≤

( ) ( ) ( ) ( )T 2
j j j

1
ˆ ˆ( )i true i i i true it t t t t

−
    − −    x x P x x

N

j=1

1
N ∑ K ≤

K≤ ⋅

K≤

K≤ ⋅

K=

 or, equivalently, 

( ) ( ) ( ) ( )
N T 2

j j j
j=1

1
ˆ ˆ( ) Ni true i i i true it t t t t

−
     − −     ∑ x x P x x ,         (56) 

which, for each index within the range 1  the following expression j j N,≤ ≤

( ) ( ) ( ) ( )T 2
j j j

1
ˆ ˆ( )i true i i i true it t t t t

−
     − −     x x P x x          (57) 

corresponds to each realization in the sum being within its corresponding K2-bounding 
ellipsoidal confidence region and by summing both sides yields: 

( ) ( ) ( ) ( )
N NT 2 2

j j j
j=1 j=1

1
ˆ ˆ( ) Ni true i i i true it t t t t K

−
     − − ≤     ∑ ∑x x P x x ,        (58) 

which, when rearranged, is just Eq. 56 above. For perspective, recall that the following (with an 
equals sign) represents the bounding surface of the n-dimensional ellipsoidal confidence region 
centered about xtrue: 

 ,           (59) ( ) ( ) [ ] ( ) ( )T 21ˆ ˆ( )i true i i i true it t t t t−− −    x x P x x
while for values of such that the quadratic form on the left hand side of the above being less 
than K

x̂
2 corresponds to the inside or being contained within the interior of the ellipsoidal 

confidence region; while for values of x such that the quadratic form on the left hand side of the 
above being greater than K

ˆ
2 corresponds to being external or outside of the ellipsoidal 

confidence region. Some simple transparent low dimensional examples are provided in Appendix 
A as a refresher to illustrate correctly choosing K2, manipulating it, and properly interpreting the 
confidence regions that it represents when there is a Gaussian probability measure associated 
with it. 
 
8. A Recommendation to use Proximity to Cramer-Rao Lower Bounds as a Gauge of on-
line Covariance Fidelity 
 
8.1 Review of analytical basis and procedure for evaluating CRLBs for NMD Target Tracking 
Under the standard assumption that the estimator is unbiased2, then the familiar form of Cramer-
Rao inequality encountered or invoked most frequently is: 

( )( ) ( ){ } [ ]
11 T

1B Bˆ ˆ ln I+ Fisher Information Matrix I+
x x

T
TE x x x x x E p z x

x x

−−

−  ∂ ∂ ∂ ∂        − − ≥ − ≡           ∂ ∂ ∂ ∂          

I



                 (60) 
where the inequality here for these matrices is interpreted in the matrix positive semi-definite 
sense (i.e., A > B ⇒ A-B > 0). Please see references cited in [15] for details. It is this  

form3 (under the widely invoked assumption that the estimator bias is non-existent or negligi-
ble) that has a RHS that is independent of the particular estimator being used and that may be 
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2 The bias referred to here is inherent to a particular estimator and is generally not directly related to any underlying 
fundamental biases arising for reasons other than the structure of the estimator being employed within a particular 
application. 



compared to a wide variety of distinctly different estimators as a single relative gauge through-
out. The CRLB methodology is used here to gauge the quality of filter performance in the 
tracking task. 
 
The above Cramer-Rao inequality arises in seeking to estimate an unknown parameter x using 
any estimator  and the measurement z(t), referenced above and available from the sensor as a 
time record, must be a non-trivial function of the unknown parameter x as  

x̂

( ) ( )( .,, tvtxhtz = )              (61) 

In the above, p(x|z) is the conditional probability density function (pdf) of x given all the 
measurements z, and v(t) is the measurement noise. In exoatmospheric target tracking, x is 
deterministic and satisfies a known nonlinear ordinary differential equation and v is additive 
Gaussian white noise of known covariance intensity, hence p(z|x) is known. 
 
Although other bounds exist like that of Barankin, the CRLB was selected for use as the familiar 
bound most appropriate for NMD application because it matches the situation and is tractable. A 
high-level overview of the CRLB methodology and its benefits and limitations may be found in 
[15] while it is specialized specifically for NMD exoatmospheric tracking in [16]-[18]. 
 
The CRLB being achieved means that the error of estimation term on the LHS of Eq. 60 touches 
the CRLB term on the RHS by satisfying the indicated inequality as an exact equality. For 
NMD/GMD target tracking, the lower bound should not generally be achievable (hence this 
CRLB is NOT expected to exactly match the average sampled tracking error variance compiled 
from N Monte-Carlo trials). 
 
This CRLB was derived by adapting a time-varying radar SNR to realistically correspond to fluctua-
ting PRF and other underlying signal processing as an enhancement of the fundamental methodology 
that evolved as tailored to this NMD radar application using the conventions laid out in [16]-[18]. 
The procedure of [16]-[19] already considered Pd < 1 since it included explicit consideration of the 
detection threshold settings and, moreover, used measurement reception times that corresponded to 
the time-tags for when measurements were actually received (so these CRLBs are a posteriori  
bounds).While [33] initially tries to tackle a more general case of a priori bounds, it found that 
approach to be intractable and so [33] then merely resorts to using the structure of CRLBs for 
handling process noise that is not zero (as occurs in indoatmospheric reentry tracking and not in 
exoatmospheric tracking, where Q=0). This is the big distinction between the CRLB approach of 
[33] and that of [16]-[19]. 
 
8.2 Insights into When and Why CRLBs sometimes Appear to have Weird Behavior  
There is frequently a small initial time segment in the beginning of an estimation error plot when 
an estimator’s covariance lies below the CRLB (as it should, considering the approximations that 
are usually invoked up to that point, as will be explained) before switching to the usual situation 
of the CRLB lying below. Sometimes the initial values are so large and far off that, by the auto-
matically adjusted vertical scale inherent in many plot packages, this initial switch appears to be 
such a proportionately small segment of the figure that it doesn’t raise suspicion or concern 
enough to be explained to an audience of readers. The same type of thing occurred for each of 
                                                                                                                                                             

I3 The summarizing notation appearing on the Right Hand Side (RHS) in Eq. 60 is known as the Information 
matrix prior to matrix inversion, after which the entire expression (after ) is the so-called or so-
designated Cramer-Rao Lower Bound (CRLB), which can be numerically evaluated. 

B x 0∂ ∂ →
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Farina's four estimators in [34]. To the present author, this situation is a mark of “honesty in the 
preparation of the results” (but impedes a presentation somewhat when the speaker has to stop 
and explain why an apparent bewildering situation occurs of the direction of the expected inequ-
ality flipping and CRLB being above the sampled ). An explanation was not given in [34] nor 
has it been given anywhere else to this author’s knowledge so we will do so here now.  

σ

 

The explanation is because of that numerator factor ( in Eq. 60 that is needed for CRLB to 
be below ALL the time, where B is the bias in the estimator. Since we don't usually have B explicitly 
available and even when we do, its sensitivity to the parameter (in this case the state vector) being 
estimated needs to be evaluated as the indicated derivative (which is usually not conveniently tract-
able) so it is usually ignored entirely since it can't be evaluated anyway and we focus instead on the 
denominator term (which is the inverse of the Fisher Information matrix), which we can evaluate nu-
merically. The numerator term can be a magnifier or a minimizer, depending on whether it is greater 
that 1 or less than 1 and it changes with time. Since estimators frequently proceed to have a steady-
state bias (where

)2I+ B x∂ ∂

B x∂ ∂

≈

 becomes zero), the exact CRLB expression (numerator and denominator) 
eventually converges to the approximate CRLB expression (involving denominator alone). Since we 
frequently only have explicit access to the denominator alone, we usually use just that and wait past 
the initial transient until it is appropriate to compare against because only then do we have that the 
right hand side CRLB , where it is reminded that here is the Fisher Information Matrix.-1I I  
 
8.3 Analytical Derivation of the CRLB for Target Tracking situations devoid of Process Noise 
(e.g., as occur in ballistic trajectories that are exclusively exoatmospheric) 
The CRLB that is treated here goes beyond just using the historically familiar per pulse CRLB 

angle measurement error4: 3

1.6 2 ( )SNR tθ
θσ =
⋅

 (in [16]-[19]) since our CRLB goes further to 

additionally utilize (1) information provided by the target dynamics model over time in an 
inverse square gravity field, (2) the initial (starting) covariance P(0) of the tracking filter as 
handed-over5, and (3) the structure of the radar as a measurement sensor/device having additive 
Gaussian measurement noise with parameters including (3a) explicit use of the radar range 
uncertainty due to resolution size of the range gates and (3b) the monopulse SNR time-record 
with its adaptive step size (as a consequence of a realistically varying PRF) as it affects the 
corresponding angle uncertainty. [However, one CRLB version used the SNR records simulated 
by TD/SAT and each sample function realization interpolated to common times throughout (and 
interpolated) and then averaged (by Dan Pulido, previously at General Dynamics using MatLab) 
to obtain SNR values at designated periodic times, thus providing smooth CRLBs as an envelope 
for comparison to estimator performance.] 
 
For UEWR application, which has additive Gaussian white measurement noise v(t), Eq. 61 has 
this further more benign and accommodating structure to be exploited: 

),(),()( tvtxhtz +=               (62) 
and since the equation for the system evolution is essentially deterministic (with Qc=0 ), then the 
pdf's of interest here (to be used in numerically evaluating the CR lower bound of Eq. 60) are of 
the form:  
                                                 
4 Within this notation, Θ3= 3 dB receive sum-pattern beamwidth. 
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5 We used a standard hand-over covariance of (100 km)2 for all three components of the position block and (100 
m/sec)2 for all three components of the velocity block. Physically, this should come from SBIRS for NMD. 
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Now taking natural logarithms on both sides of the above pdf yields: 

( ){ } ( )( ) ( )( ) ( )
1

1 2 2
1ln ln 2
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which upon taking the gradient is: 

( ){ } ( ) ( )(1ln .
h x

p z x R z h x
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Τ Τ
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)            (65) 

When the above expression is post-multiplied by its transpose and expectation taken throughout, 
the result is: 

( ){ } ( ){ } ( ) ( )( ) ( )( ) ( )

( ) ( )

1 1

1

ln ln

                                                          

R

h x h x
R

x x

h x h x
p z x p z x R E z h x z h x R

x x x
Τ

Τ Τ
Τ− −

−∂ ∂

∂ ∂

  ∂ ∂∂ ∂   Ε = − −    ∂ ∂ ∂   

=

x∂  (66) 

Finally, over corresponding discrete-time steps (not necessarily uniform), the total pdf of 
independent (white) measurements is the product of each individual pdf of the form of Eq. 63 as 
p(z1|x(0))p(z2|x(0))p(z3|x(0)) … p(zk|x(0)), where each pdf for each constituent measurement here 
focuses on or is conditioned on the initial condition for the deterministic system equation. Once 
the initial condition x(0) is known with confidence, then the time evolution of the deterministic 
system is completely determined (as a consequence of initial condition observability). The 
corresponding information matrix for each of these measurement time points is of the form of 
Eq. 66 so the aggregate is of the form6:  

( ) ( ) ( ) ( ) ( ) ( )1

1
,0 , , , ,

Tk
T

j j
j

h x h x
k k j R j j

x x
− −

=

∂ ∂
= Φ Φ

∂ ∂∑I 1 k j−       (67) 

for k > j, where the transition matrix  and, likewise, 
corresponds to an evaluation of the system matrix linearized about the true state. Now, when 
there is a finite initial covariance being utilized by the estimator as tracking commences, then 
there is an additional term that should appear in the above Information matrix to properly reflect 
this situation, as depicted as the first term on the RHS here: 

( ) ( ) (11 , ,k j k j j k
−−

∆
Φ = Φ = Φ   ),

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (1 1 1 1
1

,0 ,0 0 ,0 , , ,0k
j jj

h x h x
k k P k k j R j j

x x
−Τ − − −Τ − −

=

∂ ∂
= Φ Φ + Φ Φ

∂ ∂∑I )k    (68) 

In either the case of Eq. 67 or Eq. 68 holding, the Information matrix can be interpreted or 
formulated as evolving recursively with each received measurement arrival time as: 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1,0 , ,0 , ,k

h x h x
k k j j k j R k k

x x

Τ
−Τ − −∂ ∂

= Φ Φ +
∂ ∂

I I k

                                                

       (69) 
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6 After taking the natural logarithm of the aggregate pdf, the exponents in the Gaussian distribution correspond to 
the indicated sum, after performing a gradient and taking expectations, as illustrated in detail above in Eqs. 63 to 66 
for just a single measurement for clarity. 



and, as such, may be implemented within software as merely a loop (but by observing all the 

constraints and coordinate conventions, where h
x

∂
∂

 is evaluated within the ECI frame and h
x

∂
∂

 is 

evaluated in the (E,N,U) frame7 with corresponding translation offset to the location of the 
tracking radar)8. We have particular interest in the total position error and the corresponding total 
velocity error to determine how well we are actually doing in tracking a target complex. To this 
end, we must rigorously contort the inequality of Eq. 60 to a form that we can use. This is 
accomplished by properly applying matrix operations that yield the expressions that we seek9as: 
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and 
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and then by taking the trace of a matrix throughout10, respectively, yields radial position error 
variance: 

11 12 13

21 22 23 11 22 33

31 32 33

2 2 2
11 12 13

2 2 2 2 2 2
11 22 33 21 22 23

2 2 2
31 32 33

2 tr tr positionposition

crlb crlb crlb

crlb crlb crlb crlb crlb crlb

crlb crlb crlb

CRLB
σ σ σ

σ σ σ σ σ σ

σ σ σ

σ + ++ + =

   
   = = ≥ =   
     

               (72) 

and total velocity error variance: 

 
7 A representation in sine space centered within the antenna array is recommended for consistency with UEWR. 
8 Notice that nothing was presumed of the estimator in deriving and evaluating Eq. 60 beyond the underlying 
measurement structure of Eqs. 61, 62 and the availability of all measurements up to the current time k. Alternative 
estimators that “smooth” by estimating the state xk using measurements beyond k may violate this assumption and 
this CRLB but they aren't real-time. The appropriate CRLB to correspond to an estimator that uses measurements 
beyond the current time of interest (such as in “sliding window” smoothing or in “fixed point” smoothing, or BLS) 
should just have the additional corresponding terms beyond the current time also included in Eqs. 68 and 69. 
9 Pre- and post-multiplying A > B by the same matrix L yields LALT > LBLT. 
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10 The matrix inequality A > B implies that trace[A] > trace[B]. 
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and, finally, by taking squareroots throughout11, respectively, yields: 

2 2 2
11 22 33 11 22 33position positioncrlb crlb crlb CRLBσ σ σ σ

∆

= + + ≥ + + =          (74) 

and  

2 2 2
44 55 66 44 55 66velocity velocitycrlb crlb crlb CRLBσ σ σ σ

∆

= + + ≥ + + =           (75) 

Please notice in the above that we do not decouple position and velocity states but merely project 
both of the 6 x 6 matrices of Eq. 60, respectively, into the position subspace (as Eqs. 70, 72, 74) 
and into the velocity subspace (as Eqs. 71, 73, 75) for viewing in a plotter display. These 
instantaneous inequalities are now the theoretically justified comparisons that we invoke in 
monitoring performance of any target tracking algorithm under scrutiny as a function of time.  
 
8.4 Assessing EKF Tracking Performance BASELINE: Comparing Existing Standard EKF to 
the Computed CRLB 
We illustrated the CRLB calculations relative to ensemble sampled Monte-Carlo results for the 
BMEWS radar: Thule12 tracking an RV on a ballistic trajectory (post cut-off) having the 
following position and velocity states at cut-off time normalized to to=0 seconds:  

( ) [ ]TT
0 -3217302.678,  3527834.349,  4535013.695,  -767.670,  -2520.638,  5065.414x t = ,      (76) 

where in the above, the units are in meters for position and meters/sec for velocity, respectively. 
The simulations of the radar case [using known BMEWS published Cobra Dane measurement 
covariance’s for range and angle being13  

rangeσ =30 meters (per pulse); 2.2
1.6 2 ( )angle SNR t

σ =
⋅

 degrees (per pulse),       (77) 

respectively14] appear to be performing properly, as depicted in Fig. 3-1 of [18] for the case of a 
nonlinear target (corresponding to use of the system truth model used for simulating the 
trajectory, but linearized about the estimate within the EKF) while both situations utilized the 
same  nonlinear measurement model. Both parameters in Eq. A.26 of [18] (with SNR varying 
with time) are used in Eq. A.69 of [18] with . For position error at time t (and E angleσ σ≡

                                                 
11 Scalar a >b >0 implies that ba ≥ . 
12 This 10 MHz bandwidth Thule radar (AN/FPS-123V5), with a beamwidth of 1.8o is located in Greenland at 
Latitude = 76.56o N, Longitude = 297.70o E. The actual range resolution is determined by beam forming to reduce 
sidelobes and assumptions on range accuracy of from as little as 15 meters (for the 10 MHz signal) up to more than 
30 meters (for the 5 MHz signal) shouldn't significantly alter the subsequently computed results since sensitivity to 
the range uncertainty parameter is low as compared to the effect of the more dominant angle uncertainty. 
13 Expressed within our software in MKS units with angles in radians, respectively. 
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14 The radar's intrinsic range gate size dictates the effective range resolution, which is a constraint that is less 
restrictive than the angle acuity. 



similarly for corresponding velocity with obvious direct replacement substitutions in the LHS of 
Eqs. 74 and 75), calculated as  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )2 2ˆ ˆ ˆtrue i true truex t x t y t y t z t z t− + − + −
2

,         (78) 

the corresponding sampled variance over N trials (N=250) being15: 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

2 2

1

2
2 2

1

1 ˆ ˆ ˆ

1 ˆ ˆ ˆ          

N

true i true i true iN
i

N

true i true i true i
i

x t x t y t y t z t z t
N

x t x t y t y t z t z t
N

=

=

 = − + − + −  

 − − + − + −  

∑ ∑

∑

2

2

   (79) 

were depicted for UEWR as diagrammatic plots in [22]-[24], [53] (N=1,000 in 1997 results). 
 

 
Figure 9: CRLB on radial velocity accuracy (Threat 1)[18] 

 
 
9. An Offer to Perform Specific Tasks that Support Boeing’s Covariance Fidelity Analysis 
and Simulation Effort to Arrive at Appropriate Specs 
 
Precedents for using a test statistic s of the form of Eq. 49 as a consistency test between 
estimates and variances within a tracking filter context for EKF’s may be found in [12, p. 42, 
Eqs. 1.6.3-1,-2 ] and in [13, Sec. 5.4]. While we at TeK Associates have prior experience using 
this particular test statistic ourselves (since it was originally used for the application of [30]), we 
eventually modified it to use the methodology of [26]–[30] as an application outcome of original 
directed research. This was needed for a real-time monitoring test of a newly introduced 
navigation system to avail the test with more leeway before it alarmed (to alert the technician to 
a failure of the new system component, where the old was still being conservatively retained as a 
warm stand-by system for back-up and could then be switched in if needed). 
 
Under a contract from Boeing, TeK Associates would be happy to review plots of the s statistic 
of Eq. 49 versus time in trying to access appropriate behavior as compared to the probability of 
containment of its associated underlying Gaussian Confidence Region(s) interpretation. Before 
deciding whether to use two 3-D confidence region assessments or one 6-D confidence region 
assessment, both options should be used for testing before a final decision is made to use the best 
(by figuring out which is better based on performance and not just on analytics such as what we 
have provided here). Notice from the form of Eq. 49 that too large (conservative or pessimistic) a 
value appearing as the inner product matrix P-1(t) would yield a value for the test statistic s(t) 
that is smaller than it should be. We seek veracity in the tracker algorithm outputted covariance 
P(t) not just smallness in s(t) resulting from largeness in P(t).  
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Beyond just having a measure to correctly appraise and gauge the outputted P(t), would it not be 
better to get to the source of the problem and improve the outputted values of P(t) itself by 
further tuning the two EKF’s used as the UEWR target tracking algorithms? Other alternatives 
would be to augment them as either an iterated EKF (to improve the linearization) or by using an 
additional Hessian (2nd derivative) term as well as the current Jacobian (1st derivative) term to 
better capture the effect of the explicitly known nonlinearities present in the system and 
measurement models. There are other approaches to estimator amelioration as well and TeK 
Associates has recently submitted an unsolicited proposal on 20 May 2003 (still under review) to 
the Missile Defense Agency (MDA) to perform these tasks. 
 
In seeking to use the CRLB methodology as a way of gauging the Covariance Fidelity for on-line 
tracker specs, we now realize (from dealing with the three confidence region alternatives 
considered herein) that instead of just looking at 3 x 3 position error and 3 x 3 velocity error as 
summarized, respectively, into just total position error and total velocity error (as we did before), 
in some cases we should look at each off-diagonal component as well since these define how the 
confidence regions tilt in the state space. We realize that this means looking at n(n+1)/2 = 
(6)(7)/2=21 plots (but at least not having to look at 6 x 6 =36 plots since the covariance as well 
as CRLB’s are symmetric)! TeK Associates already has the above-described CRLB methodo-
logy coded up in MatLab. Of course, it would now need to be modified to also accommodate 
plotting all 21 covariance components but that is a minor modification. TeK Associates has 
already coded up a simple ballistic target simulator in Simulink with inverse squared gravity (but 
with no J2 present) that is appropriate to use for this application. As before, TeK Associates 
expects to be given the SNR time record (from a more detailed simulator like TD/SAT was and 
in terms of seconds in time since launch) for all missions that it handles. TeK already has 
corresponding target initial conditions in terms of position and velocity for several trajectories 
(~30+) in their unclassified post-launch phase. The lure or motivation for using CRLB as a 
comparison to target tracker on-line covariances is that these CRLB’s are: (1) linearized about 
the ideal true trajectory and are error free while target tracker EKF covariances are obtained from 
non-ideal linearizations about their last estimate; (2) these CRLB’s are for Q=0 while target 
tracker EKF’s have tuning corresponding to non-zero Q and so should be larger. Hence 
proximity of target tracker on-line covariances to CRLB should be a good gauge of Covariance 
fidelity (especially if we look at all 21 components for closeness). 
 
A detail is offered here now regarding how to conveniently handle n(n+1)/2=6(6+1)/2=21 
components constituting the comparison test of tracker-algorithm-generated covariance for better 
(closer) proximity to Cramer-Rao Lower Bound. Each component of interest in the comparison 
to a CRLB template is a function of time over a specified mission time interval. Since we seek 
the algorithm with “best proximity to ideal CRLB templates” as possessing greater covariance 
fidelity, we should state how we would automate such comparisons or else risk being 
overwhelmed with a high dimensional comparison of 21 items where some components could be 
closer to their CRLB templates than other components at various times during a particular 
mission (of specified finite duration from t0 until tf). The comparison problem is compounded 
when other candidate tracker algorithms are considered in the mix. While this initially appears to 
be a hard problem, we state here how it may be simply handled. 
 
Our guide here will be three observations: two about distance measures and one about the 
structure of the practical problem facing us involving CRLBs with initial transients (Sec. 8.2):  
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1. Several candidate distance measures are available for us to use as provided by the field of 
mathematics known as Functional Analysis, where these distances are routinely used to 
measure the closeness of one function to another function within the “space of functions” 

such as ( )
0

2( , ) ( ) ( )ft

t
g f t g t dt−∫d f , for example. The situation is simplified (or less 

stressing) when the domain of the functions of concern are limited to a finite interval of 
the real line, as is the case for out application on [t0, tf] rather than over an infinite or 
semi-infinite interval (i.e., (-∞,∞) or [0, ∞)). 

2. The linear combination of distance measures is again a distance measure. 
3. It is acknowledged that initial transient that is present in a standard CRLB evaluation 

clouds the issue. It is safer to wait until after the initial transient has died out (as at, say, 
by taithdo) before making comparisons of outputted tracker algorithm covariances to 

CRLB templates: ( )2d( , ) ( ) ( )f

aithdo

t

t
f g f t g t dt−∫ . Of course, there is a discrete-time 

analog to all of the above that uses sums rather than integrals so it is even simpler. 
 
The above observation 2 enters in defining the final scalar criterion to be used as a gauge to order 
the results of the comparisons. Since principal diagonal terms are more important than off –dia-
gonal terms that only represent the tilts, we suggest using something like 
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]

where d has already been defined above in Items 1 and 3, and the setting of the weight as 
 should be fixed beforehand. In order to emphasize the proximity of main diagonal 

components more than the off-diagonal components, it should be the case that . 
There are other candidate function space distances to possibly be used for such a comparison. 
The one that is actually used and the form of weightings in the linear combinations could osten-
sibly be specifically tailored to be different for each separate component. The results should be 
compared to what common-sense human-in-the-loop eye-ball comparisons would also conclude 
from these plots (for calibration) before they are relied upon and calculated automatically as 
numerical summaries of proximity. 
 
TeK Associates should also be able to find some multidimensional hypothesis tests in [35] that 
are useful for interpreting or augmenting the s test statistic of Sec. 7. TeK Associates seeks to go 
further with the associated interpretation of s(t) as confidence regions [two 3-D vs. one 6-D] and 
look into applying results of [36] in this effort to further delineate and understand. 
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How much time all this takes depends on how much of this job Boeing wants us to do and how 
many diverse mission scenarios of target aim point/launch point/radar location are to be 
considered and how many alternative target trackers need to be evaluated. Based on our prior 
experience as well as literature searches, TeK Associates has a certain proprietary perspective 
and preferred prioritization on what EKF modifications should be tried (as discussed in our 
MDA proposal, mentioned above). 

Appendix A: Simple Review of Some Equations Describing Ellipsoids 
 
The equation of a 1-sigma ellipsoid in 2-D (i.e., an ellipse) about the origin is: 
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The equation of a 1-sigma ellipsoid in 3-D about the origin is: 
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    (A-2) 

The above two numerical examples have their major and minor axes of the ellipse aligned with 
the underlying coordinate axes. The equation of a 1-sigma tilted (non-diagonal Σ) ellipsoid in 3-
D about the point (xo, yo, zo) is: 
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−
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= − − − −
 − 

∑          (A-3) 

The equation of a c -sigma tilted (non-diagonal Σ) ellipsoid in 3-D about the point (xo, yo, zo) is: 
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−
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= − − − −
 − 

∑ 0

          (A-4) 

Notice that by taking c=K2 in Tables 1 or 2, the above ellipsoids correspond to the confidence 
regions with prescribed probability of containment for Gaussianly distributed random variables. 
It is K2 times the covariance but only K times the standard deviation (as the squareroot of the 
covariance).  

Two planar numerical examples to aid intuition and interpretation: 
 
The equation of a 1-sigma ellipse is: 
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In the above, observe that,  and λ
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min=32 and λmax=42. 

Circumscribed Circle:  x2 + y2 = λmax ⇒ circle radius = maxλ  = 4 

Inscribed Circle:   x2 + y2 = λmin ⇒ circle radius = minλ  = 3 
 
The equation of a C -sigma ellipse is: 
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or, equivalently, by dividing throughout by C yields: 
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where, C  and λ







=∑ 2

2

30
04

C
C

min [ ]∑C  = C 32 and λmax [ ]∑C  = C 42. 

Circumscribed Circle:  x2 + y2 = λmax ⇒ circle radius = maxλ  = C  4 

Inscribed Circle:   x2 + y2 = λmin ⇒ circle radius = minλ  = C  3, 

Where for 0.97 SEP, C  = 85.8  = 2.97 ≈ 3 
 

Same spherical radii result for rotated ellipsoids 
For an un-rotated original: 

              (A-8) 11 −
= ∑Tx x

-1

A subsequent rotation is merely represented as a unitary transformation 

 ,           (A-9)  , with = Tx Uw U = U

Which, upon applying, results in: 

  ,           (A-10) 1 = ∑ -1T Tw U Uw

However the eigenvalues (hence the radius of the circumscribed and inscribed spheres) remain 
the same since 
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exactly as before the rotation. The above steps carry over exactly for the n-dimensional case as 
well. When the U in the above is the normalized eigenvector matrix corresponding to Σ, then the 
new coordinate axes are again orthogonal and the ellipsoids’ major and minor axes are aligned 
with the underlying coordinate axes. This corresponds to the original matrix Σ now being 
diagonalized in the resulting coordinate system. Notice that the result of evaluating the quadratic 
form on the right hand side of  Eq. A-8 remains the same no matter what coordinate system it is 
expressed in (as is also the case for both determinates and traces of a matrix being invariant to 
similarity transformations). 
 
Appendix B: Proofs of Lemmas associated with TeK’s new Results 
 
Proof of Lemma 1: 
Block multiply out the following: 
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to yield the following four equations to be solved as indicated next.  
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Combine the first with the result of the third above to yield an equation that may be solved for L 
as follows: 

( )1 12 1 12 .   + = ⇒ = = ⇒ =   
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2 12 3 2 12 1 12 2 12 3 1 12 2 12

-1
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   (B-3) 
Similarly, combine the second with the result of the fourth above to yield an equation that may 
likewise be solved for Q as follows: 
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12 2 3 12 1 12 2 3 2 12 1 12 3 2 12 1 12
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               (B-4) 
and, finally, from the above original second and third results, respectively, we have that  
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That the two indicated inverses encountered above do in fact exist (by the necessary intermediate 
quantities being nonsingular) is established as intermediate steps in the proofs of Lemmas 3 and 
4 coming next. Since the matrix inverse is unique, that which was to be proved has now been 
demonstrated. 
 
A more general result for matrix partitioning and their corresponding inverses even when the 
original matrix is not symmetric is available in [22, p. 99]. 
Theorem 8.5.11. Let T represent an m x m matrix, U an m x n matrix, V an n x m matrix, and W 

an n x n matrix. Suppose that T is nonsingular. Then, , or, equivalently, , is 

nonsingular if and only if the n x n matrix  
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Proof appears in the reference cited above and is straightforward. Q.E.D. 
 
Proof of Lemma 2: Please see result in [24]. Q.E.D. 
 
Proof of Lemma 3 (all inequalities below are in the matrix positive definite or positive semi-
definite sense): 

,  (all block diagonal elements of a positive definite P must also be positive definite),
,

,  (  need not be of full rank since only seek positive semidefiniteness in this step),≥

2
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2
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P P P 0 P  
,

,

.

− ≤

  

  > > 

-1 T
12 2 12

-1 T
1 12 2 12 1

-1 T
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P P P 0

0 < P - P P P < P

P - P P P P 0
Q.E.D. 
Proof of Lemma 4 (all inequalities below are in the matrix definite or semi-definite sense): 

    
P >

 
,  (all block diagonal elements of a positive definite P must also be positive definite),

,
1
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1

0
P > 0
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Q.E.D. 
 
In the proof of both Lemmas 3 and 4, we invoked properties of Lemma 2 by requiring the matrix 
difference within brackets above to also be strictly positive definite as well by establishing that 
all the indicated inverses exist. This aspect is mentioned here to let the cognizant reader know 
that we are aware of the subtle distinction regarding a slight lapse of rigor in [7] along these lines 
in assuming that the intermediate inverses existed for submatrices P1 and P2. However, in the 
interest of expediency, we have slightly simplified just this step here that we have previously 
rigorously proved before in [24, Eq. 7] (being strictly positive definite when the original matrix 
is so) and merely quote in Lemma 2. If the matrix manipulations immediately above as steps in 
the proof are unfamiliar, they are proved rigorously in the Appendix of [27] that reports on one 
aspect of work done earlier [26]-[32]. Several historical numerical tests of positive 
definiteness/semi-definiteness contained in 1980’s software code (in navigation systems and 
sonobuoy target trackers) is revealed in [25] to be fallacious. 
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