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Abstract

An apparent weakness in the arguments within the derivation of [1, Appendix] is identified using
explicit numerical examples which further demonstrate that the results are of limited benefit.

Our prior experience in specifying linear system realizations [2], [3] alerted us to an apparent problem with
the new alternative procedure offered in [1, Appendix], as a potentially more straightforward way to achieve
a multi-input multi-output (MIMO) linear system realization from a matrix power spectrum or, equivalently,
from a given matrix correlation function by explicitly delineating both the structure and parameter values
of an underlying white noise-driven Linear Time Invariant (LTI) state variable model that provides such a
vector random process as its output.

The arguments for the derivation of the matrix Lyapunov equation (that the variance/cross-covariance
matrix satisfies 1) [5, pp. 222-226] are quite familiar to many analysts but fall short in Ref. [1]’s attempt to
extend them in its overly concise but appealing result, where Eq. A4 equates a function of one variable on
the left hand side 2 to a function of two variables on the right hand side as an obvious impossibility.

Among the beneficial results offered in [2], [3] is a non degenerate statistically stationary 2-channel
numerical example: 3
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where these second order statistics correspond to a demonstrable closed-form solution both for the interme-
diate (non-unique [3]) matrix spectral factorization (MSF):
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(where details of accomplishing the MSF here are provided in [2, Appendix B]) and for the resulting associated
linear system realization:
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1Precise regularity conditions guranteeing that the steady-state constant symmetric positive definite matrix solution Px can
be obtained from Eq. A7 with dPx(t)/dt ≡ 0 is that F have only eigenvalues with real parts strictly negative and that (F,L)
be a controllable pair, where Q = LLT (and where L is a factor resulting from a Choleski decomposition of Q) [4].

2In using this form, at this point in the derivation in [1], the assumption of stationarity had not yet been invoked as a slight
mis-step of prematurely using an assumption that is invoked later.

3The power spectrum matrix depicted here on the right hand side of Eq. 1 consists of elements represented in the frequency
domain by the bilateral Laplace transform, which relates to the Fourier transform via the substitution s = ω.
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which is of the form
d

dt
x(t) = Fx(t) + Gw′(t) and y(t) = Hx(t), (5)

and the corresponding Q
�= GGT . Eq. A1 and Eq. 5 here differ slightly in that the zero mean Gaussian

white noise process w′(t) in Eq. 5 has the matrix identity as its covariance intensity matrix but, otherwise,
corresponds to the same second order statistics for y as would be associated with Eq. A1, where y(t) ≡ x(t)
for Eq. A1 (corresponding to H being the identity matrix). This asserted solution as the linear system
realization can easily be confirmed to yield the matrix power spectrum of Eq. 1 merely by using the right
hand expression of Eq. 2 and multiplying out the results with the asserted parameter values of Eqs. 3 and 4
to again yield the left hand expression in Eq. 2, which, when further multiplied out as WT (−s)W (s) yields
the power spectral matrix of Eq. 1 as a cross-check.

We now attempt to apply the steps for achieving a linear system realization provided in [1] to the
correlation function specified in Eq. 1, where it is more convenient to use the time domain representation in
Eq. 1 instead. In attempting to take the derivative of the correlation function of Eq. 1, to be evaluated at
τ = 0 (corresponding to limt→to), as called for in Eq. A5, yields:
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but this presents a problem since the terms constituting the elements of the matrix, as a composite function,
are not differentiable at τ = 0 since the absolute value of τ , being |τ |, itself is not differentiable at the origin
and we are stymied by being unable to proceed any further using this approach. However, to illustrate what
further problems are to be encountered, suppose that an even more benign matrix correlation function were
being utilized such as that corresponding to the familiar ergodic random process [6, Chapt. 9] with both
channels being independent, as a possible further simplification, then we have:

x1(t) = A sin (ωt + θ), x2(t) = B sin (ωt + θ), (7)

with A, B, and ω being deterministic non-zero constants, and θ being a zero mean random variable uniformly
distributed over [−π, π]. Its matrix correlation function would be:
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and, upon attempting to differentiate it with respect to τ at τ = 0, this step can now be accomplished as:
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and we are one step further but stuck again and unable to take the approach of [1] to fuition. These two
numerical examples are extremely well behaved and exhibit all the properties of a valid correlation function
matrix [3, Sec. IIB]; however, they reveal the weaknesses of this asserted new approach although the initial
covariances can be found for the above two examples, respectively, as:
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and as:
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Since the means of both examples are zero vectors, here we have Ryy(0) �= E[x(to)xT (to)] = Px(to) and in
both examples the resulting Px(to) is non-singular and invertable.

Looking further at Eq. A5 for what is needed to continue with the above two examples to specify a
corresponding F using the newly posed methodology, even with the matrix Px(to) specified and nonsingular
in both cases, one cannot proceed in specifying F from Eq. A5 and consequently Eq. A8 is useless as
well. However, if one were attempting to solve Eq. A7 for the necessary constant Px(to) using the standard
prior approach, one first needs to know F and Q. While it is true that for a Kalman filtering situation,
where any symmetric positive definite matrix suffices for the initial condition covariance to start integrating
out the Riccati equation, which exponentially asymptotically converges to the correct solution under fairly
mild regularity conditions [7] even if the exact initial covariance matrix is unknown, an arbitrary symmetric
positive definite Px(to) hypothesized starting value does not necessarily correspond to the steady state
solution of Eq. A7 (and the rate of convergence in just integrating it out with time is much slower than
that of the somewhat similar looking Riccati equation) to obtain the necessary final result for Px(to) that
is needed to represent the corresponding stationary random process. Hence, one cannot use Eq. A5 to
determine F and eventually Q from Eq. A8 for even these two benign examples, which points to a rather
severe limitation in applicability of the new approach offered in [1, Appendix].
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