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e Chapter 6

» Although Kalman filtering is suited for computer
implementation, the computer is not ideally suited.

e The Kalman filter - in terms of covariance matrices - is
particularly sensitive to round-off errors.

— Alternative representations for the covariance matrix of
estimation uncertainty, in terms of symmetric products of
triangular factors.

— Note: issues sparseness
— Note: covariance, transpose, & inverse covariance computation
* The alternative Kalman filter implementations use these
factors of the covariance matrix (or its inverse) in three
types of filter operations:
1. Temporal updates
2. Observational updates

3. Combined updates (temporal and observational)
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» Square Root Covariance Approach
— Cholesky products
— Symmetry for easier processing
* Triangluar Approach
— Upper, Lower Triangular
— Diagonalize — Gram-Schmidt
e Information Approach
— More efficient
— Information versus track states
— Shown to be useful for distributed systems
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e Chapter 6
— Alternative representations for the covariance matrix of estimation

uncertainty, in terms of symmetric products of triangular factors.

1. Square root covariance filters, which use a decomposition of the
covariance matrix of estimation uncertainty as a symmetric product

of triangular Cholesky factors:
P=cc’

2. UD covariance filters, which use a modified (square-root-free)
Cholesky decomposition of the covariance matrix:

P = UDU'

3. Square root Information filters, which use a symmetric product
factorization of the information matrix,

| =p""

Erik Blasch — EE716

WRIGHT STATE S q uare R o) Ot :@E

Chapter 6
— Alternative representations for the covariance matrix of estimation uncertainty, in

terms of symmetric products of triangular factors.

1. Cholesky decomposition methods, by which a symmetric positive
definite matrix M can be represented as symmetric products of triangular

matrix C:
_ T _ T
M=CC or M=UDU.
The Cholesky decomposition algorithms compute C (or U and D), given M.

2. Triangularizaton methods, by which a symmetric product of a general
matrix A can be represented as a symmetric product of a triangular matrix C:
AA'=CcC’ or AA'=UD' U’
These methods compute C (or U and D), given A (or A and D’ ).
3. Rank One Modification Methods, by which the sum of a symmetric

product of a triangular matrix and scaled symmetric product of a vector
(rank-one matrix) v can be represented by a symmetric product of a new

triangular matrix C:
cc''+svv' =cC’ or
These methods compute C (or U and D), given C’ (or D’ and U’ ), s, and v.
Erik Blasch — EE716

UD'w T +svv' = UDU’'

WG Square Root N7,
* KF Operations
*TABLE 6.5 OPERATIONS FOR CONVENTIONAL KALMAN

FILTER
+ State dimension =n
Measurement dimension = £

e Operation flops

Operation flops

HxP(-) o f

Hx (HP(-)"+R (U2 n£2+(12) nf
(H(HP() +R] EPH DL+ (D £

né?
(U2) 0’8 + (12 nd
Gt + G nd +nf+E H(UD L+ (D)

(B (HP()' + R] ' x [HP() )
P() - [HP() ] x [H(EP(-)'+ R] ' [HP()]

Total
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* KF Operations Gelb, 1974
1‘ 1‘ Hl. a; ¢‘. Q;
Pl o Ll FILTER GAIN ' FILTER R FILTER .
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 KF Operations Gelb, 1974
sIntegration time vs roundoff errors
A

STORAGE REQUIREMENTS
CALCULATION TIME [

ROUNDOFf ERROR

TRUNCATION
ERROR

COMPLEXITY OF INTEGRATION RULE

[No. of terms in Taylor series used) 10
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¢ In the square-root formulation,
Matrix W is calculated instead of P,

where P=ww".

Thus, P(+) is always assured to be positive definite.

The square-root formulation gives the same accuracy in single precision as
does the conventional formulation in double precision.

Unfortunately, the matrix W is not unique, and this leads to a proliferation of
square-root algorithms The square-root algorithm takes the form:

Update WEH=WE I -ZUu") ' u+v)'z7
Extrapolation [dW(-)/dt] = FW(-) + (1/2) Q[WT (=) -

where Z= WT(-)HT note: Z=Hx+v
uw'=R+2"z
w'=R

11
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Square ROOt e, 1074 N7

¢ In the square-root formulation,
Matrix W is calculated instead of P,

where P=ww"'.
Differential equation which can be a difference equation
P =ww'+ww’

P

[FW+ 2w D MYwT+wiw FT vy w Q)

P= FOWWDH +(U20Q + (WWHET +(112) Q

el a
Il

FP +PF 4+ Q

12
Erik Blasch — EE716




T 1] s

WRIGHT STATE A
ONIYERSIT Square Root ., 15rs W/
Of course, a penalty is paid in that

NIV
the “square root” of certain matrices such as R must be calculated; a
tedious process involving eigenvalue--eigenvector routines.

An indication of the number of extra calculations required to
implement the square-root formulation can be seen from the sample
case illustrated in Table 8.4-1, which is for a state vector of dimension
10 and a scalar measurement. This potential increase in computation
time has motivated a search for efficient square root algorithms.
Recently, Carlson (Ref. 53) has derived an algorithm which utilizes a
lower triangle form for W to improve computation speed. Carlson
demonstrates that this algorithm approaches or exceeds the speed of
the conventional algorithm for low-order filters and reduces existing
disadvantages of square-root filters for the high-order case.

TAEBLE 8.4-1 COMPARISCN OF THE NUMBER OF CALCULATIONS INVOLVED IN THE CONWVENTIONATL
AND SQUARE-ROOT FORMULATIONS OF THE KALMAN FILTER. (REF. 11)

<

Update Square Roots M&D + A&S Equivalent M&D
Conventional 0 310 211 352
Square-Root 1 322 302 387
Extrapolation Square Roots M&D + A&S Equivalent M&D
Conventional 0 2100 2250 2550
Square-Root 10 4830 4785 5837 —
Note:  M&D = multiplications and divisions, A&S = additions and subtractions 13
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*Example 8.4-2 illustrates how SR algorithms minimize round-off error.

Suppose

H=[10]

where ¢ <1 and to simulate computer word length roundoff, we assume

2

=€

10
P(‘):[O ‘1j|

1+g=1but1+e2z1. It follows that the exact value for P(+) is

whereas the value calculated in the computer
using the standard Kalman filter algorithm is

[2f(l+el] 0
0 1

Using the square-root algorithm is

Since K=P+HTR |is:

Exact
Conventional
Square-Root

True
Bad

P(+)=[% ?}

ren =% 0]

T
Exact K=|:[”(10JrE )i|

Conventional K = [ Y :|

Square-Root

Eriﬂﬁgcrr!! gg&ventional formulation may lead to divergence problems.

sy,

14
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«Storage Requirements

TABLE 84-4 EALMAN FILTER STORAGE REQUIREMENTS FOE LARGE N
(PEOGEAM DVSTRUCTIONS NOT INCLTUDED) (REF. 43)
Storage Locations

n=m n=m
Algorithm n=m n=1 nzl m>n
Standard Ealman [Eq. (3.4-13] 25n° 35m+13  35n m?
Joseph _________[Eq (4] ______________ 250 15n@th ___15n’ _ m?
Andrews Squars Root 3nt S5nn+08  55n° 25m?
Standard Kalman [Eq. (8.4-1] (no symmetry) 3n’ Safn+06  5n° 2m?
Toseph [Eq. (8.4-4)] (no symmetry) 3n’ 60 (n+0.6) 6n° 2m’

1 = is the state wvector dimension
m =is the measurement vector dimension

15
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* Chapter 6 - Convergence

roundoff
cauvem
gnin fo
change ilgn
momentarily

..-.-..l N -

* Round-off causes gain to change sign momentarily

« Rapid convergence, exponential divergence, slow convergence

Erik Blasch — EE716
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*Chapter 6 - KF

Note the reduced computations (?)

TABLE 6.2 FIEST-ORDEER EEROR PROPAGATION MODELS
Eound-off error Error model (by filter type)
in filter variable C mn Square root covariance

5Xk+1(') k (-) Aﬂ (Z - HXk (-) ) ] + &Xh-{-l
R,
EF g1 () A BP (A" + AP A1 8P 18" + AP 4y

+ B[EP () - 8P (]D" - B[BP () - P ()JA

L=3-8K, I
A =H'[HP,H"+E]'

The error propagation expression for the conventional Kalman filter

includes extra terms that are proportional to the anti-symmetric part of P.

Consequently, implementation methods maintains the symmetry of P will

avoid error propagation. The same effect can be obtained by computing

only the unigue elements of P, which is fairly common practice anyway.

(The square root covariance implementations maintain symmetry of P.)
Erik Blasch — EE716
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*Chapter 6 — Roundoff Errors

TABLE 6.3 UPPEE BOUNDE OIN ADDED ROUINDOFF ERROERS

Horm of added TUpper bounds (by filter type)
round-off errors Conventional implementation Square root covariance
| A%per (] Bl || Zen) | + [ Ex || zx]) Sl A xu() | + [ Eu||zx]]

+[AE x| (|B| =] + |za])

£ KR (w 'R | Cogeeny |+ | K uCrn] + 2] £ Ma(R)
£ (L +KR*) | Py || B
[Cravnl

+| &K x| (|H| x| + | zac])
‘1’-\1214\ EJKQ(R‘NIEH
[&F w1 ()] Sk R Py ()]

21, . .., 5 are constant multiples of £, the unit round-off error.

4=0 -E,H

A =[(EuCrd | Cogeen]

R*=HFu-)H +R

R*=Cp » Cpe' (triangular Cholesky decomposition).

Pri(-) = Coprny T nT (triangular Chelesky decompesition).

A B*) 2 Aa(B*) 2 eee = Ap(R™) 2 0 are the characteristic values of B*
()= A (R"F Aw(R" is the condition number of R

18
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*Chapter 6 — Roundoff Errors

(Round-off Errors Due to Large a priori Uncertainty)

Observation no. Value
Expression Exact Rounded
1 PoH" ) By
1 HPH" Py By
10l ® LEGEND 1 HEHT + R Do+ R Py
+  Without roundoflf 1 By = P EP,ET +R) ! Po/ [Po+ K] 1
0.8 O With roundof? 1 P=Py- K, HP, DR/ [Py +R] 0
.4 : 3 :
0.6 k Ey=Py  H'EPy H +R)? o/ [k Py +R] 0
. Py =Pu1 -KHPy PoR/ [k By+E] 0
0.4 1
.
0.2 e, After computation — Error in analysis
L]
b Need to fix for covariance precision
0.0

Erik Blasch — EE716
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* Joseph [13], who demonstrated improved numerical stability by
rearranging the standard formulas for the observational update
(given here for scalar measurements) into the following formats:

- ~1:2
z= L z

E = [ﬁP(-)ﬁT+ 1171 P(-)ﬁT

P+ = (I - I’iﬁ)a - f{f{)T + K"

20
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. Chapter 6

De Vries implementation. at Rockwell International, is designed to reduce the
computational complexity of Joseph formulation by judicious rearrangement
of the matrix expressions and reuse of intermediate results

TABLE 6.6 DE VRIES-JOSEFPH IMPLEMENTATION OF CO VARIANCE UPDATE

Operation Complexity
TWithout using de-correlation
H =P H £n
T=HF+R o (F+ 102
(1467 € (£ + 11 (£ + 2) [UD factorization]
ﬂ@ﬂ KT TT £°n [to solve for K]
= (UK E-T £3n+1)
Q;' = LK’ £q
P =P + H+ 7T [Included above]
Total (16) €7+ (32) £+ (D +(1/2) Fn+ (5/2) £°n+2 £n°

2INE + £2 (58 - (1) £ + (112 £°n

Tsing de-correlation

21
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* Chapter 6 - Factorization

» Matrix factoring and decomposition.

—The terms decomposition and factoring (or
fractorization) are used interchangeably to describe
the process of transforming a matrix or matrix
expression into an equivalent product of factors.

* The term decomposition is somewhat more
general. It is also used to describe non-product
representations, such as the additive
decomposition of a square matrix into its
symmetric and anti-symmetric parts

e A= (12)(A+A") + (1/2) (A-A").

22
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*Chapter 6 - Factorization

* Another distinction between decomposition and
factorization is made by Dongarra, Moler, Bunch, and
Stewart [81], who use the term

 factotization to refer to an arithmetic process for
performing a product decomposition of a matrix in
which not all factors are preserved.

» The term triangularization is used in this book to
indicate a QR factorization (in the sense of Dongarra et
al) involving a triangular factor that is preserved and an
orthogonal factor that is not preserved.

*  The more numerically stable implementations of the
Kalman filter use one or more of the following
techniques to solve the associated Riccati equation:

Erik Blasch — EE716
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*Chapter 6 - Factorization

» Solve the associated Riccati equation:

* 1. Factoring the covariance matrix of state estimation
uncertainty (the dependent variable of the Riccati
equation) into Cholesky factors (usually, triangu-lar
factors), or into modified Cholesky factors (unit triangular
and diagonal factors).

—A Cholesky factor of a symmetric nonnegative definite
matrix M is a matrix C such that CCT = M. Cholesky
decomposition algorithms solve for C that is either
upper triangular or lower triangular.

—The modified Cholesky decomposition algorithms
solve for diagonal factors and either a lower triangular
factor L or an upper triangular factor U such that M =
UDUT = LDLT, where D and D are diagonal factors with
nonnegative diagonal elements.

Erik Blasch — EE716
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*Chapter 6 - Factorization

» solve the associated Riccati equation:

» 2. Factoring the covariance matrix of measurement noise R to
reduce the com-putational complexity of the observational
update implementation, and factoring the plant noise
covariance matrix Q to reduce the computational com-plexity
of the temporal update implementation. (These methods
effectively “de-correlate” the components of the measurement
or plant noise vector.)

* 3. Taking the symmetric matrix square roots of elementary
matrices. A symmetric elementary matrix has the form:

l-ocvvT

where | is the n x n identity matrix, ¢ is a scalar, and v is an n-
vector. The symmetric square root of an elementary matrix is
also an elementary matrix with the same v, but a different

value for c. 25
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*Chapter 6 - Factorization

» Solve the associated Riccati equation:

* 4. Factoring general matrices as products of triangular
and orthogonal matri-ces. Two general methods are
used in Kalman filtering:

* (@) Triangularization (QR decomposition) methods
were originally devel-oped for more numerically stable
solutions of systems of linear equa-tions. They factor a
matrix into the product of an orthogonal matrix Q and a
triangular matrix R. In the application to Kalman
filtering, only the triangular factor is needed. We will
call the QR decomposition triangularization, because Q
and R already have special meanings in Kalman
filtering. The two triangularization methods used in
Kalman filtering are: 26
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*Chapter 6 - Factorization
» Solve the associated Riccati equation:

* 4. Factoring general matrices as products of
triangular and orthogonal matrices.

* (a) Triangularization (QR decomposition)
methods

* The two triangularization methods used in
Kalman filtering are:

—1i. Givens rotations [160] triangularize a matrix by
operating on one element at a time. (A modified Givens
method due to Gentleman [159] generates diagonal and
unit triangular factors.)

—ii. Householder transformations triangularize a matrix
by operating on one row or column at a time.

o 27
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*Chapter 6 - Factorization

» Solve the associated Riccati equation:

* 4. Factoring general matrices as products of triangular
and orthogonal matri-ces. Two general methods are

* (b) Gram-Schmidt ortho-normalization is another
general method for fac-toring a general matrix into a
product of an orthogonal matrix and a triangular matrix.
Usually, the triangular factor is not saved. In the
application to Kalman filtering, only the triangular factor
is saved.

28
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Chapter 6 - Factorization
» Solve the associated Riccati equation:

* 5. Rank one modification algorithms. A
“rank one modification” of a symmetric
positive definite n x n matrix M has the
form M £ v vT, where v is a n-vector (and
therefore has matrix rank equal to one).

* The algorithms compute a Cholesky
factor of the modification M+ v v T, given
v and a Cholesky factor of M.

29
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*Chapter 6 - Factorization
» Solve the associated Riccati equation:

» 6. Block matrix factorizations of matrix expressions in
the Riccati equation. The general approach uses two
different factorizations to represents the two aides of an
equation, such as

. CCT = AAT+ BBT =

ot = 4a"+ BB = [AB]{ Q}T}
* The alternative Cholesky factors C and [ A B ] must
then be related by orthogonal transformations
(triangularizations). A QR decomposition of [ A B ] will
yield a corresponding solution of the Riccati equation in
terms of a Cholesky factor of the covariance matrix.

Erik Blasch — EE716
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*Chapter 6 - Factorization
» Solve the associated Riccati equation:
» 6. Block matrix factorizations of Riccati equation.

.A.T
act = a4a"+ BRT= [AB}[ BT:|

¢ In the example used above, [ A B ] would be called a “1 x 2” block partitioned
matrix, because there are one row and two columns of blocks (matri-ces) in
the partitioning. Different block dimensions are used to solve different
problems:

— (@) The discrete-time temporal update equation is solved in “square root”
form by using alternative 1 x 2 block partitioned Cholesky factors.

— (b) The observational update equation is solved in “square root” form by
using alternative 2 x 2 block partitioned Cholesky factors and modified
Cholesky factors representing the observational update equation.

— (c) The combined temporal/observational update equations are solved in
“square root” form by using alternative 2 x 3 block partitioned Cholesky
factors of the combined temporal and observational update equations.

31
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-éhélpter 6 - Factorization

*Cholesky factors and modified Cholesky factors

— The product of a matrix C with its own transpose, in the form
CCT = M is called the symmetric product of C, and C is called
a Cholesky factor of M. Strictly speaking, a Cholesky factor is
not a matrix square root, although the terms are often used
interchangeably in the literature. (A matrix square root S of M
is a solution of M = SS = S2, without the transpose.)

— All symmetric nonnegative definite matrices (such as
covariance matrices) have Cholesky factors, but the Cholesky
factor of a given symmetric nonnegative definite matrix is not
unique.

—For any orthogonal matrix T (i.e., such that TT T = |), the
product I" = CT satisfies the equation I'TT = CTT'CT = CC. That
is, I' is also a Cholesky factor of M. However, for suitable
constraints on the solution (e.g., being upper triangular or
lower triangular with nonnegative diagonal elements), a
unique C can be found.

— French geodesist André-Louis Cholesky (1875 - 1918) [135],

and is called the Cholesky decomposition. 32
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Chapter 6 - Factorization

*Cholesky factors Use in Kalman Filtering

— Cholesky decom-position methods produce triangular matrix factors
(Cholesky factors), and the sparseness of these factors can be exploited in
the implementation of the Kalman filter equa-tions. These methods are used
for the following purposes:

— 1. In the decomposition of covariance matrices (P, R, and Q) for
implementa-tion of “square root” filters.

— 2. In “de-correlating” measurement errors between components of vector-
valued measurements, so that the components may be processed
sequentially as independent scalar-valued measurements. (See page 218.)

— 3. As part of a numerically stable method for computing matrix expressions
containing the factor (HPHT + R) -1 in the conventional form of the Kalman
filter. (This matrix inversion can be obviated by the de-correlation methods,
however.)

— 4. In Monte Carlo analysis of Kalman filters by simulation. Cholesky factors
are used for generating independent random sequences of vectors with pre-
-specified means and covariance matrices.

Erik Blasch — EE716
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*Chapter 6 - Factorization

*Cholesky factors Ex

*Consider the 3 x 3 example for finding a lower triangular
Cholesky factor P = CCT for symmetric P:

[ pu Pz P | e 0O ep 0 00T
P12 Pm Pz = ta1 Caz D tg1 ctaz O
L P1z Px Pz L Cs1 €G3z Cs3 Cz1  Csz Ci3
[ P P P I 3112 C11 C21 C11 B3l
Piz Pm Pbm| = €11 €21 co’ + oz’ €21 C31 7+ a2 C32
L P13 Pz Pl [ cucm cacmtomes  omt et tomt

34
Erik Blasch — EE716

mﬁ[;ﬁl AT Square Root @"

NIVERS [

*Chapter 6 - Factorization

» Modified Cholesky factors Ex

*Uses the UD formulation

— Given M, a symmetric, positive definite m x m matrix, computes U
and D, modified Cholesky factors of M, such that U is a unit upper
triangular matrix, D is a diagonal matrix, and M = UDUT.

‘DECORRELATION

R = UDUT,

35
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*Chapter 6 - Factorization

» Modified Cholesky factors Ex
« DECORRELATION Value

TABLE 6.15 OPERATIONS FOR SEQUENTIAL PROCESSING OF MEASUREMENTS

Operation flops
H % Pl nt
Hx @P" +R n

(B (HP()" + B] 1

(H (HP()" +E] '« [HP()]
P(-) - [HP(-)] x [H(HP(-)" +R] ™ [HP()

Total {per component) * £ components

n

(U2 n*+ (U2 n

(32 nf+52n+ 1% s

237+ £2- (53 £ + (12 0 - (1/2) £
Total 2387+ £ (23) £ + (1/2) £20+ 28n (312) £

+ de-correlation complexity

The computational advantage of the de-correlation approach is
(£ - (UD€ + 7V E +En+28 n + £0° flops

36
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Chapter 6 — Square Root

* Potter

*An elementary matrix is a matrix of the forml-svwT,
where

— | is an identity matrix,

— s is a scalar, and

— v, w are column vectors of the same row dimension as |.

— Elementary matrices have the property that their products are also
elementary matrices. Their squares are also elementary matrices,
with the same vector values (v, w) but with different scalar values (s).

37
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*Chapter 6 — Square Root

* Potter

Symmetric elementary matrices. An elementary matrix is
symmetric if v = w. The squares of such matrices have the same
format:

(I—GVVTZI:{ = (I—GVVT)(I—GVVT)
I-cvv)i=1I-2ovy +&|v|® vv'
I-cvv) =1-@Ec-&|v]*)vv
I-cvvi®=TI-svv'
s=(20- o |v|h)

38
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Chapter 6 — Square Root

* Potter

*The symmetric square root of a symmetric elementary
matrix. One can invert the last equation above and take the
square root of the symmetric elementary matrix (1 - s v vT).
This is done by solving the scalar quadratic equation

s= 2c- & |v|?

VI-svv! = 1-cvyl

Glv|* -2c+s=10

to obtain the solution

In order that this square root be a real matrix, it is
necessary that the radicand

1-s|v|*z20

39
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* Triangularization

* (QR decomposition) of A = [¢ , C ,(+) | C Q]. It is a theorem of linear
algebra that any general matrix A can be represented as a product

A=C ()T

of a triangular matrix C,,,(-) and an orthogonal matrix T. This type of
decomposition is calleé QR decomposition or triangularization. By
means of this triangularization, the symmetric matrix product

factorization

Pral) = AAT

Pyn() = (Crntl) T (Con( T
Prn(-) = Cral) TT" CI-:+1T|:‘:|
Prral-) = Crnl-) (TT) Can"()
Pra(-) = Cral) Ck+1T(-}

40
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Chapter 6 — Square Root

* Triangularization
* (USe)
Temporal updates of Cholesky factors of the covariance
matrix of estimation uncertainty, as described above
Observational updates of Cholesky factors of the estimation
information ma-trix, as described in §6.5
Combined updates (observational and temporal) of
Cholesky factors of the covariance matrix of estimation
uncertainty, as described in §6.7

A modified Givens rotation due to W Morven
Gentleman [159] is used for the temporal updating of

modified Cholesky factors of the covariance matrix.
41
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 Triangularization (Givens - Rotation)

[~ 1 0 0 0 0 0 0 0]
0 1 0 o ... 0 0 0 0
0 0 cosf®y 0O ... 0 sinf@y 0 0
0 0 0 1 0 0 0 0
Tij(EI) = X :
0 0 0 o1 0 0 0
] ] sin{€) 0 . cos(d) 0 0
0 0 0 o ... 0 0 1 0
| 0 0 0 0 0 0 0 1 _
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* Triangularization (Givens - Rotation)

Matrix to be trlangularised Givens Rotation Matrix T}, (6)
e n — e r4n -
- 14 1 1
1
1
cos(6) sin(@)
o n 1
k 3 1
0 A ! i
0
L —L'] | ~ ain(9) ];:on(ﬁ)
: ‘ 1
§ 1
1l
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 Triangularization (Householder)
*Alston S. Householder It uses an elementary matrix of the
Twy = I - % v

W

where v is a column vector and | is the identity matrix of the same
dimension. This particular form of the elementary matrix is called a
Householder reflection, House-holder transformation, or Householder
matrix. Note that Householder transformation matrices are always
symmetric. They are also orthogonal, for

T(w) T T(w) = (1 - 2Tvv7) (1 - 2T‘”’Tj
v v

TWHT W) = I- iTva + %v(VTv)vT
VY (' v)

TWTw = 1

They are called “reflections” because they transform any matrix a into
its “mirror reflection” in the plane (or hyperplane) normal to the vector v

44
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 Triangularization (Householder)
*Alston S. Householder It uses an elementary matrix of the

v

T,

WRIGHT STATE

Square Root
Chapter 6 — Square Root

 Triangularization (Householder - Upper)

» Zeroing

INPUT MATRIX

T
Tiwy = 1 - —T ww o | o
'|ijr '|i.il' 1 d q
°U Pper SEQUENCE OF HOUSEHOLDER REFLECTIONS
T
| : :
! Ts) o0 sl B
(o) T(va) :0 : ____I_____
(I I 4 - 1
FSss==h 0 ' ° X !
T(u)z SEQUENCE OF PARTIAL RESULTS FINAL RESULT
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 Triangularization (Potter)

T, is the # x » identity matrix

Py T o)
W= CT(—)HT is an »# % £ general matrix

PiH) ‘Ef lelan) CT(+) # 1z the dimension of the state vector
£ is the dimension of the measurement vector

so that the observational update equation
P(H) = B() - POH [HPCH' + R]"" HP()

could be partially factored as
CHCTH) = CHICTE - CHCTH) B [HOEC HH +R] T HC()CT()
CEHCTH = CEICTE) - COVVV + R] T VICT)
CHCTH) = CEO {Ia - V[VVH+R] VO,

a7
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* Trianqularization (Potter)
{I.- VIVIV+R] 'V
For the case that the measurement is a scalar (£ = 1), Potter was able to factor it in the form
L.- VIVIV+R] VT = ww™,
50 that the resulting equation,
CHCTH = COH(WWT) T Cc’e = (COW) (COW)
could be solved for the a posteriori Cholesky factor of P{+), as Ci+) = CW

“When the measurement iz a scalar, the expression to be factored is a
symmetric elementary matrix of the form

T
vy

I,-———
R+ |v|?

. Lo T T .
where R 15 apositive scalar and v = C {-)H" is a column n-vector.
Erik Blasch — EE/1b
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 Triangularization (Potter)
*Potter square root observational update formula :

sthe solution for the a posteriori Cholesky factor C(+) of the
covariance matrix P can be expressed as the product

W I.UL_:TI;‘TI\II Square Root @

CEHICTH) = P
CHCTH = COT - ovyH 'O
CHC'H = COIA - ovyN T - ovy) ' C'0)

which can be factored as with

CH =CEd- ovyD

with
1+ E
1+ 41-g]v|? E+|v|?
o= 5 o= 5
[v] [v]

Erik Blasch — EE716
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» Triangularization (Carison) - FAST

* This algorithm is due to Neal A. Carlson. It generates an upper
triangular Cholesky factor W for the Potter factorization, and has
generally lower computational complexity than the Potter algorithm. It is
a specialized and simplified form of an al-gorithm used by Agee and
Turner [103] for Kalman filtering. It is a rank-one mod-ification
algorithm, like the Potter algorithm, but it produces a triangular
Cholesky factor. It can be derived from the following lemma:

sLemma 4 (Carlson). If W is an upper triangular n x n matrix such that

vV j — ViV

WWT =171 - —2 —> Z Wikwmk = Aim &= ;
R+ |v| = Rt 3 v

k=1

eforalli,m,jsuchthat1<i <m<j<n.

Erik Blasch — EE716
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 Triangularization (Carlson) - FAST - UPPER

Wy Wy = Ay - —— Al — ( 0 i ]

1
2
R+ 2, vy i
k=1 R"’Z v
k=1 .
- 1=]
f i
E+ Z ng
o k=1
CyH) = > Cul) Wyj +terms with zero factors

EI -ViV

Wij:<

1<)

il -1 i
Cij(H = Cy-y Wy + > Cixl-) Wy L (R+Z ng)(R‘FZ vkg)

o= k=1 k=1

i
; I viZ Cal)ve
Cuyf = —p——=——| Cul \[R+ L w! - — =
R+ 20 v o B+ 2 vy
k=1
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* Triangularization (Bierman) — UD

*Partial UD factorization of the covariance equations. In a manner simi-lar to the
case with Cholesky factors for scalar-valued measurements, the conventional
form of the observational update of the covariance matrix:

POOHTHEP(
B = P} - s
52 O rrEroE
can be partially factored in terms of UD factors:

P ¥ UL DE UG
P % U D) Ut

v=TUTH"

1. 1. USODOUQEHULODE o
UM DM T = TODOUE - — = pr s riogt 0@
UG DO vv' D T
E+VvIDEY
DOVY DG | o
R+ vTD(f)vJU ©

UH DHTE = TEHDEUT -

UG D U Ui {D(-) -

52
Erik Blasch — EE716




___w >

\\I{]L.E[I \l\II

Square Root
-Chapter 6 — Square Root

* Triangularization (Bierman) -
* Proofs in Book

eLemma 5. If for m such that | <m <'n, and for all i, j such that

l<i<j<m
\

m-1
2 BuDu B = Dy -
k=

> Bix Dyl By = Dy () - D”(-L“D S

. R+ 2 vy D)
k=1

sLemma 6. If kot

D) vy D(9)
E+ v Div

EDHET = D)

ghen Equation 6.104 holds for all m such that 1 <m <n.

reve,

o
@H
H H
’A%”n Iy 4

Dii (vl vy
m-1

E+ Z ng Dyl

53

___-. >

\\I{]Lr[[l \l\ll

s Square Root
-Chapter 6 — Square Root

* Triangularization (Bierman) — UD
¢ Proofs in Book

eLemma 7. If BDI:'HIBT = D() -

E+ v

-1
then for 1 <j <n R+ 2 vy’ Di()

D+ = Diil) e
R+Z ngDkk(')
k=1
B = Dii(-)viv;
and for 1 <i<j <n, v L
R+ 2 vy Duld

L=1

Erik Blasch — EE716
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Di-)v
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* Triangularization (??)

« A Square Partitioned Cholesky Factorization

*The following factorization of the observational update equations first
appeared in a paper by Kaminski, Bryson, and Schmidt [179]. The derivation

presented here has been modified to yield upper triangular Cholesky factors.

Let Cybe a Cholesky factor of the covariance matrix of the innovations vy = zy - Hy g‘ﬂ«('), defined as
o= E{{zx-Hu %3l (zu - Hu 220007 (6.144)
Ny = HkPk(—)HkT + Ey (6.145)
[BLASCH] Ny = 3y

and let C e, C pery, and Cg be Cholesky factors of Py(-), P u(+), and Ry, respectively. Then the symmetric partitioned
(n+ £) % (n+ £) Cholesky factorization

[ Pl Pk(-)HkT} =[ Crwy O }[ Caey ch(.)HkT} (6.146)

Hy Pyl M. HyCwpy Cw 0 Cx

[ Pyl Pk(')HkT:| :[ Cry O }[ Coy 0 } T 6147
Hy Py} Ny HyCry Cw L Huley Cw

Erik Blasch — EE716
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* Triangularization (??)

« A Square Partitioned Cholesky Factorization
- yield upper trianqular Cholesky factors.

Py Pk(’)Hl«T} ,[ C1’(—) U :|[ C 5] C p(ij j|

[Hkpk(-) M, Tl HiCoy Cyw Cu (6.146)

[ Pul) m—)HJJ :[ Cay O }[ Coy O } ! o
HyPul) Ny HyCoy Cwll Hiley Cu

san also be factored as

[ Pui) Pk(-)HJ} :[ Cresy Pk(-)HJcN'T} Tlhey 0 6.148)

HoFul) My 0 Cu Cyw'HyPWa Cu'
. 19T

[ Fil) PkaJ} :[ Con PkaJcHT}[ Cren PmHchHT} 6 145)

HyPul-) My 0 Cy 0 Cu

Zonsequently, the two Cholesky factorizations are related by an orthogonal transformation. That is, if O is any
srthogonal triangularizing transfermation such that the conformably partitioned product

Cwy O Jc. B
[chm R R A (6.150)

3 upper iriangular, then the upper triangular sub-matrices C, = Couy C.= Cy

Erik Blasch — EE716
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 Triangularization (??)
« A Square Partitioned Cholesky Factorization
« yield upper trianqular Cholesky factors.

and the sub-matriz & satisfies the equation

BCy T = [Py H,Cy ) Oy’
BCT = PuHS(CuCy) !
BC. T = Eg

the Ealman gain. Note, however, that the observational update of the estimated state

P = () + AT
A%y = Eylzy - Hy 240 ]
Ay = BCC " [2k - Hy£u(-)]

can be implemented more robustly by solving the triangular system

Cly = [zi - HuFau()]

Erik Blasch — EE716 for y, using back substitution, then taking the product B y
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* Triangularization (Kaliath)
- A Square Partitioned UD Factorization

et the TN facterization of the cowariance of innowations be
UNDNUNT = Ny
TuDuU' = HuFaulHi' + Ry

Then the symmetric partitioned (n+ £) x (o + £) matrix

|: Pul-) Pn«(-)HuT:| :[ Uy O J[ Dpey 0 } Usy' Uy () Ha"
HyPul) I HyUpy Uy 0 Dy 0 Tyt

[ Pul) Pl«(’)Hl«Tj| _ [ Upy O M Dy O :|[ Uwy 0 :|T
HyPul-) n HyUpy Un 0 Dy HyUpy Uy
can alse be factored as

[ i) Pk(-)HkT:| _ [ Ty Pal-dHy' UN'IDN'I}[ Dy 0 J Upay 0
HyR() N 0 Uy 0 Dywl| Dy Uy "HPW-) Uy’

[ Pui) Ph(-)HJJ:[Upm Pk(-)mTUN*DN"}[me 0 }[ Vs Pk(-)HkTUN"DN*]T
L By(-) N 0 Ty 0 Dy 1] Ty

58
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* Triangularization (Kaliath)
« A Square Partitioned UD Factorization

INPUT " PROCESSING

ouTPUT
1/3
“re%hey AL
0
0 gl 0:93 S 0,;(..-1)/3 = . '
D ) vE 5 i
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* Triangularization (Schmidt)

A non-square, non-triangular Cholesky factor of P 4{-). If C'p is a Cholesky factor of Py . 1(-) and C g is a Cholesky
factor of 0y, then the partitioned n < {0+ o) matriz

A=[Gr1Cq | Tx1Cr] (6.181)

has the n * n symmetric matriz product value

AAT =[Gy Cq| ©1.1Cp] [Gr1Cqg| a1 Col” (6.182)
BAT = By [0 1 ®at” + Gra[Cg oG (6.183)
AT = By [Pra ] D1’ + Gu1Q Gy (6.184)
48T =P (9 (6.185)

That i, A is a non-square, non-trianguiar Cholesky factor of Py (-). If only it were square and triangular, it would be the
kind of Cholesky factor we are looking for. It is net, but fortunately there are algerithmic procedures for modifying A to
that format.

60
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* Triangularization (Thorton - MWGS)

*This UD factorization is due to Catherine Thornton [121]. It is also
called modi-fied weighted Gram-Schmidt (MWGS) orthogonalization.
[Gram-Schmidt ortho-normalization is a procedure for generating a set
or “unit normal” vectors as linear combinations of a set of linearly
independent vectors. That is, the resulting vectors are mutually
orthogonal and have unit length. The procedure without the unit length
property is called Gram-Schmidt orthogonalization. These algorithmic
methods were derived by Jorgen Pedersen Gram (1850 - 1916) and
Erhard Schmidt (1876 - 1959).] It uses a factorization algorithm due to
Bjorck [137] that is actually quite different from the conventional Gram-
Schmidt orthogonalization algorithm, and more robust against round-
off errors. However, the algebraic properties of Gram-Schmidt
orthogonalization are useful for deriving the factorization.

61
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 Triangularization (Thorton - MWGS)
« UD

diagonal) in the form Q= GDqGT, where Dy 15 a diagonal matrix. If we let the matrices

T T
. [ Uk.lG(:)lcTDk.l } L'D,L = Pyt (6.198)
Uy() = LF
Dya® 0
S G D = 24 1)

then the modified weighted Gram-Schmidt orthogenalizaticn procedure will produce a unit lower triangular # x n

matrix L and a diagonal matrix D p such that

A=BL (6.200)
1"DyL = L"B"D,.BL (6.201)
"Dy L = BL"DL.BL (6.202)
L'DeL = ATD,A (6.203)
T T
L'DyL = [@ua1Usaf¥) Gual [ Dk-ol(ﬂ ng—l}[ Uh'lG(:)l?krl J (6.204)
LDyl = @3 U Dy Ui " @p” + G Dy, Gut” (6.205)
LDl = @y Py @u" + Qus (6.206)
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* Triangularization (Kailath - Observation)
« UD
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* Information Filter

*The inverse of the covariance matrix of estimation uncertainty is called
the Informati-on matrix:

T % p!

*This is also called the Fisher Information matrix, named after the
English statistician Ronald Aylmer Fisher (1890 -1962). More generally,
for distributions with differentiable probability density functions, the
Information matrix is defined as the matrix of second-order derivatives
of the logarithm of the probability density with respect to the variates.
For Gaussian distributions, this equals the inverse of the covariance
matrix.

sImplementation using Y (or its Cholesky factors) rather than P (or its
Cholesky fac-tors) are called Information filters. (Implementations using
P are also called covari-ance filters.)

64
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CHAPTERS

¢ examb53.m demonstrates the extended Kalman filter in the estimation of
position, velocity, and damping factor of a damped harmonic oscillator
with constant forcing function using Example 5.3.

¢ examb3x.m and Exam53y.m descriptions are given in whatsup.doc.
CHAPTERG

¢ Shootout.m is a demonstration of the efficiency of nine alternative
observational updates, using the ill-conditioned problem in Example 6.2.)

e Carlson.m - N. A. Carlson's observational update method.

e Utchol.m - upper triangular Cholesky decomposition (Matlab does lower)
e Potter.m - J. E. Potter's observational update method.

e Joseph.m - P. D. Joseph's observational update method.

e Josephb.m - P. D. Joseph's observational update, modified by Bierman.

« Josephdv.m - P. D. Joseph's observational update, modified by De Vries.

e Bierman.m - G. J. Bierman's observational update method.
e Thornton.m - C. L. Thornton's temporal update method.
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*shootout.m demonstrates SR

% These alternative approaches are each evaluated for delta

% ranging from several order of magnitude larger than eps*(2/3)
% to several orders of magnitude smaller than eps”*(2/3)

%

for k=1:19,

d(k) = delta*10*(10-k);
%
% COMMON PARAMETERS TO ALL METHODS
%

P =eye(3);

DO = eye(3);

Uo = eye(3);

R =d(k)*2*eye(2);

H =[1,1,1;1,1, 1+d(k) ];

x0 =[1;1;-1];

z = H*x0 + d(k)*[randn;randn];

Erik Blasch — EE716
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shootout.m demonstrates SR

Grewal, Weill, & Andrews, Exam. 8.1 with “arious Solution Methods

----- Swerling
— Kalman

Joseph

—— Poatter

Carlson

“— Bierman

RMS Relative Errar in P

Iog(eps) = -52 sqrt(eps)
10 S . ; '
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Square Root Comparlson
shootout.m CPUTIME

t1 = cputime;
K =P*H'/(H*P*H'+R);
PK =P - K*H*P;
tCK = tCK + cputime - t1;
xK = x0 + K*(z - H*x0);
%
% SWERLING IMPLEMENTATION
%
t2 = cputime;
PS = inv(P + (H'/R)*H);
tSW = tSW + cputime - t2;
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sshootout.m — plotted CPUTIME

Time for Methods
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WRIGHT STAT
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sshootout.m — plotted CPUTIME

0.07 T T T T Time for Methods
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e ° E;::;n < Potter
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Sa < Bierman 0035k < Bierman 4
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* 1 Time Comp and 1 Obs. Update Maybeck, 1979

Filter

Adds
{all times })

Maliiplies
(allnimes §)

Conventional
Kalman

Joseph form
Kalman

Polter covariance
sguare root
IMGS)

Polter covariance
square root
{Houscholder)

Carlson covariance
square rool
{R55)

Cailson covariance
syuaTe root
IMGS)

9 4 In'3m 45— 1)
+ nll5m + 35 — &)
18n* + 3n’(5m + 5
+ n(9m® + 6m + Js)
4+ 3m* — bm* + Im

12n* 4 3n{6m + 25
+ nifm — 6) + bm

' + Infdm 454+ 1)
+ m27m 4+ 9s)

I 18e® + 30(5m + 5+ 4)

+ n{Ym’ + 2d4m + 95)
+ 3n® +9m* — bm

120 + 3niim + 25 4 2|
+n(24m + 635) + 12

10n* 4 3n{6m + 25 — 1) 10n* + In¥iom 4 25 4 2|

+ nifm + 5} + 6m

St Wnldm4 s+ 1)
+ nil9m 4 35~ 14)
+2% 4 4s

9t + In'dm ks = 1)
+ Jnldm + 35 = 8)
+ 2% bt Ay

+ i 24m + 65 + B + 12m

St + In'dar s 4 3)
+ i M+ 9y — 1y
+250 st - 2

It 4 3ndm 4 5+ 2)
4 310 4+ 55 - T)
+ 20 F N s

Inverse covariance

Inverse covariance
square root

100" 4 3n'(m + 3s + 2)
+ nl%m + 95— 16}

9n* + 3n*(2m + 6s + 5)
+ #l12mi + b5~ 6]

100* + 3n’(or + 35 4 6)
+ni15m+ 25— 10

I* + 32 + 6s + 6)
4 ni12m 4 2y + 3) 4 6s

Square
Divides rons
m o
2 -1 (]
"t Im wkm
w4t 2m nEm
o+ 5 et s
imm 5 mn 4 s
2i-1 o
24 ls i+s

U-D factor
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9n? + In'3m o+ 254 2)
+ Ini3m + 1)

' + 'm =254 1)
+ Inim + ds — 4) — 6:
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 Computation Time

Operations for One Total Filter Recursion®

Maybeck, 1979

Square  Time
Fibter Adds  Multiplivs  Divides  rools  imsee)
Cunventionul Kalman 2340 2690 2 0 17.36
Joseph form Kulman 3631 4495 3 L1 w2
Potter covariance I6i2 3884 14 12 26.49
square rooi (MGS)
Potter covarniance 47 3564 4 12 M09
square root {Houscholder)
Carlson covariance 080 2560 50 30 B4 <+—
square root (RS5)
Carlson covanance 1830 1355 50 n 2353
square root {(MGS)
Inverse covariance B
3520 1950 19 o 2582 time for addition = 2.7 psec
Inverse covariance S080 5455 40 0 17.55 time for multiplization = 4.1 psec
. Squire root time for division = 6.6 piscc
U I Factor M35 3330 » TR ] fime for square root = 60.0 yiscc

== 0amdm =2
Enk plascn —-ce/’1o
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