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Abstract

A Cramer-Rao Lower Bound (CRLB) evalua-

tion methodology is developed and used within
the UEWR. (Upgraded Early Warning Radar)
strategic radar scenario of National Missile De-
fense (NMD) to gauge the effectiveness of target
tracking filters. The particular mechanization of-
ere adaptively handles the Signal-to-Noise
(SNR) at a variable rate whenever it be-
comes available as a consequence of the behavior of
the radar resource “scheduler,” track initialization
procedure, detection threshold setting, and other
internal radar signal processing considerations and
options (such as possible initiation of coherent in-
tegration to enhance the effective SNR available).
Accommodating a fluctuating SNR available at
varying step sizes allows our calculated CRLBs
to realistically reflect the actual situationsrather
than merely assume that SNR data samples are
available at a constant fixed rate. To our knowl-
edge, this is the first CRLB application that in-

cludes use of per pulse SNR’s in this manner for _
greater realism to more accurately reflect and ac-

commodate what occurs in practice (and, likewise,
to also match the situation arising in realistic sim-
ulations).

1. Introduction

A brief overview is provided in Sec. 2 of the
Cramer-Rao inequality of stalistics as it arlses n
this nonlinear estimation problem of radar tar-
get tracking. Sec. 3 reviews the underlyinggsys-
tem structure at a high level and summarizes the
result of extrapolating the linear estimation ap-
proach of ordinary Kalman filtering to an Ex-
tended Kalman Filter (EKF), applicable for state
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estimation in this nonlinear system. The discus-
sion here takes advantage of the considerable com-
monality between many aspects of an EKF mech-
anization and that of a CRLB mechanization yet
still draws the appropriate distinctions. Sec. 4.1
discusses the additional detailed modeling con-
siderations and calculations performed to match
up CRLB calculation to the radar target tracking
problem. Sec. 4.2 describes the constituent com-
ponents of our particular CRLB implementation
afid provides the theoretical justification based
on structure of the measurements that it encom-
passes. A nonlinear filtering application example
in National Missile Defense (NMD) strategic de-
fense radar target tracking is used to demonstrate
the utility of this new CRLB evaluation formu-
lation. Illustrative CRLB results are analyzed in
Sec. 5 in making comparisons to averaged EKF
output in order to gauge the target tracking per-
formance of this particular EKF against the best
that can be achieved by any sequential estima-
tor (according to the mild conditions of Sec. 4).
Sec. 6 summarizes our results and offers suggested
improvements and lists other strategic and tacti-

* cal target tracking scenarios that may benefit from

detailed CRLB evaluations.

2. CRLB’s for Gauging the Utility
' of Target Tracking Filters

Under the standard assumption that the estima-
tor is unbigsed !, then the familiar form of Cramer-

*

1The bias referred to here is inherent to a particular esti-
mator (like the 1/N factor present in a mazimum likelihood
estimate of the variance for a Gaussian random variable
rather than the 1/(N — 1) appearing in the well-known
preferred unbiased estimator of the variance, a distinc-
tion that is insignificant for large N but very important
for small N) and is generally NOT directly related to any
underlying fundamental biases being present in the phys-
ical application (such as a bias due to other causes such
as a terrestrial radar’s residual elevation distortion bias in-
curred as a consequence of the atmospheric lens effect) or
arising for reasons other than the structure of the estimator
being employed within a particular application.



Rao inequality encountered or invoked most fre-
quently is:
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where the inequality here for these matrices is in-
terpreted in the matrix positive semi-definite sense
(ie., A> B=> A—B > 0). Please see [3] and its
references for details. Tt is this form  (under the
widely invoked assumption that the estimator bias
is non-existent or negligible) that has a RHS that
is independent of the particular estimator being
used and that may be compared to a wide variety
of distinctly different estimators as a single rela-
tive gauge throughout. The CRLB methodology
is used here to gauge the quality of filter perfor-
mance in the tracking task.

The above Cramer-Rao inequality arises in seek-
ing to estimate an unknown parameter z using
any: estimator # and the measurement z(t), ref-
erenced above and available from the sensor as a
time record, must be a non-trivial function of the
unknown parameter x as

2(t) = h(=, t,v(2)). 2)

In the above, p(z|z) is the conditional probability
density function (pdf) of  given all the measure-
ments z, and v(t) is the measurement noise. In
exoatmospheric target tracking, « is determinis-
tic and satisfies a known nonlinear ordinary differ-
ential equation and v is additive Gaussian white
noise of known covariance intensity, hence p(z{z)
is known.

Other bounds exist such as that of Zacks and
Barankin and information theoretic bounds and
the interrelationship is known [4], [5]. The CRLB
was selected for use here as the familiar bound
most appropriate for this NMD application be-
cause it matches the situation and is tractable.
A high-level overview of the CRLB methodology
and its benefits and limitations follow.

The simulation performance of any estimator
selected for the particular application can: be
“ganged for goodness” as ascertained by its rel-
ative proximity to the CR lower bound. Alter-
nate estimator designs can be traded-off by prox-
imity to the lower bound (as the best that can be
done, where being closer is interpreted as being

2The summarizing notation 7 appearing on the Right
Hand Side (RHS) in Eq. 1 is known as the Information ma-
triz prior to matrix inversion, after which the entire expres-
sion is the so-called or so-designated Cramer-Rao Lower
Bound (CRLB), which can be numerically evaluated.

“better”) versus computational burden associated
with implementation. It is precisely this aspect of
CRLB usage that is of interest in most nonlinear
filtering applications.

The CR inequality of Eq. 1 provides a lower
bound on the mean-square estimation error
achievable. No matter what sequential estimator
is ultimately selected, none can do better than
what the rock-bottom nonnegative CRLB indi-
cates to be the case (within certain common sense
limitations to be discussed next). Obviously, as in
any other simulation approach, CR bounding tech-
niques are susceptible to inadvertent or intentional
modeling errors or oversights (e.g., use of over sim-
plified “truth” models or the intentional or inad-
vertent omitting of relevant states or instances of
inadequate parameter selection). In such cases,
the calculated CRLB can be either too high or
too low but should be correct when the significant
states are correctly included in the model and the
proper parameters are used.

“Whether the CR bound is tight or not is another
question that depends on problem structure for an
answer and which is discussed in [6], {3, after Eq.
3b]. For nonlinear estimators of interest here, even
though the noise is additive and Gaussian (as ful-
fills the first requirement for estimators to achieve
their CRLB), the radar measurements received vi-
olate the second condition by NOT being a linear
function of the state parameter {cf., Eq. 10 and
Eq. 19) as is also required for actually achieving
the CRLB. (The CRLB being achieved means that
the error of estimation term on the LHS of Eq. 1
touches the CRLB term on the RHS by satisfying
the indicated inequality as an exact equality.) So
the lower bound should not generally be achiev-
able (hence this CRLB is NOT expected to ex-
actly match the average sampled tracking error
variance compiled from N Monte-Carlo trials).

The CRLB is of particular interest when the
physics or geometric structure underlying a par-
ticular parameter estimation problem of interest
doesn’t support estimation objectives to the de-
gree of accuracy sought or specified as the goal so
that the estimator isn’t unfairly blamed for what
is beyond its control. That such an unfortunate
circumstance is present in a particular applica-
tion is reflected by a corresponding increase in
size of the CRLB as a consequence of the funda-
mental decrease in the absolute accuracy achiev-
able. The CRLB used here by adapting to a time-
varying SNR to realistically correspond to fluctu-
ating PRF and other underlying signal processing
is an enhancement of the fundamental method-
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Table 1: Extended Kalman Filter Implementation/Mechanization Equations
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ology that evolved in [7]-{10], as tailored to this
NMD radar application using the conventions laid
out in [11].

3. Commonality between EKF and CRLB

3.1 The Common System Model utilized by Both

The standard linear dynamical system for which
Kalman-type filters are designed has a discrete-
time representation consisting of an n-dimensional
state vector z; and an m-dimensional measure-
ment vector z; of the following well-known form:

System : z; 41 = ®(k + 1,k)zp + wi, (3)

Measurement : z; = Hpxp + v, 4)

with initial condition z(0) ~ N((0),P(0))
(Gaussianly distributed, with known mean Z(0)
and covariance matrix P(0)) and where ®(k+1, k)
is the known {ransition mairiz and the process and
measurement noises, wy and vy, respectively, are
zero mean, white Gaussian noises (independent of
the Gaussian initial condition) of known covari-
ance intensity levels @; and R, respectively. The
three symmetric matrices P(0) and @ must be
positive semi-definite and R must usually be pos-
itive definite. The usual conditions of observabil-
ity/controllability (or less restrictive detectabil-
ity/stabilizability conditions) are assumed to be
satisfied here by any appropriate application sys-
tem of the form of Eqs. 3 and 4. The above regu-
larity conditions being satisfied guarantee that the
covariance calculations from the associated Ric-
cati equation (to be defined below) will be well-
behaved.

Eq. 3 above is a discrete-time difference equation
(compatible with recursive implementation on a
digital computer) that corresponds to the solution
of an associated underlying continuous-time state
variable differential equation (describing the sys-
tem) of the form:

dx ,
X o P+ (), (%)

where the transition matriz for the general time-
varying case of F(t) is obtained by integration of
the homogenous part of Eq. 5 over the time in-
terval of interest prior to the next measurement
becoming available for use by the filter. If F(t)
is constant, then the appropriate transition ma-
trix simplifies to just an evaluation of the fairly
well-known matrix exponential as

Bk +1,k) =2, (6)

where A is the appropriate time-step between
measurements. Similarly, the appropriately ex-
act discrete-time process noise covariance intensity
level, @&, to use in the Kalman filter mechaniza-
tion equations corresponding to Eq. 3 is obtained
by integration of the known continuous-time pro-
cess noise covariance intensity level, Q.(t), asso-
ciated with the continuous-time white Gaussian
noise w'(t) of Eq. 5 as (Eq. 15 of Ref. 13 and
Eq. 10 of Ref. 15):

Qr = _/ " (]?(tk+1,T)Qc(T)<I>T(tk+1’T) dr, (7)

where A = 151 —1t;. (Inseeking to track exoatmo-
spheric targets, @, should be zero for the CRLB
corresponding to no plant noise being present ex-
cept for the practical consideration of a nominal
nonzero tuning value 3 to keep the EKF filter
bandwidth open and receptive to new measure-
ments rather than ignoring them.)

The standard familiar Kalman filter implemen-
tation/mechanization equations for periodic mea-
surements available every A units of time are well-
known, as succinctly stated in Figs. 4.2-2 and 4.2-
3 on p. 111 of Ref. 16.

The covariance update equation (Riccati Eq.) is

Pop = [I— KpHg)Pyjg—1

3The EKF tuning used in the nominal EKF within the
Test Driver/ Software Algorithm Testbed (TD/SAT) as ex-
hibited in Sec. 5 used tuning of 10~5 throughout a fictitious
diagonal Q..
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while the above two forms are mathematically
equivalent, it is the more complex final expression
(known as Joseph'’s form) that more effectively re-
sists the deleterious effect of roundoff in machine
computations (pp. 305-306 of Ref. 16) and is
therefore the preferred-implementation. More de-
tail on the fundamentals of a linear Kalman fil-
ter estimator implementation and recommended
steps to ease its software validation/checkout are
provided in [13]-[15]. "Although depicted as such
for simplicity in Table 1, the Kalman filter (KF)
usage is by no means restrlcted to just s1tuat10ns
mvolvmg periodic availability of sensor measure-
ments since a KF can handle asynchronous mea-
surement availability of any known time spacing of
measurements or even synchronized simultaneous
measurements from several different sensors at a
time and likewise for an EKF.

3.2 Primary Distinction in an EKF Mechanization

Mechanization of an Eztended Kalman Filter can
be applied to nonlinear situations [pp. 39-59 of
Ref. 9] (such as are encountered in a more real-
istically detailed model of target complex trajec-
tories). This is accomplished by liriearizing (as
the first two terms of a Taylor series expansion,
involving a constant term and a 1°* derivative
term, known as the Jacobian) of either the sys-
tem equation or measurement equation {(or both if
each is nonlinear) as evaluated about the current
state estimate, £(k), as obtained via an on-line
mechanization of the Kalman filter implementa-
tion equations of Figs. 4.2-2 and 4.2-3 on p. 111
of Ref. 16 (corresponding to an assumed under-
lying model of the form of Egs. 3 and 4) even
though the actual system under consideration is
now of the more general nonlinear continuous-time
system/discrete-time measurement form

System : 4z ()

= fa®.) + (),  (9)

Measurement : z; = h(zy, k) + v, (10)

where f(-) and h(-) are the particular nonlineari-
ties that are actually encountered in appropriately
modeling the particular application (and are iden-
tified for NMD in Sec. 4).

The explicit implementation equations for an

EKF 4, as posed for a continuous-time/ discrete-
time model of the form of Eqs. 9 and 10, are cov-
ered in Table 1 of Ref. 11, as summarized on p.
278 and 338 of Ref. 8. This implementation differs
from that of a standard Kalman filter for purely
linear systems only in the Propagate and Update
Steps of the filter (viz., compare the last row of Ta-
ble 1 here with the last row of Table 1 in Ref. 13).
Both implementations appear similar. However,
an implicit difference is that ®(k,k — 1) is now a
function of the measurements, z, since it is now to
be obtained as a linearization about the estimate
£g—1jk—1, which itself is a function of the measure-
ment z;. Consequently, the Propagate Step of the
covariance Py;_; in Table 1 is implicitly a func-
tion of z; since ®(k,k — 1) is and so is the EKF
filter gain K. A slight variation on the above
EKF approach (as addressed in detail in Sec. 1.2
of Ref. 11) is to iterate within the linearization
step a few times to greatly improve the quality of
the estimates with but a slight penalty in increased
number of operations.

Unlike what had been claimed [16], we recom-
mend that the filter gain calculatiop be performed
during the propagate step [11] since all its con-
stituent components are already available during
the propagate step. By performing this calcula-
tion within this step, the burden of what remains
to be done during the (more time critical) update
step is reduced. We amend Ref. 16 here as we have
done on prior occasions {43], where two apparent
errors existing in Ref. 16 are revealed pertaining
to Kalman filter implementation by (1) exposing a
flaw within a favored reduced-order MVRO filter
formulation and (2) by correcting how the matrix
pseudo-inverse should be calculated. Moreover,
we have corrected a test for matrix positive semi-
definiteness [46] that had persisted in error in more
than a dozen textbooks (as listed in Ref. 46 and
in its precursor references) and in most software
implementations that we had seen in the 1970’s
and ’80’s for submarine navigation filters and for
sonobuoy target tracking filters. We also offered -
a simplification [11] that corrects prior errors [16],
[19), which otherwise inadvertently inflated the ex-
pected computational burden of an iterated EKF
implementation beyond what is needed.

4. CRLB for Radar Target Tracking

4The EKF mechanization is to be distinguished from
the so-designated lincarized Kalman filter Table 6.1-3, p.
189 of Ref. 16, which is also applied to the linearized ver-
sions of the system and measurement equations of Eqs. 9
and 10, respectively, but for which filter gains can be pre-
calculated, unlike the situation for an EKF.



4.1 Target Motion and Radar Sensor Models

Ref. 29 offers a good discussion of how to for-
mulate the problem of radar tracking of targets
in ballistic trajectories and provides a derivation
of the particulars of the appropriate mathemati-
cal model from first principles, as well as providing
an accounting and motivation for use of the var-
ious necessary coordinate systems. Other impor-
tant analytic modeling considerations underlying
a rigorous analysis are treated [24] regarding use of
either a ground based or airborne radar for track-
ing. We used these eatlier results as we selected
a mathematical model to be used here (as in Ref.
11).

In this investigation, a Keplerian trajectory is in-
troduced within a detailed simulation of the exoat-
mospheric target motion to include the effect of
an inverse square pull of gravity. We refrain from
just the use of simplified covariance analysis (es-
sentially corresponding to evaluation of a Cramer-
Rao lower bound for the estimation objective in
the exoatmospheric regime of no process noise be-
ing present, as used in earlier investigations [26],
[30]) and we instead now incorporate full nonlinear
filtering techniques (and the associated standard
approximations). Instead of linearizing about the
true target, as done in prior simplified covariance
analysis, the Extended Kalman Filter linearizes
about the filter state estimates at each time-step. ®

We work with a fully nonlinear 6-state system
model, which in continuous-time is of the form:

T4
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where p is the familiar gravitational constant earth
mass product GM. This is one of the equations
that had to be linearized in implementing an Ex-
tended Kalman Filter and for which a Jacobian for
the nonlinearity on the right hand side of Eq. 11
must be calculated.

Explicit evaluation of the requisite Jacobian, ob-
tained by performing the indicated differentiations

SThe target complex tracking problem is decomposed
into primary and secondary contributing effects [19] to be
considered in the modeling, and the effect of a rotating
earth on the overall problem is of the later category.

on the system nonlinearity f(z), yields:

A(z) =22
0 0 0
0 0 0
12
0 0 0 ( )

a41 Q42 Q43
Gs1 as2 Gas3
Ggy Qg2 Q63

SO OO —
OO OO ~=mO
CO O = OO

where the partial derivatives a;; in the above were
previously worked out [11], [42].

The resulting sensor measurements in terms of
range, R, and the direction cosines, u and v, to
the target are:

R = /z!? + yr:z + z:z) (13)

’

v = %, (14)
/

v = yﬁ‘ (15)

where z', ¥, and 2/ are to be defined next.

The local coordinates z,y, z are located at the
center of the sensor face in the plane of the ar-
ray. In this coordinate system, z is directed along
the local vertical and z and y lie in the horizontal
plane, with z pointing East and y pointing North.
From Sec. II of Ref. 29, these local level coordi-
nates r,y, z can be reexpressed in terms of ', /, 2’
coordinates, via the following transformation

z z
v | =T|y],
z z
where
cos A —sin A 0
T = cospsinA cosgcosA —sing

singsinA singcos\ cos¢

as the appropriate change of coordinates corre-
sponding to the required rotation, where the above
parameters of A and ¢, are geodetic Latitude and
Longitude, respectively. The coordinates z',y/, 2/
are oriented so that 2’ is normal to the face of the
sensor array, and y' lies on the face of the array,
and z lies along the intersection of the sensor face
and the horizontal plane S.

6R. M. Miller’s software implementation code for get-
ting between sensor Face Centered Coordinates to Earth
Centered Inertial coordinates [24] avoids sinusoids within



The above received sensor signal-processed mea-
surement can be reexpressed in terms of the mea-
surement of target range (as appropriate for a
radar or other active sensor if not range-denied
due to jamming), elevation, and azimuth as, re-
spectively:

Vi +y? + 2%, (16)

E = arctan [ﬁ] ,an
arctan [E] ; (18)

r

A

where the length in Eq. 16 is identical to the length
in Eq. 13 since the transformation T is a rota-
tion (and as such is an orthogonal transforma-
tion which preserves lengths). The expressions of
Eqgs. 16 to 18 correspond to the following measure-
ment equation:

r
E | +(t)
A

/32 + y2 + z?
= | arctan [ﬁ] +u(t), (19)

arclan |
v

2(t)

where the Gaussian white measurement noise,
v(t), has a covariance that is of the form 7

a2 0 0
2
R=| 0 of = , (20)
0 0

and the proper values to use for these variances are
provided with our numerical results in Sec. 5.1.
An additional aspect not to overlook is that tar-
get location is referred back to ECI coordinates
within the software by subtracting out the known
location of the stationary radar array as an offset
or translation. Notice that for the above described
target complex motion model of Egs. 11 and 19,
respectively, both the system model and the mea-
surement model are nonlinear. The linearization

the transformation by resorting instead to the underlying
right triangles corresponding to each angle measurement.
This alternative implementation appears to offer some nice
efficiencies so we also employ it here in our investigation.
There are standard approaches for transforming between
Local Level and ECI coordinates [25].

"Within the software, we intentionally avoid the pres-
ence of the cosine in the denominator depicted in Eq. 20
by instzead employing the following identity: cos?FE =

2

of the above nonlinear measurement of Eq. 19 is
as provided on pp. 22, 23 of Ref. 24 and is a sub-
set of that depicted and exhibited later [11], [42].
Operational implementations should additionally
account for the flatness at the earth’s poles as an
oblate ellipsoid or sphere somewhat flattened at
the poles and should include up to the Ja gravity
term, as discussed elsewhere [44].

The linearization of the current EKF is about
the most recent state estimate £, instead of the
actual state (which is realistically presumed to be
unknown to the observing sensor but is treated
as known for CR lower bound evaluation via sim-
ulation here and could also accommodate evalua-
tion using true position in trial flights using a GPS
translator onboard the target).

4.2 Tailoring the CRLB Inequalities to Fit the
NMD Target Tracking Scenario

The CRLB that is treated here goes beyond just
using the historically familiar (pp. 155-161 of Ref.
17) per pulse CRLB angle measurement error 3:
oy = since our CRLB goes further to

'1.6V/2 SNR :
additionally utilize (1) information provided by
the target dynamics model over time in an in-
verse square gravity field, (2) the initial (starting)
covariance P(0) of the tracking filter as handed-
over %, and (3) the structure of the radar as a
measurement sensor /device having additive Gaus-
sian measurement noise with parameters including
(3a) explicit use of the radar range uncertainty
due to resolution size of the range gates and (3b)
the monopulse SNR time-record with its adaptive
step size (as a consequence of a realistically vary-
ing PRF) as it affects the corresponding angle un-
certainty. In a more refined CRLB threat trajec-
tory evaluation, we go further in seeking to use
an input SNR that has been averaged over several
Monte-Carlo trials (~ 5 or 10 trials but not aver-
aged over time) to smooth out the telltale kinks
due to noisy variations otherwise incurred within
a single trial.

For our radar application, which has additive
Gaussian white measurement noise v(t), Eq. 2 -
has this further more benign and accommodating
structure to be exploited:

z(t) = h(z,t) + v(t), (21)

and since the equation for the system evolution is

8 Within this notation, 83 = 3 dB receive sum-pattern
beamwidth.

® We used a standard hand-over covariance of (100 km)?
for all three components of the position block and
{100 m/sec)? for all three components of the velocity block.



essentially deterministic (with Q. = 0 in Eq. 7),
then the pdf’s of interest here (to be used in nu-
merically evaluating the CR lower bound of Eq. 1)
are of the form:

e~ 3(:-h(=)TR™(2=h(z))
(2m)"/?|R|~%

Now taking natural logarithms on both sides of
the above pdf yields:

In {p(z|z)} =

~1(z = K(2))TR~'(z — h(z)) — In (27)"/2|R|"},

p(zlz) = (22)

(23)
which upon taking the gradient is:

()7 In {p(z]2)} = LX) g-1(; — h(a)).

(24)
When the above expression is post-multiplied by
its transpose and expectation taken throughout,
the result is:

E[(F%)"In {P(ZIz)}%lg{p(le)}] =

ERELR Bz - h(e))(z — h(@)T] R 28 =

aTr.(z)R_l dh(z)
8z 8z

(25)
Finally, over corresponding discrete-time steps
(not necessarily uniform), the total pdf of inde-
pendent (white) measurements is the product of
each individual pdf of the same form of Eq. 22
as  p(21|2(0))p(22|2(0))p(23|2(0)) - - - p(zk|2(0)),
where each pdf for each constituent measurement
here focuses on or is conditioned on the initial con-
dition for the deterministic system equation. Once
the initial condition z(0) is known with confidence,
then the time evolution of the deterministic sys-
tem is completely determined (as a consequence
of initial condition observability, as explained in
App. A of Ref. 42). The corresponding informa-
tion matrix for each of these measurement time
points is of the form of Eq. 25 so the aggregate is
of the form 1°; '

I(k,0) =
k -T £ OTh(z) | petrs . Oh(z) | & - .
Ej:l(P (k)]) 3z IJR (J)]) 3: IJ(I) l(k)J)y
(26)
10 After taking the natural logarithm of the aggregate pdf,
the exponents in the Gaussian distribution correspond to
the indicated sum, after performing & gradient and taking

expectations, as illustrated in detail above in Eqs. 22 to 25
for just a single measurement for clarity.

. N A
for k > j, where the transition matrix ®~!(k,j) =
[®(k, )] = ®(j, k) and, likewise, corresponds to
an evaluation via. Eq. 6 of the linearized system
matrix %ﬁl,’, as previously explained [7].

Now, when there is a finite initial covariance
being utilized by the estimator as tracking com-
mences, then there is an additional term !! that
should appear in the above Information matrix to
properly reflect this situation, as depicted as the
first term on the RHS here:

Z(k,0) = :
&~ T(k,0)P~1(0)®~1(k,0)
i L3 - . . 4 - .
+ Tk 0Tk, ) T2 R, ) B2 82 (K, 5).
(27)
In either the case of Eq. 26 or Eq. 27 holding,
the Information matrix can be interpreted or for-
mulated as evolving recursively with each received
measurement arrival time (with either a constant
or varying time-step) as:

I(k,0) = & T(k,5)I(5,0)® (k,7)
T
+ M=) ;iz)lkR'l(k,k)——agE:)lk
(28)

and, as such, may be implemented within soft-
ware as merely a loop (but by observing all the
constraints and coordinate conventions of Sec. 4.1,
where %£ is evaluated within the ECI frame and
gk is evaluated in the (E,N,U) frame with corre-
sponding translation offset to the location of the
tracking radar) 2. The computational burden or
operations counts per cycle of such a software im-
plementation goes as n® due to the three funda-
mental n X n matrix multiplies present and also

scales linearly with the number of time steps in-
cluded.

11 An additional “fictitious measurement” was called for
following Eq. 4 of Ref. 7 as being needed to avoid encoun-
tering numerical difficulties but use of P—1(0) as suggested
here appears to suffice as a remedy that arises naturally.

12Notice that nothing was presumed of the estimator in
deriving and evaluating Eq. 28 beyond the underlying mea-
surement structure of Egs. 21, 22 and the availability of all
measurements up to the current time k. Alternative
estimators that “smooth” by estimating the state ; using
measurements beyond k may violate this assumption and
this CRLB but they aren't real-time and thus not usually of
interest in this application. The appropriate CRLB to cor-
respond to an estimator that uses measurements beyond
the current time of interest (such as in “sliding window”
smoothing or in “fixed point” smoothing or in “batch least
squares or maximum likelihood") should just have the ad-
ditional corresponding terms included in Egs. 26 and 27
and could still be mechanized via an appropriately modi-
fied Eq. 28.



We have particular interest in the total position error and the corresponding total velocity error to determine
how well we are actually doing in tracking a target complex via radar. To this end, we must rigorously contort
the inequality of Eq. 1 to a form that we can use. This is accomplished by properly applying matrix operations
that preserve the ordering yet eventually yield the expressions that we seek 2 as, first:

—"'zl ‘722 o3
o ‘7%2 ‘7:23 =
_U§1 032 033
100 00 0] 10000017
001 00 0 0] E[(Ziruelt) — 2(t))(rue) = 2@)TIZW] | 0 1 0 0 0 0| > (29
00100 0] 001000
1 0 0 0 0 0] 10000017 crlbyy  erlby; cribs
01 000O0O0O|Z'f0o1 0000 = | erlbs; crlbsy cribag
| 0 01 0 0 0] 0 01 00O crlbs; cribss crlbas
and
rag4 ”%5 026
O34 ‘735 0;6 e
| O6a Ogs Oge
[0 0010 0] 00010017
0000 10 |Elmruelt) - (1) (ruc® - 2t)TIZW] | 0 0 0 0 1 0| > (30
[0 0000 1] 000001
[ 00 01 00 T 0 001 00 T crlb44 Cf'lb45 C‘I‘Ib46
0 0 0 01 Z-'{0 0 0 0 1 0 = | crlbsy crlbgs cribge |,
[ 00 0 0 0 1 ] 000 001 crlbsy crlbgs cribegs

and then by taking the trace of a matrix throughout 4, respectively, yields radial position error variance:

2 2 L2 2 i U
Oposition = 011 + 095 + 033 = trace| 03; 03, 033 | >
2 2 2
031 033 033 (31)
C"”)ll crlb12 CT‘Ib13
trace | crlby; cribyy  cribos = crlby; + crlbyy + cribas
crlbs;  crlbsy cribas
and total velocity error variance:
2 2 2 2 634 035 age
Oy elocity = 044 + 055 + 06 = trace| o5, 0gg Ugs 2
064 0Ogs Ogs (32)
crlbyy  crlbys  eribye
trace | erlbsy crlbss cribsg = cribgy + crlbsg + cribgg,
cr1b64 Cf'lbss crlbss

and, finally, by taking squareroots throughout 1%, respectively, yields:

Oposition = \/ 0%, + 02, + 025 > \/crlbyy + cribyy + crlbgs = CRLB,o,ition (33)
Oyelocity = \;"624 + 0'%5 + 0‘%6 > \/CT”)44 + crlbss + CTIbGG ’e‘ CRLBuelocity- (34)

13Pre- and post-multiplying A > B by the same matrix L yields LALT > LBLT,
14The matrix inequality A > B implies that trace[A] > trace[B].
15Scalar @ > b > 0 implies that /2 > Vb.

and




Please notice in the above that we do not decou-
ple position and velocity states but merely project
both of the 6 x 6 matrices of Eq. 1, respectively,
into the position subspace (as Egs. 29, 31, 33) and
into the velocity subspace (as Eqgs. 30, 32, 34) for
viewing and display. These instantaneous inequal-
ities are now the theoretically justified compar-
isons that we invoke again in Sec. 5.1 in monitor-
ing EKF target tracking performance as a function
of time.

5. Assessing EKF Tracking Performance

5.1 BASELINE: Comparing Existing Standard
EKF to the Computed CRLB

We illustrate the CRLB calculations relative
to ensemble sampled Monte-Carlo results for the
BMEWS radar: Thule ¢ tracking an RV on a
ballistic trajectory (post cut-off) having the fol-
lowing position and velocity states at cut-off time
normalized to t, = 0 secs.:

z(to) —3217302.678

y(to) 3527834.349

z(to) | _ 4535013.695 (35)
v(to) | ~ ~767.670 |’

vy (to) —2520.638

vz (to) 5065.414

where in the above, the units are in meters for
position and meters/sec for velocity, respectively.

The simulations of the radar case [using known
BMEWS measurement covariances.for range and
angle being 17

Orange = 30 meters (per pulse),

o = = degrees (per pulse)
angle — 1.6V2 SNR g per p ]

(36)
respectively] !® appear to be performing properly

as depicted in Fig. 1 for the case of a nonlinear tar-
get (corresponding to use of the system model of

16This 10 MHz bandwidth Thule radar (AN/FPS-
123V5), with a beamwidth of 1.8° is located in Greenland
at Latitude = 76.56° N, Longitude = 297.70° E. The actual
range resolution is determined by beam forming to reduce
sidelobes and assumptions on range accuracy of from as
little as 15 meters (for the 10 MHz signal) up to more than
30 meters (for the 5 MHz signal) shouldn’t significantly al-
ter the subsequently computed results since sensitivity to
the range uncertainty parameter is low as compared to the
effect of the more dominant angle uncertainty.

17Expressed within our software in MKS units with an-
gles in radians, respectively.

18 The radar's intrinsic range gate size dictates the ef-
fective range resolution, which is a constraint that is less
restrictive than the angle acuity. The expression for Oangle
is identical to what appears in the first sentence in Sec. 4.2.

Eq. 11 for simulating the trajectory, but linearized
within the EKF) while both situations utilized the
nonlinear measurement model of Eq. 19. Both pa-
rameters in Eq. 36 (with SNR varying with time)
are used in Eq. 20 with g = gangie-

For position error at time ¢ (and similarly for cor-
responding velocity with obvious direct replace-
ment substitutions of velovities for positions in
Egs. 37 and 38 below), calculated as

(z4rue(t) = ‘(‘))2 + (Yirue (V) — ’("))2 + (Stroe(t) - .(‘))2-
(37)
the corresponding sampled variance over N trials
(N =1,000) being °:

IN=
[# T L ttrac(®) = 160)? + Garae () = HEN? + (strae () = (1))

2
- [h Poies V Gtrae®) = 1002 + (raraet® = ()2 + (aurae ) - t,-m)?] -

(38)
is depicted here as labeled while the CRLB is
shown in juxtaposition as labeled in Figs. 1 and
2 for total position error and total velocity error,
respectively, in tracking an RV (Scenario D10.4).
While in the early stages of the first few initial
time steps in Fig. 1, there can be a slight dis-
crepancy of the averaged sampled standard devia-
tion dipping down below the CRLB (which should
be a theoretical impossibility), it occurs here only
briefly at the beginning because there is an initial-
ization procedure being applied only to the EKF
in obtaining the starting z(0) (that is subsequently
linearized about in the EKF). The general trend is
that the calculated CRLB is below the error of the
EKF (as it should be theoretically for this and all
standard state estimators) but the EKF appears
to asymptotically approximate it pretty well (note
that this is a semi-logarithmic scale that tends to
compress differences). The lowest curve appear-
ing in Figs. 3 and 4 conveys another aspect of the
story as the EKF’s internally calculated 2° single
shot estimate of its own standard deviation (also
labeled). This single shot self assessment of stan-
dard deviation for nonlinear estimators is known
to usually be unreliable, not just in this applica-
tion but in any nonlinear situation (e.g., Sec. 8.12
of Ref. 8, Fig. 2 of Ref. 39) but is depicted
nonetheless to convey just how far off it is, in gen-
eral, from what is actually present (as established

!9Notice that this is of the form E[(W — E[W))?] =
E[w?] - (E[W])2.

20Calculated via a matrix Riccati differential equation or
recursive difference equation, which for nonlinear applica-
tions is an explicit function of the measurement values re-
ceived and is merely an approximate representation, while
for linear applications it would be exact.
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by the large number: 1000 of Monte Carlo trials).
It is only this estimator’s Riccati calculated stan-
dard deviation that is actually available during
a mission also as a single shot N = 1. Perhaps
other alternative estimators will be more reliable
(by having single shot covariances that are closer
to the ideal CRLB or acceptable sample average
standard deviation) and should be further sought
out in a more detailed investigation of trackers for
NMD.

Figs. 1 and 2, discussed above, representatively
illustrate calculated CRLBs and other compo-
nents, listed at the beginning of Sec. 4, used in
comparing RV tracking performance (for Scenario
D10.4, with coded launch point and threat charac-
teristics and target as defined in System Require-
ments Document Cl= Capability One). Figs. 3
and 4 representatively illustrate calculated CRLBs
and other components used in comparing tank
tracking performance (for Scenario D10.5).

Please notice from Figs. only shown in [42] that
(at this scale) the Monte-Carlo statistics of EKF
performance at high SNR are close to the ideal
CRLB. This indicates that EKF performance is
fairly good in the tank tracking role as one of the
primary goals for Updated Early Warning Radar
UEWR (of successfully detecting, tracking, and
handing over the location of tanks) and so can the
narrow-field-of-view X-band radar that is also di-
rected to perform further search in the same vicin-
ity. Using the presence of tanks as its cue, the
UEWR radar can then search for other threaten-
ing objects nearby. Please notice from Figs. 1 and
2 that the Monte-Carlo statistics of EKF tracking
performance for the RV are not as correspondingly
close to the ideal CRLB (as they had been for
the tank). This indicates that there is room for
improvement in estimator tracking performance
(where such improvements are currently being ac-
tively sought along different novel development
paths by several participating NMD contractors
and MITRE) with additional novel options [11],
[18], [38]- [40], [45] yet to be explored for NMD.

While the CRLB software implementation origi-
nally assumed measurements and associated SNR
to be available at a constant 1 Hz rate, the CRLB
software was later modified to adaptively handle
SNR at a variable rate whenever it became avail-
able as a consequence of the radar resource “sched-
uler”, initialization, threshold setting 2!, and other
internal signal processing. One example of fur-
ther internal signal processing is the performing

21The detection threshold is nominally 11.5 (unitless)
corresponding to a per pulse false alarm rate of 10—6,
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of coherent integration (in summing returns and
keeping track of phase as in-phase and quadra-
ture phase) in PP and OP returns treated as
real and imaginary parts, respectively, of the re-
ceived signal as a phasor. This is used to detect
and track those targets exhibiting smaller relative
radar cross-sections. In all cases, the CRLB soft-
ware just uses the resultant SNR time record to
calculate the bound. The TD/SAT Monte-Carlo
simulator outputs the SNR that CRLB calcula-
tions use as input. In order to remedy the jagged
edges that sometimes occur in a single SNR time
record, we usually seek to average the results from
a modest 5 to 10 Monte-Carlo trials to get a re-
sultant SNR input that is slightly smoother and
more universally representative so that computed
CRLB output is likewise more universal and not
tied to just a single Monte-Carlo run.

Fig. 5 depicts the sample average or Mean Es-
timation Error vs. Time as arises in the RHS of
Eq. 38 (for Scenario D10.4), which differs, in gen-
eral, from the standard deviations of Fig.1. The
CRLBs are appropriate for comparison only to
Standard deviations (as in Eq. 23) or to variances
(as in Eq. 21). This mean or bias in the estimator
represents a type of Kentucky windage 22 (that
potentially can be calibrated and compensated for
each target tracking filter on a trajectory by tra-
jectory basis) as is well-known to occur in SLBM’s
as well.

While only one representative trajectory is de-
picted here to illustrate the CRLB evaluation tech-
nique and to show what type of comparisons we
used between CRLB and sampled estimator statis-
tics in the standard deviation domain, TeK As-
sociates implemented the software and performed
the evaluations for more than 50+ different tra-
jectories (also from the perspective of various al-
ternative radar in view) during the course of this
investigation. We would expect the new optimal
estimator [45] to perform better than the simple
but straightforward EKF displayed here.

5.2 Refinements/Extensions to Our Current CRLB

We make the following suggestion regarding how
to further refine the information provided by the
CRLB in a manner to better quantify the “fly-
out” situation where kinetic kill vehicles would
be dispatched via command guidance to intercept
and destroy an RV after it is detected and rec-
ognized as a threat by the strategic radar fence.

22Gunnery terminolgy that harkens back to Sgt. Alvin
York's remarkable feats of marksmanship during WWT in
compensating for the bias of a cross-wind.
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Such information and interpretation would be use-
ful'in providing weapon system specifications for
the missile and analysis of its perceived effective-
ness. Using the following notation,

Ty = kinetic kill vehicle intercept time of traverse,
(39)
then 23

Missile Dispatch Position Error Variance(k)

= [Projected Position Error(from k to k -+ Tj)]

I
= trace {(llo]lO'T(k + T, K)I(k, 0)&~1(k + Ty, b))~} [ e ] }
o
r .
= trace {[l|o][0(k + T T (K, 0)eT(k + Ty, b)) [ eE - ] } ,
0

(40)
which can be calculated and plotted for each time
point k for a total elucidation after taking the
squareroot of both sides to yield a standard de-
viation. This would still be a function of each
trajectory and radar location and corresponding
parameters of the viewing radar.

23Caveat: Although the representative expression for
the transition matrix appearing in Eq. 40 could be in-
correctly interpreted as needing to be calculated only
once; as a practical matter, it should be calculated
incrementally (~ 1 Hz) as ®(k + Ty,k) = Ok +
Ty 3a)®(ds1ds—1)2(Jo—1,5s—-2) - - ®(52,31)®(j1,k) where
k+ Ty > Js > Js—1 > -+ > 51 > k within the software
mechanization (via Eqgs. 6 and 12, where F = A) in order
to adequately correspond to the solution of Eq. 11, which
is nonlinear.
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In evaluating the 0.97 Spherical Error Proba-
ble (SEP) for each trajectory, one can use the es-
timated sample covariances from several Monte-
Carlo trials for a particular estimator and com-
pare to what is obtained from one run of the
CRLB. The behavior of the computed CRLB will
exhibit the expected ellipsoidal shape of first be-
ing pan-cake shaped at the begining owing to the
radar resolution uncertainty that is relatively less
in the range direction and greater in the angular
directions of elevation and azimuth and, as time
elapses, becoming more football shaped later with
a principal axis in the direction of the instanta-
neous velocity. The vertical velocity of the target
at zenith in a ballistic trajectory is of course zero.

Rather than calculate 0.97 SEP, an easier calcu-
lation is to use a bounding ellipsoid that exactly
matches the underlying Gaussian sufaces of con-
stant pdf as they vary with time. In this way,
the results for a tailored time-varying 3-D ellipsoid
having 0.97 probability of containing the target
under an assumed underlying Gaussian distribu-
tion can be read from existing tabulations of Chi-
square statistics with 3 degrees-of-freedom (dof)
that remain constant with time (analytic details
for accomplishing this are on pp. 106-7 of Ref.
41). Even if there is a quantifiable bias present,
the offset effect is accounted for by instead us-
ing well tabulated non-central Chi-squared statis-
tics of 3 dof rather than attempt SEP calculations
which are more challenging. Acknowledging that
down-stream missile intercept divert capability re-



lates to the amount of available fuel onboard and
is consequently reflected as a sphere of reachable
positions; even so, the 3-D ellipsoids can be cir-
cumscribed by a 3-D sphere as a second calcu-
lation (for a total of two easy calculations rather
than one harder SEP calculation) to appropriately
match-up with what’s needed.

6. Summary and Recommendations

We observed good agreement between the sam-
pled standard deviations and the CRLBs that were
implemented (consistent with the existing sup-
porting theory that anticipates CRLB’s to always
fall below sample variances calculated from trials
that are large enough to be significantly close to
actual true values). The EKF’s own internal as-
sessment was NOT consistent with the CRLB, also
as anticipated (and consistent with existing theory
[39]) since these EKF covariances are only approx-
imate in nonlinear applications such as this and,
as such, are not always expected to be consistent
and trustworthy (while in a linear application they
would be trustworthy and, moreover, would rep-
resent the target goal to which Monte-Carlo sta-
tistical evaluations should be compared). Since
it is the on-line estimator’s standard deviation or
variance that is used in calculating on-line gains
that ultimately determine the accuracy of actual
on-line estimates of target location and velocity
within the mission (where, effectively, N = 1),
considerations (in comparison to CRLB’s as of-
fered here) of having good reliable standard devia-
tions within a mission is a goal that is necessary for
adequate target tracking. Sampled standard devi-
ation error discrepancies must be small in order for
the associated estimation errors to be small. This
conclusion is a consequence of the fact that the
filter’s actual covariances are to be calculated on-
line from measurements received in only one time
record. These single-shot covariances are used in
the actual filter implementation on-line to calcu-
late the filter gains that in turn determine what
single-shot estimates of target position and veloc-
ity are ultimately produced (as conveyed to the
kinetic kill vehicle that is dispatched to intercept
and dispose of the target threat).

Suggested follow-on activities for further use of
CRLB evaluations in strategic missile defense to
an advantage are: (1) pursuing the following in-
teresting and relevant philosophical alternative of
seeking to perform target tracking using a sys-
tem model that is posed in radar face coordinates
just as the measurement equation currently is in
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Eq. 3.26 of Ref. 42. With such a recasting, the
received measurements would indeed be a linear
function of the states (as the parameter that is
being sought), so the corresponding new CRLB
would be tight according to the conditions previ-
ously laid out [6], [3] indicating that, at each time-
step, the sampled error variance would then be ex-
pected to actually achieve or match the alternative
CRLB %4 that corresponds to this hypothesized re-
formulated system state equation; (2) to develop
a CRLB methodology for endoatmospheric targets
since new rigorous results are now available [10],
[31], [32] for handling CRLB evaluations for the
case of a non-zero process noise covariance @Q; (3)
using the CRLB formulation for non-zero process
noise to gauge the effect of alternative weightings
in filter tuning exercises; (4) to develop a CRLB
methodology for angle-only tracking scenarios [35]
(to handle the case corresponding to jammers be-
ing present amongst the incoming target complex
that can deny a surveillance radar’s target track-
ing range determination); (5) to develop a CRLB
methodology for satellite-borne down looking ter-
restrial applications experiencing backscatter from
land clutter, sea clutter, and clouds using fairly
recent evaluation techniques [47]. IR Images can

also be handled [48].

A. Both CRLB and Filter Behavior Critically

Depend on Actual Measurement Noise Cova-

riance Evolution (as ultimately affects SNR)

The following closed-form solution from p. 126
of Ref. 16 (corresponding to a linear Kalman filter
for a constant coefficient linear system) only con-
siders an easy scalar case example. Consequently,
all required manipulations are tractable and cause-
effect results and relationships are revealed in a
straight forward manner without being obscurred
by complexity. Despite being merely a scalar ex-
ample, it is still representative of all estimation
problems involving Kalman filters or Kalman-like
filters (such as an EKF) and it serves to reveal gen-
eral trends and crutial dependencies and to also
allow asymptotic steady-state behavior to be eas-
ily exhibited and deciphered. To this end, consider

24However, it's possible that the resulting CRLB arising
for the alternative formulation proposed will likely be worse
(larger than that associated with the current target model)
since the current target model was in fact historically set-
tled upon after other alternative formulations (e.g., [21],
[22]) were explored and experimented with for this same
strategic defense application scenario but which did NOT
previously take into account the associated CRLB.



the following scalar system of the form of Eqgs. 4
and 5 with underlying system matrix being zero
(f =0)and g = h = 1, and with scalar white,
Gaussian process noise w ~ A(0,¢) and scalar
white Gaussian measurement noise v ~ N(0,r),
respectively. The associated Riccati equation of
Eq. 8 simplifies to be merely the following scalar
differential equation:

2
p= q—p—, with specified initial condition : p(0) =

' (41)
Unlike the situation in the general case of interest,
this scalar Riccati equation can be immediately
solved by rearranging and employing the following

identity:
dp 1. [a+p
e G 42
/C~2—1>2 a n[a—p]’ “2)

and we find directly for o £ V/Tqand B8 £ \/Z-' that
the closed-form solution to the Riccati equation of
Eq. 41 is:

po cosh {1t} + a sinh {8t}
po sinh {f 1} +a cosh {Ft}]"

Notice that a large initial uncertainty in this scalar
Kalman filter-based tracking system would corre-
spond to use of a relatively large initial uncertainty
Po and the above general solution involving the left
most dominant terms in both numerator and de-
nominator (where p, divides out) reduces to:

P =o | (43)

p(t) = a coth {8 t}. (44)
Notice that within the above Eq. 44, the effective
time constant is % e 5, so the rate of conver-

gence dictated by the time constant is faster when
the time constant is shorter, or for fixed ¢, when r
is smaller. Since SNR appears in the denominator
of the expression occurring within the first sen-
tence of Sec. 4.2, having a larger SNR forces the
associated r to be smaller and Eq. 44 converges
faster. Notice further that the steady-state value
as time gets large is p(t) — a = /g, and that this
steady-state final value is smaller (corresponding
to less uncertainty) when r is smaller too. Thus,
there is a double benefit to having a large SNR
to ensure a smaller r to achieve the most desir-
able outcome. As mentioned in Sec. 5.1, this dou-
ble effect is why just approximating by using the
average value of SNR in evaluating the CRLB of
Eq. 28 should be avoided in favor of using the true
instantaneous SNR values as a function of time to
better reflect the underlying situation that exists.
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