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Outline – Square Root
• Efficient Processing

– Processing the Ricatti Equation
– Sensitivity to round-off errors (precision)

• Square Root Types
– Joseph -
– Potter – Cholesky, Householder
– Carlson – Cholesky
– Bierman – UD

• Comparisons
– Speed versus accuracy

• Memory is not a problem
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Square Root
• Chapter 6
• Although Kalman filtering is suited for computer 

implementation, the  computer is not ideally suited. 
• The Kalman filter - in terms of covariance matrices - is 

particularly sensitive to round-off errors.
– Alternative representations for the covariance matrix of 

estimation uncertainty, in terms of symmetric products of 
triangular factors. 

– Note: issues sparseness
– Note: covariance, transpose, & inverse covariance computation

• The alternative Kalman filter implementations use these 
factors of the covariance matrix (or its inverse) in three 
types of filter operations:

1. Temporal updates
2. Observational updates
3. Combined updates (temporal and observational) 4
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Square Root Approaches
• Square Root Covariance Approach

– Cholesky products
– Symmetry for easier processing

• Triangluar Approach
– Upper, Lower Triangular
– Diagonalize – Gram-Schmidt

• Information Approach
– More efficient
– Information versus track states
– Shown to be useful for distributed systems
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Square Root
• Chapter 6

– Alternative representations for the covariance matrix of estimation 
uncertainty, in terms of symmetric products of triangular factors. 

• 1. Square root covariance filters, which use a decomposition of the 
covariance matrix of estimation uncertainty as a symmetric product 
of triangular Cholesky factors:

P  = CCT

• 2. UD covariance filters, which use a modified (square-root-free) 
Cholesky decomposition of the covariance matrix:

P  =  UDUT

• 3. Square root Information filters, which use a symmetric product 
factorization of the information matrix, 

I  = P - 1
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Square Root
• Chapter 6

– Alternative representations for the covariance matrix of estimation uncertainty, in 
terms of symmetric products of triangular factors. 

• 1. Cholesky decomposition methods, by which a symmetric positive 
definite matrix M can be represented as symmetric products of triangular
matrix C:

M = CCT or     M = UDUT.
• The Cholesky decomposition algorithms compute C (or U and D), given M.

• 2. Triangularizaton methods, by which a symmetric product of a general 
matrix A can be represented as a symmetric product of a triangular matrix C:

AAT = CCT or     AAT = U D’ UT

These methods compute C (or U and D), given A (or A and D’ ).

• 3. Rank One Modification Methods, by which the sum of a symmetric 
product of a triangular matrix  and scaled symmetric product of a vector 
(rank-one matrix) v can be represented by a symmetric product of a new
triangular matrix C:

C’C’ T +  s v v T =  CCT or    U’D’U’ T + s v v T =  UDU T

These methods compute C (or U and D), given C’ (or D’ and U’ ), s, and v.
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Square Root
• KF Operations
•TABLE 6.5 OPERATIONS FOR CONVENTIONAL KALMAN 
FILTER
• State dimension = n

Measurement dimension = ℓ
• Operation flops
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Square Root
• KF Operations
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Square Root
• KF Operations Gelb, 1974
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Square Root
• KF Operations
•Integration time vs roundoff errors

Gelb, 1974
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Square Root
• In the square-root formulation, 
Matrix W is calculated instead of P, 

where              P = WW T. 

Thus, P(+) is always assured to be positive definite. 
The square-root formulation gives the same accuracy in single precision as 
does the conventional formulation in double precision. 

Unfortunately, the matrix W is not unique, and this leads to a proliferation of 
square-root algorithms The square-root algorithm takes the form:

Update W(+) = W(-) [ I  - Z(U T) - 1 (U + V) - 1 Z T]

Extrapolation [d W(-) / d t ]   =   FW(-)  +  (1 / 2) Q[W T (-)] - 1

where Z =  W T(-) H T                    note:    Z = H x + v
UU T =  R + Z T Z
VV T =  R

Gelb, 1974
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Square Root
• In the square-root formulation, 
Matrix W is calculated instead of P, 

where              P = WW T. 

Differential equation which can be a difference equation

Gelb, 1974
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Square Root
Of course, a penalty is paid in that 
the “square root” of certain matrices such as R must be calculated; a  
tedious process involving eigenvalue--eigenvector routines. 
An indication of the number of extra calculations required to 
implement the square-root formulation can be seen from the sample 
case illustrated in Table 8.4-1, which is for a state vector of dimension 
10 and a scalar measurement. This potential increase in computation 
time has motivated a search for efficient square root algorithms. 
Recently, Carlson (Ref. 53) has derived an algorithm which utilizes a 
lower triangle form for W to improve computation speed. Carlson 
demonstrates that this algorithm approaches or exceeds the speed of 
the conventional algorithm for low-order filters and reduces existing 
disadvantages of square-root filters for the high-order case.

Gelb, 1974
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Square Root
•Example 8.4-2 illustrates how SR algorithms minimize round-off error.  
Suppose

H  =   [ 1  0 ]     ,   r  = ε 2

where ε ≤ 1 and to simulate computer word length roundoff, we assume 
1 + ε ≠ 1 but 1 + ε 2 ≅ 1. It follows that the exact value for P(+) is

whereas the value calculated in the computer 
using the standard Kalman filter algorithm is

Using the square-root algorithm is

Since          K  =  P(+) H T R - 1 is:

Exact True
Conventional Bad
Square-Root Good

Clearly conventional formulation may lead to divergence problems.

Gelb, 1974
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Square Root
•Storage Requirements

Gelb, 1974
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Square Root
• Chapter 6 - Convergence

• Round-off causes gain to change sign momentarily

• Rapid convergence, exponential divergence, slow convergence
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Square Root
•Chapter 6 - KF
Note the reduced computations (?)

The error propagation expression for the conventional Kalman filter 
includes extra terms that are proportional to the anti-symmetric part of P. 
Consequently, implementation methods maintains the symmetry of P will 
avoid error propagation. The same effect can be obtained by computing 
only the unique elements of P, which is fairly common practice anyway. 
(The square root covariance implementations maintain symmetry of P.)
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Square Root
•Chapter 6 – Roundoff Errors
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Square Root
•Chapter 6 – Roundoff Errors
(Round-off Errors Due to Large a priori Uncertainty)                                                 

After computation – Error in analysis
Need to fix for covariance precision           
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Square Root
• Chapter 6
• Joseph [13], who demonstrated improved numerical stability by 

rearranging the standard formulas for the observational update 
(given here for scalar measurements) into the following formats:
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Square Root
• Chapter 6
• De Vries implementation. at Rockwell International, is designed to reduce the 

computational complexity of Joseph formulation by judicious rearrangement 
of the matrix expressions and reuse of intermediate results
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Square Root
• Chapter 6 - Factorization

• Matrix factoring and decomposition. 
– The terms decomposition and factoring (or

fractorization) are used interchangeably to describe 
the process of transforming a matrix or matrix 
expression into an equivalent product of factors.

• The term decomposition is somewhat more 
general. It is also used to describe non-product 
representations, such as the additive 
decomposition of a square matrix into its 
symmetric and anti-symmetric parts

• A  =  (1/2) (A + AT)  +  (1/2) (A - AT).
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Square Root
•Chapter 6 - Factorization

• Another distinction between decomposition and 
factorization is made by Dongarra, Moler, Bunch, and 
Stewart [81], who use the term 

• factotization to refer to an arithmetic process for 
performing a product decomposition of a matrix in 
which not all factors are preserved. 

• The term triangularization is used in this book to 
indicate a QR factorization (in the sense of Dongarra et 
al) involving a triangular factor that is preserved and an 
orthogonal factor that is not preserved.

• The more numerically stable implementations of the 
Kalman filter use one or more of the following 
techniques to solve the associated Riccati equation:
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Square Root
•Chapter 6 - Factorization

• Solve the associated Riccati equation:
• 1. Factoring the covariance matrix of state estimation 

uncertainty (the dependent variable of the Riccati 
equation) into Cholesky factors (usually, triangu-lar 
factors), or into modified Cholesky factors (unit triangular 
and diagonal factors).
– A Cholesky factor of a symmetric nonnegative definite 

matrix M is a matrix C such that CCT = M. Cholesky 
decomposition algorithms solve for C that is either 
upper triangular or lower triangular.

– The modified Cholesky decomposition algorithms 
solve for diagonal factors and either a lower triangular 
factor L or an upper triangular factor U such that M = 
UDUT = LDLT, where D and D are diagonal factors with 
nonnegative diagonal elements.
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Square Root
•Chapter 6 - Factorization

• solve the associated Riccati equation:
• 2. Factoring the covariance matrix of measurement noise R to 

reduce the com-putational complexity of the observational 
update implementation, and factoring the plant noise 
covariance matrix Q to reduce the computational com-plexity 
of the temporal update implementation. (These methods 
effectively “de-correlate” the components of the measurement 
or plant noise vector.)

• 3. Taking the symmetric matrix square roots of elementary 
matrices.   A symmetric elementary matrix has the form:

I - σ ν νT

where I is the n × n identity matrix, σ is a scalar, and v is an n-
vector. The symmetric square root of an elementary matrix is 
also an elementary matrix with the same v, but a different 
value for σ. 26
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Square Root
•Chapter 6 - Factorization

• Solve the associated Riccati equation:
• 4. Factoring general matrices as products of triangular 

and orthogonal matri-ces. Two general methods are 
used in Kalman filtering:

• (a) Triangularization (QR decomposition) methods 
were originally devel-oped for more numerically stable 
solutions of systems of linear equa-tions. They factor a 
matrix into the product of an orthogonal matrix Q and a 
triangular matrix R. In the application to Kalman 
filtering, only the triangular factor is needed. We will 
call the QR decomposition triangularization, because Q 
and R already have special meanings in Kalman 
filtering. The two triangularization methods used in 
Kalman filtering are:
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Square Root
•Chapter 6 - Factorization

• Solve the associated Riccati equation:
• 4. Factoring general matrices as products of 

triangular and orthogonal matrices. 
• (a) Triangularization (QR decomposition) 

methods
• The two triangularization methods used in 

Kalman filtering are:

– i. Givens rotations [160] triangularize a matrix by 
operating on one element at a time. (A modified Givens 
method due to Gentleman [159] generates diagonal and 
unit triangular factors.)

– ii. Householder transformations triangularize a matrix 
by operating on one row or column at a time.

• 28
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Square Root
•Chapter 6 - Factorization

• Solve the associated Riccati equation:
• 4. Factoring general matrices as products of triangular 

and orthogonal matri-ces. Two general methods are 
• (b) Gram-Schmidt ortho-normalization is another 

general method for fac-toring a general matrix into a 
product of an orthogonal matrix and a triangular matrix. 
Usually, the triangular factor is not saved. In the 
application to Kalman filtering, only the triangular factor 
is saved.
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Square Root
•Chapter 6 - Factorization

• Solve the associated Riccati equation:
• 5. Rank one modification algorithms. A 

“rank one modification” of a symmetric 
positive definite n × n matrix M has the 
form M ± ν νT, where v is a n-vector (and 
therefore has matrix rank equal to one). 

• The algorithms compute a Cholesky 
factor of the modification M ± ν ν T, given 
ν and a Cholesky factor of M.
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Square Root
•Chapter 6 - Factorization

• Solve the associated Riccati equation:
• 6. Block matrix factorizations of matrix expressions in 

the Riccati equation. The general approach uses two 
different factorizations to represents the two aides of an 
equation, such as

• CCT =   AAT +  BBT =   

• The alternative Cholesky factors C and  [ A B ] must 
then be related by orthogonal transformations 
(triangularizations). A QR decomposition of [ A  B ] will 
yield a corresponding solution of the Riccati equation in 
terms of a Cholesky factor of the covariance matrix.
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Square Root
•Chapter 6 - Factorization

• Solve the associated Riccati equation:
• 6. Block matrix factorizations of Riccati equation. 

• In the example used above, [ A  B ] would be called a “1 × 2” block partitioned 
matrix, because there are one row and two columns of blocks (matri-ces) in 
the partitioning. Different block dimensions are used to solve different 
problems:
– (a) The discrete-time temporal update equation is solved in “square root”

form by using alternative 1 × 2 block partitioned Cholesky factors.
– (b) The observational update equation is solved in “square root” form by 

using alternative 2 × 2 block partitioned Cholesky factors and modified 
Cholesky factors representing the observational update equation.

– (c) The combined temporal/observational update equations are solved in 
“square root” form by using alternative 2 × 3 block partitioned Cholesky 
factors of the combined temporal and observational update equations.
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Square Root
•Chapter 6 - Factorization

•Cholesky factors and modified Cholesky factors
– The product of a matrix C with its own transpose, in the form 

CCT = M is called the symmetric product of C, and C is called 
a Cholesky factor of M. Strictly speaking, a Cholesky factor is 
not a matrix square root, although the terms are often used 
interchangeably in the literature. (A matrix square root S of M 
is a solution of M = SS = S2, without the transpose.)

– All symmetric nonnegative definite matrices (such as 
covariance matrices) have Cholesky factors, but the Cholesky 
factor of a given symmetric nonnegative definite matrix is not 
unique. 

– For any orthogonal matrix T (i.e., such that TT T = I), the 
product Γ = CT satisfies the equation ΓΓT = CTTTCT = CC. That 
is, Γ is also a Cholesky factor of M. However, for suitable 
constraints on the solution (e.g., being upper triangular or 
lower triangular with nonnegative diagonal elements), a 
unique C can be found. 

– French geodesist André-Louis Cholesky (1875 - 1918) [135], 
and is called the Cholesky decomposition.
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Square Root
•Chapter 6 - Factorization

•Cholesky factors Use in Kalman Filtering
– Cholesky decom-position methods produce triangular matrix factors 

(Cholesky factors), and the sparseness of these factors can be exploited in 
the implementation of the Kalman filter equa-tions. These methods are used 
for the following purposes:

– 1. In the decomposition of covariance matrices (P, R, and Q) for 
implementa-tion of “square root” filters.

– 2. In “de-correlating” measurement errors between components of vector-
valued measurements, so that the components may be processed 
sequentially as independent scalar-valued measurements. (See page 218.)

– 3. As part of a numerically stable method for computing matrix expressions 
containing the factor (HPHT + R) - 1 in the conventional form of the Kalman 
filter. (This matrix inversion can be obviated by the de-correlation methods, 
however.)

– 4. In Monte Carlo analysis of Kalman filters by simulation. Cholesky factors 
are used for generating independent random sequences of vectors with pre-
-specified means and covariance matrices. 
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Square Root
•Chapter 6 - Factorization

•Cholesky factors Ex
•Consider the 3 × 3 example for finding a lower triangular
Cholesky factor P = CCT for symmetric P:
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Square Root
•Chapter 6 - Factorization

• Modified Cholesky factors Ex 
•Uses the UD formulation
– Given M, a symmetric, positive definite m × m matrix, computes U 

and D, modified Cholesky factors of M, such that U is a unit upper 
triangular matrix, D is a diagonal matrix, and M = UDUT.

•DECORRELATION

R = UDUT,

36
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Square Root
•Chapter 6 - Factorization

• Modified Cholesky factors Ex 
• DECORRELATION Value
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Square Root
•Chapter 6 – Square Root

• Potter
•An elementary matrix is a matrix of the form I – s v w T, 
where 
– I is an identity matrix, 
– s is a scalar, and 
– v, w are column vectors of the same row dimension as I. 

– Elementary matrices have the property that their products are also 
elementary matrices. Their squares are also elementary matrices,
with the same vector values (v, w) but with different scalar values (s).
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Square Root
•Chapter 6 – Square Root

• Potter
•Symmetric elementary matrices. An elementary matrix is 
symmetric if v = w. The squares of such matrices have the same 
format:
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Square Root
•Chapter 6 – Square Root

• Potter
•The symmetric square root of a symmetric elementary 
matrix. One can invert the last equation above and take the 
square root of the symmetric elementary matrix (I - s v vT).
This is done by solving the scalar quadratic equation

to obtain the solution
In order that this square root be a real matrix, it is 
necessary that the radicand
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Square Root
•Chapter 6 – Square Root

• Triangularization
• (QR decomposition) of A = [φ k C k(+) | C Q]. It is a theorem of linear 
algebra that any general matrix A can be represented as a product

A = C k+1(-) T

of a triangular matrix Ck+1(-) and an orthogonal matrix T. This type of 
decomposition is called QR decomposition or triangularization. By 
means of this triangularization, the symmetric matrix product 
factorization
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Square Root
•Chapter 6 – Square Root

• Triangularization
• (USe)
Temporal updates of Cholesky factors of the covariance 
matrix of estimation uncertainty, as described above
Observational updates of Cholesky factors of the estimation 
information ma-trix, as described in §6.5
Combined updates (observational and temporal) of 
Cholesky factors of the covariance matrix of estimation 
uncertainty, as described in §6.7

A modified Givens rotation due to W Morven
Gentleman [159] is used for the temporal updating of 
modified Cholesky factors of the covariance matrix.
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Square Root
•Chapter 6 – Square Root

• Triangularization (Givens - Rotation)
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Square Root
•Chapter 6 – Square Root

• Triangularization (Givens - Rotation)
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Square Root
•Chapter 6 – Square Root

• Triangularization (Householder)
•Alston S. Householder It uses an elementary matrix of the 

where v is a column vector and I is the identity matrix of the same 
dimension. This particular form of the elementary matrix is called a 
Householder reflection, House-holder transformation, or Householder 
matrix. Note that Householder transformation matrices are always 
symmetric. They are also orthogonal, for

They are called “reflections” because they transform any matrix a into 
its “mirror reflection” in the plane (or hyperplane) normal to the vector v 
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Square Root
•Chapter 6 – Square Root

• Triangularization (Householder)
•Alston S. Householder It uses an elementary matrix of the 
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•Chapter 6 – Square Root
• Triangularization (Householder - Upper)
• Zeroing

•Upper

Square Root
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•Chapter 6 – Square Root
• Triangularization (Potter)

Square Root
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•Chapter 6 – Square Root
• Triangularization (Potter)

Square Root
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•Chapter 6 – Square Root
• Triangularization (Potter)
•Potter square root observational update formula :
•the solution for the a posteriori Cholesky factor C(+) of the 
covariance matrix P can be expressed as the product

Square Root
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•Chapter 6 – Square Root
• Triangularization (Carlson) - FAST
• This algorithm is due to Neal A. Carlson. It generates an upper 
triangular Cholesky factor W for the Potter factorization, and has 
generally lower computational complexity than the Potter algorithm. It is 
a specialized and simplified form of an al-gorithm used by Agee and 
Turner [103] for Kalman filtering. It is a rank-one mod-ification 
algorithm, like the Potter algorithm, but it produces a triangular 
Cholesky factor. It can be derived from the following lemma:

•Lemma 4 (Carlson). If W is an upper triangular n × n matrix such that

• for all i, m, j such that 1 ≤ i  ≤ m ≤ j ≤ n.

Square Root
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•Chapter 6 – Square Root
• Triangularization (Carlson) – FAST - UPPER

Square Root
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•Chapter 6 – Square Root
• Triangularization (Bierman) – UD
•Partial UD factorization of the covariance equations. In a manner simi-lar to the 
case with Cholesky factors for scalar-valued measurements, the conventional 
form of the observational update of the covariance matrix:

can be partially factored in terms of UD factors:

Square Root



53
Erik Blasch – EE716

•Chapter 6 – Square Root
• Triangularization (Bierman) – UD
• Proofs in Book 
•Lemma 5. If for m such that l < m ≤ n, and for all i, j such that 

l ≤ i  ≤ j  ≤ m

•Lemma 6. If

then Equation 6.104 holds for all m such that 1 < m ≤ n.

Square Root
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•Chapter 6 – Square Root
• Triangularization (Bierman) – UD
• Proofs in Book 

•Lemma 7. If

then for 1 ≤ j ≤ n

and for 1 ≤ i < j ≤ n,

Square Root
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•Chapter 6 – Square Root
• Triangularization (??)
• A Square Partitioned Cholesky Factorization
•The following factorization of the observational update equations first 
appeared in a paper by Kaminski, Bryson, and Schmidt [179]. The derivation 
presented here has been modified to yield upper triangular Cholesky factors.

Square Root
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•Chapter 6 – Square Root
• Triangularization (??)
• A Square Partitioned Cholesky Factorization
• yield upper triangular Cholesky factors.

Square Root
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•Chapter 6 – Square Root
• Triangularization (??)
• A Square Partitioned Cholesky Factorization
• yield upper triangular Cholesky factors.

Square Root
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•Chapter 6 – Square Root
• Triangularization (Kaliath)
• A Square Partitioned UD Factorization

Square Root
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•Chapter 6 – Square Root
• Triangularization (Kaliath)
• A Square Partitioned UD Factorization

Square Root
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•Chapter 6 – Square Root
• Triangularization (Schmidt)
•

Square Root
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•Chapter 6 – Square Root
• Triangularization (Thorton - MWGS)
•This UD factorization is due to Catherine Thornton [121]. It is also 
called modi-fied weighted Gram-Schmidt (MWGS) orthogonalization. 
[Gram-Schmidt ortho-normalization is a procedure for generating a set 
or “unit normal” vectors as linear combinations of a set of linearly 
independent vectors. That is, the resulting vectors are mutually 
orthogonal and have unit length. The procedure without the unit length 
property is called Gram-Schmidt orthogonalization. These algorithmic 
methods were derived by Jorgen Pedersen Gram (1850 - 1916) and 
Erhard Schmidt (1876 - 1959).]  It uses a factorization algorithm due to 
Björck [137] that is actually quite different from the conventional Gram-
Schmidt orthogonalization algorithm, and more robust against round-
off errors. However, the algebraic properties of Gram-Schmidt 
orthogonalization are useful for deriving the factorization.
•

Square Root
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•Chapter 6 – Square Root
• Triangularization (Thorton - MWGS)
• UD 

Square Root
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•Chapter 6 – Square Root
• Triangularization (Kailath - Observation)
• UD 

Square Root

64
Erik Blasch – EE716

•Chapter 6 – Square Root
• Information Filter
•The inverse of the covariance matrix of estimation uncertainty is called 
the Informati-on matrix:

•This is also called the Fisher Information matrix, named after the 
English statistician Ronald Aylmer Fisher (1890 -1962). More generally, 
for distributions with differentiable probability density functions, the 
Information matrix is defined as the matrix of second-order derivatives 
of the logarithm of the probability density with respect to the variates. 
For Gaussian distributions, this equals the inverse of the covariance 
matrix.
•Implementation using Y (or its Cholesky factors) rather than P (or its 
Cholesky fac-tors) are called Information filters. (Implementations using 
P are also called covari-ance filters.)

Square Root
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Book Code (2)
CHAPTER5
• exam53.m demonstrates the extended Kalman filter in the estimation of 

position, velocity, and damping factor of a damped harmonic oscillator 
with constant forcing function using Example 5.3.

• exam53x.m and Exam53y.m descriptions are given in whatsup.doc.
CHAPTER6
• Shootout.m is a demonstration of the efficiency of nine alternative 

observational updates, using the ill-conditioned problem in Example 6.2.)
• Carlson.m - N. A. Carlson's observational update method.
• Utchol.m - upper triangular Cholesky decomposition (Matlab does lower)
• Potter.m - J. E. Potter's observational update method.
• Joseph.m - P. D. Joseph's observational update method.
• Josephb.m - P. D. Joseph's observational update, modified by Bierman.
• Josephdv.m - P. D. Joseph's observational update, modified by De Vries.
• Bierman.m - G. J. Bierman's observational update method.
• Thornton.m - C. L. Thornton's temporal update method. 
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Square Root Comparison
•shootout.m demonstrates SR
% These alternative approaches are each evaluated for delta
% ranging from several order of magnitude larger than eps^(2/3) 
% to several orders of magnitude smaller than eps^(2/3) 
%
for k=1:19,
d(k) = delta*10^(10-k);

%
% COMMON PARAMETERS TO ALL METHODS
%
P  = eye(3);
D0 = eye(3);
U0 = eye(3);
R  = d(k)^2*eye(2);
H  = [1,1,1; 1,1, 1+d(k) ];
x0 = [1;1;-1];
z  = H*x0 + d(k)*[randn;randn];
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Square Root Comparison
•shootout.m demonstrates SR
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Square Root Comparison
•shootout.m CPUTIME
t1 = cputime;
K  = P*H'/(H*P*H'+R);
PK = P - K*H*P;

tCK = tCK + cputime - t1;
xK = x0 + K*(z - H*x0);

%
% SWERLING IMPLEMENTATION
%
t2 = cputime;
PS = inv(P + (H'/R)*H);

tSW = tSW + cputime - t2;
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Square Root Comparison
•shootout.m – plotted CPUTIME
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Square Root Comparison
•shootout.m – plotted CPUTIME
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Square Root Comparison
• 1 Time Comp and 1 Obs. Update Maybeck, 1979
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Square Root Comparison
• Computation Time Maybeck, 1979
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Square Root Comparison
• Square Root
• Cholesky

Maybeck, 1979
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Square Root Comparison
• Square Root
• Carlson

Maybeck, 1979
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Square Root Comparison
• Square Root
• Potter (UD)

Maybeck, 1979


