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Talk Outline

• What is CRB and why do we need it?

• CRB for nonlinear filtering

• CRB for jump Markov processes

• CRB for uncertain data association

• Multi-target CRB

• Sensor allocation using CRB

• Summary
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What is Cram ér-Rao bound?

• CR inequality provides a lower bound on the achievable mean-square esti-
mation error.

• The CRB for unbiased estimators mainly in use (although the formulation
for biased estimators is also available);

• We distinguish two cases:

⋄ deterministic parameter estimation

⋄ stochastic parameter estimation (a.k.a. posterior CRB)

• Existence of the CR bound not guaranteed.
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Some history

• The CR inequality was first stated by Ronald Fisher (1925).

• Proven by Daniel Dugué (1937).

• Harold Cramér, C. R. Rao (independently) merely re-derived the bound
(1945)!

• H. Van Trees (1968) introduced the bound to a wider engineering commu-
nity.
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Applications of the CR bound (tracking context)

• Theoretically possible to predict the best achievable 2nd-order error perfor-
mance for a target tracking problem (before you develop an algorithm);

• Aid in a tracker design: one can assess the effects of approximations em-
bedded in tracking algorithms (by comparing RMS errors with the bound);

• Sensor management applications:

⋄ radar scheduling;

⋄ spatial deployment of sonobuoys;

⋄ observer trajectories (bearings-only tracking, cooperative UAVs, etc)
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Definition (static case)

• Suppose x is an unknown random parameter vector (dim nx)

• Z = (z1, . . . , zk) is a vector of measurement data

• Let x̂ = g(Z) be an unbiased estimate of x.

• The Cramér-Rao inequality:

C
△
= E

{

[g(Z) − x] [g(Z) − x]T
}

≥ J−1

• J is the (Fisher) information matrix with elements:

Jij = −E

[

∂2 ln p(x,Z)

∂xi ∂xj

]

(i, j = 1, . . . , nx)
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Some properties of the bound

• Inequality C ≥ J−1 means that the difference C − J−1 is a positive semi-
definite matrix;

• Since p(x,Z) = p(Z|x) · p(x), the information matrix decomposed as:

J = Jz + Jp

where Jz represents the information obtained from the data and Jp repre-
sents the prior information

• If prior pdf p(x) is a multivariate Gaussian with covariance P0, then
Jp = P−1

0

• The diagonal elements of J−1 are lower bounds of the corresponding mean-
square error.
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Nonlinear Filtering Problem (dynamic systems)

Notation:
• k is the discrete-time index
• xk is target state vector at time k

• zℓ
k is the measurement vector at time k from sensor ℓ = 1, . . . , L

• wk, vk are independent white processes
• fk(·), hk(·) are nonlinear functions

xk = fk−1(xk−1) + wk−1

zℓ
k = hℓ

k(xk) + vℓ
k

for k = 1,2,3, . . .

The assumption is that the initial state x0 has a known pdf p(x0).
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The CR bound for the Nonlinear Filtering Problem

• Research topic for about three decades:
⇒ an excellent review by T. H. Kerr (1989)

• Tichavský et al. (1998): Riccati-like recursion for the calculation of Jk.

Jk+1 = Jp(k + 1) +
∑

ℓ

Jℓ
z(k + 1)

⋄ Jp(k + 1) is prior (or predicted) information matrix

⋄ Jℓ
z(k + 1) is information matrix due to measurement from sensor ℓ =

1, . . . , L at time k. Further on we assume ℓ = 1 for simplicity.
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The CR bound for the Nonlinear Filtering Problem (Cont’d)

• If process noise wk ∼ N (0,Σk), and Σk non-singular, then

Jp(k + 1) = Σ−1
k − Σ−1

k E{Fk}
(

Jk + E{FT
k Σ−1

k Fk}
)−1

E{FT
k }Σ

−1
k

where Fk =
[

∇xk [fk(xk)]
T

]T
is the Jacobian of fk(·).

• If measurement noise vk ∼ N (0,Rk), and Rk non-singular, then

Jz(k) = E

{

HT
k R−1

k Hk

}

where Hk =
[

∇xk [hk(xk)]
T

]T
is the Jacobian of hk(·).
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Nonlinear Filtering: Deterministic case

• In the absence of process noise, i.e. wk = 0, target state xk is an unknown
deterministic parameter (knowing x0 we can compute xk for any k);

• The expectation operator E disappears; a simple recursive formula [Taylor,
1979]:

Jk+1 =
(

F−1
k

)T
JkF

−1
k + HT

k+1R
−1
k+1Hk+1

• Observation: This is identical to the covariance matrix propagation formula
for the Extended Kalman filter! There is only one difference: here we use
true values of xk to evaluate Jacobians Fk and Hk.

11



Examples: Bearings-only tracking

• Bearings measurements collected asynchronously by distributed sensors
Time

0

Sensor 1

Sensor 2

Sensor 3

• Target moving with a (nearly) constant velocity (linear dynamics);

xk =
[

xk ẋk yk ẏk

]T

• Sensors are mobile; sensor state vector is known:

xℓ
k =

[

xℓ
k ẋℓ

k yℓ
k ẏℓ

k

]T
, ℓ ∈ {1,2, . . . , L}
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Examples: Bearings-only tracking (Cont’d)

• Measurement equation (nonlinear)

z
ℓk
k = h

ℓk
k (xk) + v

ℓk
k , h

ℓk
k (xk) = arctan

yk − y
ℓk
k

xk − x
ℓk
k

• z
ℓk
k is a measurement from sensor ℓk at time tk;

• v
ℓk
k is measurement noise in sensor ℓk: zero-mean white Gaussian, with

variance Rℓk = σ2
ℓk

.

• Estimation problem:
Given sensor messages Mk = {(ti,x

ℓi
i , z

ℓi
i )} (i = 1, . . . , k), estimate xk.
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Examples: Bearings-only tracking (Cont’d)

Single mobile sensor (must manoeuvre to observe the target state)
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Examples: Bearings-only tracking (Cont’d)

Two Mobile sensors: Sensor 1 as before; Sensor 2 reports only at: 31.6s,
47.6s, 63.6s, 79.6s, 95.6s, 111.6s
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Examples: Tracking a Ballistic Object on Re-entry

• Problem:

Sequential estimation of kinematic parameters (position, velocity) of a bal-
listic object re-entering the atmosphere

• Practical applications: Surveillance for missile defence (e.g. scud missiles)

• Problem difficult due to the nonlinear object dynamics;

• Long history [Athans et. al. 1968; Mehra 1971; Gelb 1974; Austin 1981; Zarchan 1994;

Julier et al. 2000]
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Ballistic Object on Re-entry: Dynamics
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• 1D (vertical) motion
• Only two forces act upon the object: drag (air

resistance) and gravity
• Differential equations:

ḣ = −v

v̇ =
ρ(h) · g · v2

2β
− g

where
⋄ h - object height;

⋄ v - object velocity;

⋄ β - ballistic coefficient (depends on mass, shape,
cross-sec.);

ρ(h) = γ · e−ηh (air density);
g = 9.81m/s2
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Ballistic Object on Re-entry: Dynamics & measurements

• State vector xk = [hk vk βk]
T ;

• Using Euler approx. with a small integration step τ

xk+1 = fk(xk) + wk

where fk(xk) is nonlinear due to drag D(xk) =
g·ρ(xk[1])·x2

k
[2]

2xk[3]

• Process noise: wk ∼ N (0,Σ)

• Radar is measuring target height (range) every T ≥ τ seconds;

• Measurement equation is linear:

zk = Hxk + vk

where H = [1 0 0] and vk ∼ N (0, R = σ2
r ).

Ref: B. Ristic, S. Arulampalam, N. Gordon, Beyond the Kalman filter, 2004 (chapter 5).
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Ballistic Object on Re-entry: Trajectory

• h0 = 60960 m;

• v0 = 3048 m/s;

• β0 = 23948 kg/ms2 (corresp. mass of 500 kg)
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Ballistic Object on Re-entry: CR bound

• R = (200m)2;

• σβ = 7184 kg/ms2
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CRB for switching dynamic models

• Object motion sometimes must be modelled using more than a single dy-
namic model;

• Typical motion models: constant velocity, constant acceleration, coordinated
turn, etc.
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Switching Dynamic model

• Multiple switching linear dynamic models with additive Gaussian noise:

xk+1 = Fk(rk+1)xk + wk(rk+1)

• rk+1 specifies the target motion model (or regime) which is in effect during the time interval
(tk, tk+1];

• wk(rk+1) ∼ N (0,Σk(rk+1));

• The evolution of motion model sequence is modelled by a time-homogeneous Markov chain
with known:

⋄ transitional probabilities

πij
△
= P{rk+1 = j|rk = i}, i, j ∈ S

△
= {1,2, . . . , s}

⋄ initial motion model probabilities:

p1(i)
△
= P{r1 = i}, i ∈ S

• Required to estimate both xk (continuous-valued) and rk (discrete-valued):
Hybrid estimation!
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Error Bounds for switching dynamic models

• Impossible to derive exact Cramer-Rao lower bounds

Requires differentiation of terms such as log p(rk+1|rk)

• Alternatives:

1. Explore more general bounds than the Cramer-Rao bound

e.g. Bhattacharya, Bobovsky-Zakai, Weiss-Weinstein lower bounds

Problem: computationally expensive!

2. Develop an approximate Cramer-Rao lower bound

a. Conditioning on the regime sequence (i.e. enumeration bound)

b. Using best fitting Gaussian distributions [Hernandez, Ristic, Farina, 2005]
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Conditioning on the regime sequence (enumeration bound)

• Let: ρn
k , (rn

1, . . . , rn
k) be n-th regime sequence (n = 1,2, . . . , sk)

• Then easily shown:
E

{

[x̂k − xk] [x̂k − xk]
T
}

≥

sk

∑

n=1

P(ρn
k) · [J

n
k ]−1

• The RHS gives the enumeration bound

• P(ρn
k) is the (prior) probability of sequence ρn

k ; can be computed knowing initial p1(i) and
transitional πij regime probabilities.

• Jn
k is the (Fisher) information matrix conditional on sequence ρn

k :

Jn
k =

[

Σk−1(r
n
k) + Fk−1(r

n
k)[Jn

k−1]
−1Fk−1(r

n
k)T

]−1

︸ ︷︷ ︸

Jn
p(k)

+Jz(k)
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Conditioning on ρn
k : Optimistic bound

• Each
[

Jn
k

]−1
gives the error covariance bound for a known manoeuvre

sequence ρn
k ;

⇒ the resulting CR bound is overly optimistic!

• Demonstration of this over-optimism with simple example:

⋄ S1: target in either CT or NCV model (manoeuvring)

⋄ S2: target always in NCV model

⋄ measurements linear in target state in both cases: hence Jz(k) same

• We expect the CRB for S1 (manoeuvring target) to be higher as a conse-
quence of additional uncertainty due to model switching.
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Conditioning on ρn
k : Optimistic bound demonstration
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Switching Dynamic models: Best fitting Gaussian

• Original model (MODEL 1):

xk+1 = Fk(rk+1)xk + wk(rk+1) with wk(rk+1) ∼ N (0,Σk(rk+1))

• Replace with a best-fitting Gaussian (BFG) approximation (MODEL 2):

xk+1 ≈ Φkxk + ǫk with ǫk ∼ N (0,Qk)

• Φk and Qk chosen so that:

E [xk|MODEL 1] = E [xk|MODEL 2] for all k

Cov [xk|MODEL 1] = Cov [xk|MODEL 2] for all k

• Qk must also be positive definite (being a covariance)
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Switching Dynamic models: Best fitting Gaussian (Cont’d)

• The BFG-CRB is then simply computed using the Riccati-like recursion:

Jk+1 =
(

Qk + ΦkJ
−1
k ΦT

k

)−1
+ Jz(k + 1)

• Initialisation:

⋄ Assuming that the prior pdf is: x0 ∼ N(x̄0,P0), set:

ε0 = x̄0 C0 = P0

⋄ Determine mode probabilities:

∗ define: pk(r) , P(rk = r), for r = 1, . . . , s

∗ determine: pk(r) =
s∑

j=1

πjrpk−1(j) for k = 2,3 . . .
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BFG Distribution – General Recursion

• STEP 1: determine Φk as follows: Φk =

s∑

r=1

Fk(r) pk+1(r)

• STEP 2: determine Ck+1 as follows:

Ck+1 =

s∑

r=1

pk+1(r)

[

Fk(r)
(
Ck + εkε

T
k

)
FT

k (r) + Σk(r)

]

− Φkεkε
T
k ΦT

k

• STEP 3: determine Qk as follows: Qk = Ck+1 − ΦkCkΦ
T
k

(guaranteed Qk ≥ 0)

• STEP 4: determine εk+1 as follows: εk+1 = Φkεk

• STEP 5: set: k → (k + 1) and repeat from STEP 1
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BFG CR Bound demonstration

BFG approximation incorporates uncertainty due to model switching
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Verification of the BFG approximation

• Aim: Compare the theoretical bound with empirical RMS error performance

• We simulate a target switching between CV or CA models (no process noise);

• Transition probabilities: πii = 0.9 for i = 1,2

• Sampling time T = 3 seconds

• Measurements of Cartesian coordinates; error standard deviations: σx = σy = 200 m

• Comparison between:

⋄ Two theoretical CR bounds (BFG bound and Enumeration bound)

⋄ Empirical RMS error of an IMM filter; obtained via Monte Carlo simulations.
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Verification of the BFG approximation (Cont’d)
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The effect of Pd < 1 and Pfa > 0

• Most sensors characterised by Pd < 1 and Pfa > 0

⇒ Uncertainty in measurement origin

• This type of uncertainty affects only Jz(k) in: Jk = Jp(k) + Jz(k)

• Several contributions since 1990 (more than 10 publications, Jauffret, Bar-
Shalom, Zhang, Willet, Hernandez, Farina, Ristic, etc)

• The most comprehensive treatment (captures all previous developments) is
the measurement sequence conditioning approach:

Hernandez, Farina, Ristic, ”A PCRLB for tracking in cluttered environments: A measure-
ment sequence conditioning approach”, to appear in IEEE Trans AES, 2006.
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Measurement sequence conditioning

• Measurements sequence: M1:k = {m1, m2, . . . , mk}

• mi is the number of measurements received at time i = 1, . . . , k.
mi ∈ {0,1,2, . . . }

• The CR inequality is then:

E

{

[x̂ − x] [x̂ − x]T
}

≥
∑

M1:k

P(M1:k) J−1
k (M1:k)

• P(M1:k) can be computed knowing:

⋄ the probability of detection Pd

⋄ the expected number of false measurements in the gate (Poisson model)
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Measurement sequence conditioning (Cont’d)

• Information matrix as always have two components:

Jk(M1:k) = Jp(k : M1:k−1) + Jz(k : mk)

• Under some reasonable assumptions (rectangular gates, diagonal mea-
surement matrix Rk) we obtain:

Jz(k : mk) = qk(mk) E{HT
k R−1

k Hk}

where qk(mk) is the information reduction factor (needs to be computed
numerically);

• If Pd = 1 and Pfa = 0, then mk = 1 and qk(1) = 1 (see slide 10).

35



Measurement sequence conditioning: No false alarms

• mk ∈ {0,1}

• Sequence M1:k becomes a “detection/miss” sequence, so that:

Jz(k : mk) =







0 if mk = 0,

E{HT
k R−1

k Hk} if mk = 1.

• The resulting bound first proposed in: Farina, Ristic, Timmoneri, ”Cramér-Rao

bound for nonlinear filtering with Pd < 1 and its application to target tracking”, IEEE Trans

SP, vol.50, 2002.

• When the false alarm rate is small (e.g. average number of false detections
in the gate is below 0.1), the CR bound mainly influenced by Pd < 1.
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The influence of Pd < 1

Tracking a ballistic object on re-entry (slide 20)
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Multiple target tracking

• Notoriously difficult if multiple targets appear and disappear at random: the
problem requires joint detection and tracking; Cramér-Rao bound not a suit-
able tool!

• If we assume that L ≥ 1 targets exist in a surveillance region during the
observation period, possible to formulate a CRB: Hue et al. [IEEE AES
2006], Tharmarasa et al [IEEE AES 2006].

• An analytic expression for multi-target CR bound in the framework of track-
before-detect (ultimate bound)

⋄ Ref: B. Ristic, A. Farina, M. Hernandez, “Cramér-Rao lower bound for tracking multiple
targets”, IEE Proc. Radar, Sonar, Navigation, Vol.151, 2004.

⋄ Depends on SNR, sensor resolution, point-spread function and target kinematics.

⋄ Directly applicable to Wireless Sensor Networks (WSN)
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Example: Wireless network of acoustic sensors

• State vector: xk,i = [xk,i ẋk,i yk,i ẏk,i Ak,i]
T ;

i = 1,2, . . . is target index

• Target motion nearly CV

• Location of sensor j is: (Xj, Y j), j = 1,2, . . . , Ns

• Measurements of sound intensity (at sensor j):

z
j
k =

∑

i

Ak,i
√

(Xj − xk,i)
2 + (Y j − yk,i)

2
+ v

j
k
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Example: Wireless network of acoustic sensors (Cont’d)

• The (sound) intensity of the blue target is 3 dB higher

• Easy to include the effects of quantisation, and to predict the required sensor density.
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A Sensor Management Application

• Context:

⋄ Tracking of an anti-ship missile using a combination of a phased-array
radar and an IRST sensor.

⋄ The IRST passively scans the horizon at a constant scanning interval in
order to detect low altitude threats; each detection serves as an alert to
allocate and cue the radar.

• The Cramér-Rao bound analysis applied to predict an average radar alloca-
tion requirements as a function of: target manoeuvrability, sensor accuracy,
positional estimation accuracy.
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Average radar update time

Versus (a) IRST sampling interval; (b) missile manoeuvrability
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Summary

• Cramér-Rao bounds enable us to quantify the (best achievable) tracking
error performance;

• A useful tool for tracker design, algorithm assessment, sensor management,
etc.

• Significant progress made in the last few years on the CRB development for
tracking

• Shortcomings:

⋄ impossible to compute in all situations (e.g. appearance of targets, switching models)

⋄ in some cases cannot be achieved by any practical estimator
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Future work

• Multi-target tracking, hard constraints, comparison of ultimate bound with
the thresholding bound, etc.

• Explore other variance bounds
(Bhattacharya, Bobovsky-Zakai, Weiss-Weinstein, Barankin, etc)

44


