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The reasonable scheduling of multisensor systems to maximize combat benefits has become a research hotspot in the field of
sensor management. To minimize the uncertainty in the threat level of targets and improve the survivability of sensors, a risk-
based multisensor scheduling method is proposed in this paper. In this scheduling problem, the best sensors are systematically
selected to observe targets for the trade-off between the threat assessment risk and the emission risk. First, the scheduling problem
is modelled as a partially observable Markov decision process (POMDP) for target threat assessment. Second, the calculation
methods of the threat assessment risk and the emission risk are proposed to quantify the potential loss caused by the uncertainty
in the threat level of targets and the emission of sensors. Then, a nonmyopic sensor scheduling objective function is built to
minimize the total risk which is the weighted sum of the threat assessment risk and the emission risk. Furthermore, to solve the
high complexity computational problem in optimization, a decision tree search algorithm based on branch pruning is designed.
Finally, simulations are conducted, and the results show that the proposed algorithm can significantly reduce the searching time
and memory consumption in optimization compared with those of traditional algorithms, and the proposed method has a better
risk control effect than the existing sensor scheduling methods.

1. Introduction

With the development of sensing technology, multisensor
systems play an increasingly important role in various fields.
In the military field, the multisensor systems often have
constraints in operation, algorithmic complexity, deployment
space, and other aspects, especially when the uncertainties
of the target state increase, and the operational difficulty of
the sensor system will increase greatly [1, 2]. Therefore, it is
necessary to manage sensors in an effective way to maximize
combat benefits. Researchers have begun to focus onBayesian
management optimization methods since Nash used the
linear programming theory to establish a sensormanagement
objective function in 1977. Until now, the management
method based on Bayesian theory has evolved into three
main methods, namely, task-based methods, information-
based methods, and risk-based methods [3].

The above three methods all build objective functions
related to the optimal scheme of sensor management. In
the task-based method, the objective function is directly

related to the tasks that the sensors need to execute. Typical
examples are the covariance matrix of target state [4–6], the
posterior Cramér-Rao lower bound [7–9], the probability of
target detection [10–12], and the posterior expected number
of targets [13]. The information-based method is aimed at
reducing the uncertainty in targets or the environment and
is driven by information, which can be approximated as a
general management model for various tasks. This kind of
method usually establishes the objective function relative
to the information gain of the sensors. Typical examples are
Shannon entropy [14], Fisher information [15–17], Kullback-
Leibler divergence [18, 19], and Rényi divergence [20–22].
The above two methods focus on optimizing one or more
indicators through sensor management. However, due to
the uncertainty in the target state and sensor measurement,
there are uncertain risks in every decision. In some cases, it
is better to control the risks for reducing the potential losses
caused by decisions, rather than obtaining the optimal values
of these indicators [23, 24]. For example, a better target
tracking accuracy can be obtained by the first two methods
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in the process of target tracking. However, if the targets need
not to be attacked, it is enough to keep the target without loss
instead of obtaining too high tracking accuracy. (If all the
possible positions where the targets can occur are distributed
in the radar beam range, even if the target tracking accuracy
is poor, the target can not be lost) At this time, it is of less
practical significance to consider the target tracking accuracy.
In risk-based sensormanagement, the risk of losing the target
caused by different tracking schemes is further considered
in the model, which makes the model more practical.
Furthermore, the risk-based method also focuses on
decreasing the risk caused by the misjudgement of the target
state, such as the classification error in target recognition
[25, 26] and the false alarm error in target detection [27].

However, previous work has not focused on controlling
the risk in the process of target threat assessment. Target
threat assessment is the basis of many combat tasks, and
commanders will determine what action to take with regard
to the target by the assessment results. However, the assess-
ment results will be affected by the measurement error of
sensors and the uncertainty in the target state, which may
generate corresponding risks. For example, when a high-
threat target ismisjudged as a low-threat target, wewill assign
fewer defensive resources to the target, which may result in
a lethal attack on the defence target, and when a low-threat
target is misjudged as a high-threat target, this misjudgement
may only result in a waste of defensive resources, which
represents a smaller loss than in the previous case. Therefore,
it is necessary to control the risks in the process of target
threat assessment to minimize the uncertainty in assessment
results. Furthermore, the emitted signal of the active sensor
may be intercepted by enemy detectors, thus exposing its
position to the enemy. Therefore, it is necessary to manage
the emission risk of active sensors to improve their battlefield
survivability. A reasonable quantification of the emission
state of the sensor is a prerequisite for controlling emission
risk. In [28–30], the transmitting power, target echo power,
target receiver sensitivity, and other parameters are used to
calculate the intercepted probability of the sensor to represent
the emission state at each time step. However, it is difficult to
obtain prior knowledge, such as the target receiver sensitivity
in practice. To solve this problem, the emission level impact
(ELI) is used to replace the intercepted probability in [31],
which represents the cumulative intercepted emission of the
sensor intercepted by the enemy. It is not necessary to obtain
related parameters of targets for the calculations, which has
good practical application value.

In this paper, we aim to schedule sensors to control the
total risk in the process of target threat assessment. The
total risk is divided into the threat assessment risk and the
emission risk to quantify the potential loss caused by the
uncertainty in the threat level of targets and the electro-
magnetic emission of sensors. Moreover, the above risk-
based management methods are all myopic managements
methods; that is to say, the methods take the minimum
risk in the next sampling time step as the optimization
objective. Although the method has a lower calculation cost,
it makes the decision-making optimization of the whole
sensor management process become a greedy search to a
certain extent, without considering the influence of sensor
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Figure 1: Schematic of multisensor scheduling.

actions on the future system state [32]. Therefore, this paper
expands the risk-based management method from a myopic
to a nonmyopicmethod, which takes the cumulative risk over
a period of time as the basis for decision-making to obtain
better combat benefits.

The main ideas in this paper are summarized as follows.
In Section 2, sensor scheduling model is modelled as a
partially observable Markov decision process (POMDP). In
Section 3, the target threat and emission state are quantified,
and calculationmethods of the threat assessment risk and the
emission risk are proposed. Based on the analysis of Sections
2 and 3, a nonmyopic multisensor scheduling objective
function is established in Section 4. Then, a decision tree
search algorithm is proposed to solve this scheduling problem
in Section 5. In Section 6, the simulations are conducted and
the paper is concluded in Section 7.

2. Sensor Scheduling Model

For the convenience of presentation and expression, wemade
the following assumptions.

Assumption 1. All sensors work independently and all of the
sensors are active sensors.

Assumption 2. All targets move independently.

Assumption 3. There are M sensors to assess the threat level
of N targets, which tend to attack our defence target.

Assumption 4. Let 𝑘 = 0, 1, 2, 3, ... denote discrete time step.

A schematic ofmultisensor scheduling is shown in Figure
1. Because of the uncertainty in the sensor measurements
and the randomness of target motions in the whole schedul-
ing process, the scheduling problem is a decision-making
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problem under uncertain information conditions, and the
POMDP is a theoreticalmethod to studymultistage decision-
making in a stochastic environment [33]. Therefore, the
sensor scheduling problem can be modelled as a continuous-
state, discrete-time POMDP, which is described in detail as
follows.

2.1. Sensor Scheduling Action. To denote the sensor assign-
ment at time step 𝑘, sensor scheduling action𝐴𝑘 = [𝑎𝑛,𝑚

𝑘 ]𝑛×𝑚
is an 𝑁 × 𝑀 matrix where elements 𝑎𝑛,𝑚

𝑘 = 1 or 𝑎𝑛,𝑚
𝑘 = 0

indicate whether sensor 𝑛 is to be scheduled for assessing the
threat level of target𝑚 at the next time step 𝑘 + 1.
2.2. System State. The system state is denoted by 𝑈𝑘 =[𝑋𝑘,𝐸𝑘]T.
𝑋𝑘 = [𝑋1

𝑘, ...,𝑋𝑀
𝑘 ]T indicates the state of all targets at

time step 𝑘, where 𝑋𝑚
𝑘 = [𝑥𝑚

𝑘 , �̇�𝑚
𝑘 , 𝑦𝑚

𝑘 , ̇𝑦𝑚
𝑘 , 𝑧𝑚

𝑘 , �̇�𝑚
𝑘 ]T (𝑚 =1, . . . ,𝑀) is the state of target 𝑚 including the position

coordinates and velocity information in a three-dimensional
Cartesian coordinate system. The target state at the next
time step can be determined according to the following state
transition equation:

𝑋
𝑚
𝑘+1 = 𝐹𝑚𝑋𝑚

𝑘 + 𝐺𝑚𝜀𝑚𝑘+1, (1)

where 𝐹𝑚, 𝐺𝑚, and 𝜀𝑚𝑘 represent the state transition matrix,
process noise gain matrix, and Gaussian process noise,
respectively. Generally, the process noise gain matrix and
the process noise are used to describe the uncertainties of
target state distribution in motions. The process noise gain
matrix 𝐺𝑚 represents the magnitude of Gaussian process
noise on each state variable. The Gaussian process noise 𝜀𝑚𝑘+1
is zero-mean white Gaussian noise and the covariancematrix
of the process noise is 𝑄𝑚

𝑘+1 = 𝐸[𝐺𝑚𝜀𝑚𝑘+1(𝜀𝑚𝑘+1)T(𝐺𝑚)T] =
𝐺𝑚(𝜎𝑚

𝜀,𝑘+1)2(𝐺𝑚)T, where 𝜎𝑚
𝜀,𝑘 is the process noise standard

deviation of the position estimates [28, 34]. There are two
commonmotion models: the nearly constant velocity (NCV)
model and nearly constant turn (NCT) model, which can be
described as

𝐹
𝑚
NCV =

[[[[[[[[[[[

1 𝜏 0 0 0 00 1 1 𝜏 0 00 0 0 1 0 00 0 0 0 0 00 0 0 0 1 𝜏0 0 0 0 0 1

]]]]]]]]]]]
,

𝑄
𝑚
NCV,𝑘+1

=
[[[[[[[[[[[[[[[[[[

14𝜏4 12𝜏3 0 0 0 012𝜏3 𝜏2 0 0 0 0
0 0 14𝜏4 12𝜏3 0 0
0 0 12𝜏3 𝜏2 0 0
0 0 0 0 14𝜏4 12𝜏3

0 0 0 0 12𝜏3 𝜏2

]]]]]]]]]]]]]]]]]]

(𝜎𝑚
𝜀,𝑘+1)2

(2)

𝐹
𝑚
NCT =

[[[[[[[[[[[[[[[[

1 sin𝛽𝜏𝛽 0 cos𝛽𝜏 − 1𝛽 0 00 cos𝛽𝜏 0 − sin𝛽𝜏 0 0
0 1 − cos𝛽𝜏𝛽 1 sin𝛽𝜏𝛽 0 0
0 sin𝛽𝜏 0 sin𝛽𝜏𝛽 0 00 0 0 0 1 𝜏0 0 0 0 0 1

]]]]]]]]]]]]]]]]

,

𝑄
𝑚
NCT,𝑘+1 = 𝑄𝑚

NCV,𝑘+1

(3)

where 𝜏 is sampling interval and𝛽 is the turn rate of the target.
𝐸𝑘 = [𝐸1

𝑘, 𝐸2
𝑘, ..., 𝐸𝑁

𝑘 ]T indicates the emission state of all
sensors at time step 𝑘, where 𝐸𝑛

𝑘 (𝑛 = 1, ..., 𝑁) is the ELI
state of sensor 𝑛, representing the cumulative intercepted
emission until time step 𝑘. The value of 𝐸𝑛

𝑘 can be quantized
into a positive integer set {1, 2, . . . , 𝐸max}, and each value
in this set represents a true emission level. The larger the
value, the greater the probability of the sensor being attacked
by the enemy [31]. The ELI state transition process can
be approximated as a Markov process by introducing state
transition matrix 𝑇𝑛 to describe the state transition. If sensor𝑛 is activated to the assess target threat at time step 𝑘, then

𝑇
𝑛 = (𝑡𝑛𝑖,𝑗)𝑖,𝑗∈{1,2,3,...,𝐸max}

(4)

where 𝑡𝑛𝑖,𝑗 = 𝑝(𝐸𝑛
𝑘 = 𝑗 | 𝐸𝑛

𝑘−1 = 𝑖) is the transition probability.
Otherwise, 𝑇𝑛 is an 𝐸max dimension identity matrix.

2.3. System Observation. Similarly, the system observation is
denoted by 𝑍𝑘 = [𝑍

𝑋𝑘
,𝑍
𝐸𝑘
]T.

𝑍
𝑋𝑘

= [𝑍1𝑋𝑘 , ...,𝑍𝑀𝑋𝑘] represents the observations of all
targets at time step 𝑘, where observation value 𝑍𝑚

𝑋𝑘
of target𝑚 is obtained by sensormeasurements. If sensor 𝑛 is activated

to observe target𝑚, the measurement equation is as follows:

𝑍
𝑚
𝑋𝑘

= 𝐻𝑛 (𝑋𝑚
𝑘 ) + 𝛾𝑛𝑘 = [[[

𝑟𝑚,𝑛
𝑘𝜁𝑚,𝑛
𝑘𝜑𝑚,𝑛
𝑘

]]] + [[[[
𝜎𝑛

𝑟,𝑘𝜎𝑛
𝜁,𝑘𝜎𝑛
𝜑,𝑘

]]]]
(5)

where𝐻(𝑋𝑚
𝑘 ) represents themeasurement equation of sensor𝑛, 𝛾𝑚𝑘 is the Gaussian measurement noise, 𝜎𝑛

𝑟,𝑘, 𝜎𝑛
𝜁,𝑘, and 𝜎𝑛

𝜑,𝑘

represent themeasurement noise of range 𝑟𝑚,𝑛
𝑘 , azimuth angle𝜁𝑚,𝑛

𝑘 , and elevation angle 𝜑𝑚,𝑛
𝑘 , respectively. The calculation

methods of 𝑟𝑚,𝑛
𝑘 , 𝜁𝑚,𝑛

𝑘 , and 𝜑𝑚,𝑛
𝑘 are shown in

𝑟𝑚,𝑛
𝑘 = √(𝑥𝑚

𝑘 − 𝑥𝑛)2 + (𝑦𝑚
𝑘 − 𝑦𝑛)2 + (𝑧𝑚

𝑘 − 𝑧𝑛)2
𝜁𝑚,𝑛
𝑘 = arctan

𝑦𝑚
𝑘 − 𝑦𝑛𝑥𝑚
𝑘 − 𝑥𝑛

𝜑𝑚,𝑛
𝑘 = arctan

(𝑧𝑚
𝑘 − 𝑧𝑛)2√(𝑥𝑚

𝑘 − 𝑥𝑛)2 + (𝑦𝑚
𝑘 − 𝑦𝑛)2

(6)

where 𝑥𝑛, 𝑦𝑛, and 𝑧𝑛 are the position coordinates of sensor 𝑛.
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𝑍
𝐸𝑘

= [𝑍1
𝐸𝑘
, 𝑍2

𝐸𝑘
, ..., 𝑍𝑁

𝐸𝑘
]T represents the instantaneous

emission observations of all sensors at time step 𝑘, where𝑍𝑛
𝐸𝑘
(𝑛 = 1, ..., 𝑁) denotes the instantaneous emission of𝑒𝑛𝑘 = 𝐸𝑛

𝑘 − 𝐸𝑛
𝑘−1. We quantize the instantaneous emission as

a positive integer set {1, 2, 3, . . . , 𝑂max}, which can be called
the instantaneous observed emission level [31]. If sensor 𝑛
is activated at time step 𝑘, then its instantaneous observed
emission level can be calculated by a set of observation
matrices:

𝑊 (𝑍𝑛
𝐸𝑘

= 𝑜) = (𝑤𝑛
𝑜,𝑖,𝑗)𝑖,𝑗∈{1,2,3,...,𝐸max}

,
𝑜 ∈ {1, 2, 3, . . . , 𝑂max} (7)

where 𝑤𝑛
𝑜,𝑖,𝑗 = 𝑝(𝑍𝑛

𝐸𝑘
= 𝑜 | 𝐸𝑛

𝑘 = 𝑗, 𝐸𝑛
𝑘−1 = 𝑖) indicates the

probability that the level is 𝑜when the ELI state changes from𝑖 to 𝑗. Otherwise, its observationmatrix is an𝑂max dimension
identity matrix.

3. Risk Calculation Method

Predicting the total risk in future action cycles is the premise
of formulating scheduling plans. In this paper, we divide the
total risk into the threat assessment risk and the emission risk.

3.1. Threat Assessment Risk. In the process of threat assess-
ment, since the threat degree is a variable that changes with
the target state, the uncertainty in the target state will be
expanded when the threat degree is calculated, making the
result of the threat assessment difficult to accurately assess.
For example, when we consider that threat degree 𝜃 is a
variable related to target velocity V and horizontal distance𝑑, its uncertainty distribution is shown in Figure 2.

3.1.1. Threat Model. In this paper, we consider the horizontal
distance 𝑑𝑚

𝑘 , the height ℎ𝑚
𝑘 , the velocity V𝑚

𝑘 , and the course
angle 𝛼𝑚

𝑘 as the threat degree factors of target 𝑚 at time step𝑘, which can be calculated as

𝑑𝑚
𝑘 = √(𝑥𝑚

𝑘 − 𝑥𝑝)2 + (𝑦𝑚
𝑘 − 𝑦𝑝)2

ℎ𝑚
𝑘 = 𝑧𝑚

𝑘 − 𝑧𝑝

V𝑚
𝑘 = √(�̇�𝑚

𝑘 )2 + ( ̇𝑦𝑚
𝑘 )2 + (�̇�𝑚

𝑘 )2
𝛼𝑚

𝑘 = arccos
(((𝑥𝑚

𝑘 − 𝑥𝑝) �̇�𝑚
𝑘 + (𝑦𝑚

𝑘 − 𝑦𝑝) ̇𝑦𝑚
𝑘 + (𝑧𝑚

𝑘 − 𝑧𝑝) �̇�𝑚
𝑘 ) / (V𝑚

𝑘 ∙ √(𝑥𝑘 − 𝑥𝑝)2 + (𝑦𝑚
𝑘 − 𝑦𝑝)2 + (𝑧𝑚

𝑘 − 𝑧𝑝)2))
𝜋

(8)

where 𝑥𝑝, 𝑦𝑝, and 𝑧𝑝 are the coordinates of our defence target
position.

Then the threat function of each factor is constructed as
follows:

𝜃𝑚
𝑑,𝑘 = {{{

1 𝑑𝑚
𝑘 ≤ 𝑑0𝑒−𝑐𝑑(𝑑

𝑚
𝑘 −𝑑0)

2 𝑑𝑚
𝑘 > 𝑑0

𝜃𝑚
ℎ,𝑘 = {{{

1 ℎ𝑚
𝑘 ≤ ℎ0𝑒−𝑐ℎ(ℎ

𝑚
𝑘 −ℎ0)

2 ℎ𝑚
𝑘 > ℎ0

𝜃𝑚
V,𝑘 = {{{

0 V𝑚
𝑘 ≤ V0(1 − 𝑒−𝑐V(V

𝑚
𝑘 −V0)) V𝑚

𝑘 > V0

𝜃𝑚
𝛼,𝑘 = e−𝑐𝛼(𝛼

𝑚
𝑘 )
2 0∘ ≤ 𝛼𝑚

𝑘 ≤ 180∘

(9)

where 𝑑0, ℎ0, and V0 are the points where the threat degree is
equal to the extremum. And 𝑐𝑑, 𝑐ℎ, 𝑐V, and 𝑐𝛼 are the distance
coefficient, the height coefficient, the speed coefficient, and
the angle coefficient, respectively.

After obtaining the threat degree of each factor, the total
threat degree is calculated as𝜃𝑚

𝑘 = 𝑠𝑑𝜃𝑚
𝑑,𝑘 + 𝑠ℎ𝜃𝑚

ℎ,𝑘 + 𝑠V𝜃𝑚
V,𝑘 + 𝑠𝛼𝜃𝑚

𝛼,𝑘 (10)

where 𝑠𝑑, 𝑠ℎ, 𝑠V, and 𝑠𝛼 represent the weights of the horizontal
distance, height, speed, and course angle to the total threat
degree, respectively. Generally, the weights are set according
to the operational experience and actual situation [3, 35, 36].

Then, threat level 𝑙𝑚𝑘 of the target can be determined by
setting level rule. In this paper, we define the threat level as 1
(low-threat level), 2 (medium-threat level), and 3 (high-threat
level), and the level rule is as follows:

𝑙𝑚𝑘 = {{{{{{{{{
1 0 ≤ 𝜃𝑚

𝑘 < 𝜃medium2 𝜃medium ≤ 𝜃𝑚
𝑘 < 𝜃high3 𝜃high ≤ 𝜃𝑚

𝑘 ≤ 1 (11)

where 𝜃medium and 𝜃high represent the boundary points of the
threat level.

In addition, more threat degree factors and different
threat levels can be considered in the threat model according
to different actual situations.

3.1.2. Threat Assessment Risk Calculation. Because the threat
degree is only related to the target state, the risk is
stated by estimating the target state. Since the target state
cannot be fully observed, the target belief state 𝑏𝑋𝑘 =
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Figure 2: Uncertainty distribution of the target threat degree.

[𝑏1𝑋𝑘 , 𝑏2𝑋𝑘 , . . . , 𝑏𝑁𝑋𝑘]T is introduced, which is a sufficient statis-
tic of historical information, indicating the probability distri-
bution of the target state [37].

According to the Bayesian estimationmethod, the transi-
tion of the target belief state can be divided into the prediction
stage and update stage. The prediction stage is described as

𝑝 (𝑋𝑚
𝑘+1 | 𝑏𝑚𝑋𝑘) = ∫𝑝 (𝑋𝑚

𝑘+1 | 𝑋𝑚
𝑘 ) 𝑏𝑚𝑋𝑘𝑑𝑋𝑚

𝑘 (12)

The updating stage is described as

𝑏
𝑚
𝑋𝑘+1

= 𝑝 (𝑋𝑘+1 | 𝑏𝑚Xk
,𝑍𝑚𝑋𝑘+1)

= 𝑝 (𝑋𝑚
𝑘+1 | 𝑏𝑚Xk

) 𝑝 (𝑍𝑚𝑋𝑘+1 | 𝑋𝑚
𝑘+1)∫ 𝑝 (𝑋𝑚

𝑘+1 | 𝑏𝑚Xk
) 𝑝 (𝑍𝑚𝑋𝑘+1 | 𝑋𝑚

𝑘+1) 𝑑𝑋𝑚
𝑘

(13)

If both the process noise and the measurement noise
are Gaussian noise, the target belief state is also a Gaussian
distribution. The target belief state can be updated by cuba-
ture Kalman filter (CKF) [38]. When the target has multiple
motion models, its belief state can be updated by combining
the interactingmultiplemodel (IMM) algorithmand theCKF
[39].

Then, threat assessment risk prediction can be conducted
by predicting the target belief state, and the process is as
follows.

Step 1. Obtain the belief state of target 𝑚 at time step 𝑘, and
predict the belief state at time step 𝑘 + 1 by the CKF.
Step 2. Obtain 𝐿 sample points that can be implemented in
the Monte Carlo method by sampling from the belief state at
time step 𝑘 + 1.
Step 3. Calculate the corresponding threat level by using the𝐿 sample points according to (8)-(11) and obtain the number
of sample points with low-, medium-, and high-threat levels
of 𝐿1, 𝐿2, and 𝐿3, respectively.

Step 4. Get the probability distribution of threat level 𝑞𝑚
𝑘 =(𝑞𝑚

1,𝑘+1, 𝑞𝑚
2,𝑘+1, 𝑞𝑚

3,𝑘+1) = (𝐿1, 𝐿2, 𝐿3)/𝐿.
Step 5. Set loss matrix 𝜆 = 1 2 3

1
2
3

[ 0 𝜆12 𝜆13
𝜆21 0 𝜆23
𝜆31 𝜆32 0

] , where 𝜆𝑖𝑗

indicates the potential loss of assessment error in which the
real threat level is 𝑖 but the estimated level is 𝑗.

If the threat level of target 𝑚 is estimated as �̂�𝑚𝑘+1=𝑗, the
risk is 𝑢𝑚,𝑗

𝑘+1 = ∑3
𝑖=1 𝜆𝑖𝑗𝑞𝑚

𝑖,𝑘+1. Then, the threat assessment risk
is defined as 𝑢𝑚

𝑘+1 = min{𝑢𝑚,1
𝑘+1, 𝑢𝑚,2

𝑘+1, 𝑢𝑚,3
𝑘+1}, and the threat level

is �̂�𝑚𝑘+1 = argmin{𝑢𝑚,1
𝑘+1, 𝑢𝑚,2

𝑘+1, 𝑢𝑚,3
𝑘+1}.

Step 6. Set 𝑘 = 𝑘 + 1, go to Step 1, and perform 𝐻 −1 calculation cycles (𝐻 is the horizon length). Then, the
cumulative threat assessment risk of target𝑚 is given by

𝑈𝑚
𝑘+1:𝑘+𝐻 = 𝐻∑

ℎ=1

𝑢𝑚
𝑘+ℎ = 𝐻∑

ℎ=1

min {𝑢𝑚,1
𝑘+ℎ, 𝑢𝑚,2

𝑘+ℎ, 𝑢𝑚,3
𝑘+ℎ} (14)

Take the sensor scheduling actions into consideration;𝑢𝑚,𝑛
𝑘+1 is defined as the threat assessment risk of target 𝑚 by

sensor 𝑛 at time step 𝑘 + 1. Then, the cumulative threat
assessment risk of all targets is given by

𝑈𝑘+1:𝑘+𝐻 = 𝐻∑
ℎ=1

𝑁∑
𝑛=1

𝑀∑
𝑚=1

𝑎𝑛,𝑚
𝑘+ℎ−1𝑢𝑚,𝑛

𝑘+ℎ (15)

3.2. Sensor Emission Risk. Similarly, the ELI state of the
sensors cannot be fully observed, so the ELI belief state
𝑏𝐸𝑘 = [(𝑏1𝐸𝑘), (𝑏2𝐸𝑘), . . . , (𝑏𝑁𝐸𝑘)]T is introduced to indicate the
probability distribution of the ELI state at time step 𝑘. If the
instantaneous emission observation is 𝑍𝑛

𝐸𝑘+1
= o𝑙, the ELI

belief state can be updated by the hiddenMarkovmodel filter:

𝑏
𝑛
𝑘+1 = [𝑊 (𝑍𝑛

𝐸𝑘+1
= o𝑙) ⊙ 𝑇𝑛]T 𝑏𝑛𝐸𝑘

1T [𝑊 (𝑍𝑛
𝐸𝑘+1

= o𝑙) ⊙ 𝑇𝑛]T 𝑏𝑛𝐸𝑘 (16)

where the symbol ⊙ represents the Hadamard product, and 1
is the identity vector.

However, in actual scheduling, we cannot obtain 𝑍𝑛
𝐸𝑘+1

at
time step 𝑘, but its probability distribution is obtained as

𝑝 (𝑍𝑛
𝐸𝑘+1

| 𝑏𝑛𝐸𝑘) = 𝐸max∑
𝐸𝑛
𝑘+1

=1

𝐸max∑
𝐸𝑛
𝑘
=1

𝑝 (𝑍𝑛
𝐸𝑘+1

, 𝐸𝑛
𝑘+1, 𝐸𝑛

𝑘 | 𝑏𝑛𝐸𝑘)
= 𝐸max∑

𝐸𝑛
𝑘+1

=1

𝐸max∑
𝐸𝑛
𝑘
=1

𝑝 (𝑍𝑛
𝐸𝑘+1

| 𝐸𝑛
𝑘+1, 𝐸𝑛

𝑘) 𝑝 (𝐸𝑛
𝑘+1 | 𝐸𝑛

𝑘, 𝑏𝑛𝐸𝑘)
⋅ 𝑝 (𝐸𝑛

𝑘 | 𝑏𝑛𝐸𝑘) = 𝐸max∑
𝐸𝑛
𝑘+1

=1

𝐸max∑
𝐸𝑛
𝑘
=1

𝑝 (𝑍𝑛
𝐸𝑘+1

| 𝐸𝑛
𝑘+1, 𝐸𝑛

𝑘)
⋅ 𝑝 (𝐸𝑛

𝑘+1 | 𝐸𝑛
𝑘) 𝑏𝑛𝐸𝑘

(17)
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The distribution is represented by the following matrix:

𝑝 (𝑍𝑛
𝐸𝑘+1

| 𝑏𝑛𝐸𝑘) = 1T [𝑊 (𝑍𝑛
𝐸𝑘+1

) ⊙ 𝑇𝑛]T 𝑏𝑛𝐸𝑘 (18)

Then, the predicted ELI state is updated as

�̂�
𝑛

𝐸𝑘+1
= 𝑂max∑

𝑍𝑛
𝐸𝑘+1

=1

[𝑊 (𝑍𝑛
𝐸𝑘+1

) ⊙ 𝑇𝑛]T 𝑏𝑛𝐸𝑘1T [𝑊 (𝑍𝑛
𝐸𝑘+1

) ⊙ 𝑇𝑛]T 𝑏𝑛𝐸𝑘⋅ 𝑝 (𝑍𝑛
𝐸𝑘+1

| 𝑏𝑛𝐸𝑘)
= 𝑂max∑

𝑍𝑛
𝐸𝑘+1

=1

[𝑊 (𝑍𝑛
𝐸𝑘+1

) ⊙ 𝑇𝑛]T 𝑏𝑛𝐸𝑘
= {{{{{[[

𝑂max∑
𝑍𝑛
𝐸𝑘+1

=1

𝑊 (𝑍𝑛
𝐸𝑘+1

)]]
T ⊙ (𝑇𝑛)T}}}}} 𝑏

𝑛
𝐸𝑘

= (𝑇𝑛)T 𝑏𝑛𝐸𝑘

(19)

Furthermore, the emission cost of sensor 𝑛 at time step 𝑘
is calculated as

𝑌𝑛
𝑘+1 = 𝑉𝑇

�̂�
𝑛

𝐸𝑘+1
= 𝑉T (𝑇𝑛)T 𝑏𝑛𝐸𝑘 (20)

where 𝑉 = [1, 2, . . . , 𝐸max]T represents the ELI value corre-
sponding to the belief state.

According to the relationship between ELI and inter-
cepted probability, the intercepted probability of the sensor
is calculated as

𝜂𝑛
𝑘+1 = 𝑌𝑛

𝑘+1𝐸max
× 100% (21)

Taking the loss into consideration when the sensor is
destroyed, and the sensor emission risk is calculated as

Υ𝑛
𝑘+1 = 𝜂𝑛

𝑘+1𝑐𝑛 (22)

where 𝑐𝑛 ∈ 𝑐1×𝑁 = [𝑐1, ..., 𝑐𝑛, ..., 𝑐𝑁] represents the tactical
value of sensor 𝑛.

Taking the sensor scheduling actions over 𝐻 time steps
into consideration, the cumulative emission risk is calculated
as

𝑅𝑛
𝑘+1:𝑘+𝐻 = 𝐻∑

ℎ=1

Υ𝑛
𝑘+ℎ = 𝐻∑

ℎ=1

𝑉T�̂�
𝑛

𝐸𝑘+ℎ
𝑐𝑛 × 100%𝐸max

= 𝐻∑
ℎ=1

[[[
(∑𝑀

𝑚=1 𝑎𝑛,𝑚
𝑘+ℎ−1𝑉

T (𝑇𝑛)∑ℎ𝑡=1 ∑𝑀𝑚=1 𝑎𝑛,𝑚𝑘+𝑡−1 𝑏𝑛𝐸𝑘) 𝑐𝑛 × 100%𝐸max

]]]
(23)

Furthermore, the cumulative emission risk of all sensors
is given by

𝑅𝑘+1:𝑘+𝐻 = 𝑁∑
𝑛=1

𝑅𝑛
𝑘+1:𝑘+𝐻 (24)

4. Objective Function

Considering the threat assessment risk and the sensor emis-
sion risk, combined with (15) and (24), the objective function
over the future horizon of𝐻 time steps is given by𝐽𝑘+1:𝑘+𝐻 = min {𝑤𝑈𝑘+1:𝑘+𝐻 + (1 − 𝑤) 𝑅𝑘+1:𝑘+𝐻} (25)

where 𝐽𝑘+1:𝑘+𝐻 represents the total risk and 𝑤 is the equilib-
rium coefficient.

Specifically, the sensor scheduling objective function
proposed in this paper is a nonmyopic function that considers
the cumulative total risk in the time step domain [𝑘+1, 𝑘+𝐻].
That is, the sensor scheduling scheme that can gain the lowest
cumulative total risk will be selected. The optimal solution
𝐴

opt
𝑘:𝑘+𝐻−1 = [𝐴𝑘,𝐴𝑘+1, ...,𝐴𝑘+𝐻−1]opt of the objective function

is the optimal scheduling scheme in the time step domain
of [𝑘 + 1, 𝑘 + 𝐻]. At this time, the scheduling problem is
converted to an optimization problem. Since the problem is
a POMDP problem with continuous scheduling actions, its
computational complexity will increase exponentially with
increasing time step, which makes it difficult to meet the
real-time requirements of scheduling.Therefore, to obtain the
optimal solution in a short time, we transform the scheduling
problem into a decision tree optimization problem and
propose a uniform cost search (UCS) algorithm based on
branch pruning in the next section.

5. UCS Algorithm Based on Branch Pruning

Figure 3 shows a decision tree with𝐻 = 3,𝑀 = 2, and𝑁 = 4.
As can be seen fromFigure 3, each available scheduling action
at each time step is a node, and the lower node contains the
scheduling scheme of all the upper nodes. We denote the
node cost as the cumulative total risk corresponding to the
scheduling scheme contained in the node. Then, the optimal
solution is converted to the scheduling scheme contained in
the lowest node with the smallest node cost.

There are three commonly used decision tree search
algorithms, namely, the breadth-first search (BFS), depth-
first search (DFS), and UCS. Compared with BFS and DFS,
in which all nodes are traversed, UCS preferentially opens
the node with the lowest cost, which has the highest search
speed [40]. However, as the number of nodes increases
exponentially, UCS still needs a lot of time. Therefore, the
branch pruning method is introduced in this paper. By
estimating the lower bound of the node, the branch with a
lower node bound greater than the current minimum node
cost can be deleted in time, and the number of opened nodes
can be reduced. For the node containing scheduling scheme
𝐴𝑘:𝑘+ℎ−1, its lower bound is given by

𝜓 (𝐴𝑘:𝑘+ℎ−1) = 𝜔𝑈𝑘+1:𝑘+ℎ + (1 − 𝑤) 𝑅𝑘+1:𝑘+ℎ+ 𝜔�̂�𝑘+ℎ+1:𝑘+𝐻 + (1 − 𝑤) �̂�𝑘+ℎ+1:𝑘+𝐻

(26)

Here, node cost𝑤𝑈𝑘+1:𝑘+ℎ + (1−𝑤)𝑅𝑘+1:𝑘+ℎ is known, but𝑤�̂�𝑘+ℎ+1:𝑘+𝐻+(1−𝑤)�̂�𝑘+ℎ+1:𝑘+𝐻 is unknown, which indicates
the minimum cumulative total risk in the future time step
domain of [𝑘 + ℎ + 1, 𝑘 + 𝐻]. The minimum risk in future
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Figure 3: Schematic of the decision tree.

time steps must be calculated by opening all child nodes, so
we propose an approximate estimation method for the lower
bound value to improve the efficiency of the algorithm.

Because of the stability of the sensor measurements and
the persistence of the target motions, the estimation error of
the target state will not change much from the previous time
step.Therefore, the threat assessment risk will not bemutated
most of the time. Furthermore, according to simulations,
the threat assessment risk in the next time step is usually
0.6-1.6 times that in the previous next time step. Then, the
suboptimal lower bound of the threat assessment risk is given
by 𝜓𝑈 (𝐴𝑘:𝑘+ℎ−1)

= 𝜔[𝑈𝑘+1:𝑘+ℎ + 𝐻−ℎ∑
𝑡=1

(0.6)𝑡 𝑈𝑘+ℎ (𝐴𝑘:𝑘+ℎ−1)] (27)

where 𝑈𝑘+ℎ(𝐴𝑘:𝑘+ℎ−1) represents the threat assessment risk at
time step 𝑘 + ℎ after performing scheduling scheme𝐴𝑘:𝑘+ℎ−1.

This is because,∀𝜏 ∈ {1, 2, ..., 𝐻−ℎ}, the following applies:
�̂�𝑘+ℎ+1:𝑘+𝐻≥ (𝐻 − ℎ) min

𝜏=1,2,....𝐻−ℎ
∀𝐴𝑘+ℎ:𝑘+ℎ+𝜏−1

{𝑅𝑘+ℎ+𝜏 (𝐴𝑘:𝑘+ℎ+𝜏−1)} (28)

where 𝑅𝑘+ℎ+𝜏(𝐴𝑘:𝑘+ℎ+𝜏−1) represents the emission risk at time
step 𝑘 + ℎ after performing scheduling scheme 𝐴𝑘:𝑘+ℎ−1.

Therefore, the suboptimal lower bound of the emission
risk can be given:

𝜓𝑅 (𝐴𝑘:𝑘+ℎ−1) = (1 − 𝑤)(𝑅𝑘+1:𝑘+ℎ

+ (𝐻 − ℎ) min
𝜏=1,2,....𝐻−ℎ
∀𝐴𝑘+ℎ:𝑘+ℎ+𝜏−1

{𝑅𝑘+ℎ+𝜏 (𝐴𝑘:𝑘+ℎ+𝜏−1)})
(29)

Then, combined with (27) and (29), the suboptimal lower
bound of the node is as follows:𝜓 (𝐴𝑘:𝑘+ℎ−1) = 𝜓𝑈 (𝐴𝑘:𝑘+ℎ−1) + 𝜓𝑅 (𝐴𝑘:𝑘+ℎ−1)

= 𝑤[𝑈𝑘+1:𝑘+ℎ + 𝐻−ℎ∑
𝑡=1

(0.6)𝑡 𝑈𝑘+ℎ (𝐴𝑘:𝑘+ℎ−1)] + (1
− 𝑤)[[[𝑅𝑘+1:𝑘+ℎ

+ (𝐻 − ℎ) min
𝜏=1,2,....𝐻−ℎ
∀𝐴𝑘+ℎ:𝑘+ℎ+𝜏−1

{𝑅𝑘+ℎ+𝜏 (𝐴𝑘:𝑘+ℎ+𝜏−1)}]]]

(30)

When UCS is carried out, the lower bound of the node
needs to be compared with the current optimal cumulative
total risk to determine whether the pruning condition is met.
In summary, the UCS algorithm based on branch pruning is
as follows.

Step 1. Add the root node to the list, set the initial optimal
risk 𝐽𝑘:𝑘+𝐻 = +∞, and specify that, once the node is opened,
the node will be deleted from the list.

Step 2. If the list is not empty, open the first node in the list.

If the depth of the child node < 𝐻, calculate the lower
bounds of all the child nodes and compare the lower bounds
with 𝐽𝑘:𝑘+𝐻 in turn. Delete the node with a lower bound
greater than 𝐽𝑘:𝑘+𝐻 and order the remaining nodes in the list
from small to large by the values of the lower bounds, and go
to Step 2.

If the depth of the child node= 𝐻, calculate the node cost.
If the node cost is less than 𝐽𝑘:𝑘+𝐻, record the current cost as𝐽𝑘:𝑘+𝐻 and the corresponding scheduling scheme of the node
as the optimal scheme, and go to Step 2.
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Table 1: The parameters of the sensors.

Sensor number Coordinate Tactical Value
The standard deviation

of
the range noise

The standard
deviation of

the azimuth noise

The standard deviations
of

the elevation noise
1 (5, 5, 0) km 4 200 m 8 mrad 8 mrad
2 (5, −5, 0) km 8 150 m 5 mrad 5 mrad
3 (−5, 5, 0) km 12 100 m 5 mrad 5 mrad
4 (−5, −5, 0) km 10 50 m 2 mrad 2 mrad

Step 3. If the list is empty, end the search. Record the current
optimal scheduling scheme as the optimal solution.

6. Simulations

In our simulations, 4 sensors are used to assess the threat
levels of 2 enemy targets. The sensor sampling interval is 1
s and the simulation duration is 60 s. Target 1 moves along
a uniform straight line, whose initial position and velocity
are (18, 15, 8) km and (−250, −260, −80)m/s, respectively.
Target 2 turns left at an angle of 10∘ from 20 to 30s, turns
right at an angle of 5∘ from 30 to 45s, and moves along a
uniform straight line during other times, and its initial posi-
tion and velocity are (−6, 10, 3) km and (320, 200, 60) m/s,
respectively.The sensor parameters are shown in Table 1. The
values of the parameters in (9) are set as 𝑑0 = 10 km,ℎ0 = 5 km, V0 = 50 m/s, 𝑐𝑑 = 0.005, 𝑐ℎ = 0.008,𝑐V = 0.005, and 𝑐𝛼 = 0.0002. Furthermore, the weights of
threat factors 𝑠𝑟, 𝑠𝑑, 𝑠V, and 𝑠𝛼 are 0.4, 0.2, 0.1, and 0.3,
respectively, the boundary points of the threat level are set as𝜃medium = 0.4 and 𝜃high = 0.7, and the assessment loss matrix

is 𝜆 = 1 2 3
1
2
3

[ 0 5 10
20 0 8
35 25 0

] .

Moreover, we quantify the ELI state as {1, 2, 3, 4} and the
instantaneous observed emission as {1, 2, 3}. For generality,
the sensor with a high measurement accuracy more easily
obtains a high emission state. Then, the ELI state transition
matrix of each sensor is as follows:

𝑇1 = [[[[[[

0.6 0.2 0.1 0.10.5 0.2 0.2 0.10.3 0.3 0.2 0.20.3 0.2 0.3 0.3
]]]]]]

𝑇2 = [[[[[[

0.5 0.3 0.1 0.10.4 0.3 0.2 0.10.2 0.2 0.3 0.30.1 0.2 0.2 0.5
]]]]]]

𝑇3 = [[[[[[

0.4 0.3 0.2 0.10.3 0.3 0.3 0.10.1 0.2 0.2 0.50.1 0.1 0.2 0.6
]]]]]]
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Figure 4: Normalized risk for different equilibrium coefficients.

𝑇4 = [[[[[[

0.2 0.3 0.2 0.30.2 0.2 0.4 0.20.1 0.1 0.2 0.60.05 0.1 0.15 0.7
]]]]]]

(31)

6.1. Determination of the Equilibrium Coefficient. Equilib-
rium coefficient 𝜔 can adjust the impacts of the threat
assessment risk and emission risk on the total risk, thus
affecting the decision-making process. We study the impacts
of different equilibrium coefficients on the two kinds of risks
for a horizon length 𝐻 = 1, which are shown in Figure 4.
It can be seen in Figure 4 that the greater 𝜔, the lower the
threat assessment risk and the higher the emission risk. This
phenomenon is because, with the increasing 𝜔, the impact of
threat assessment risk on the total risk will gradually increase,
and the system will pay more attention to control the threat
assessment risk, whichmakes it fall. Similarly, the system will
pay less attention to control the emission risk. Only when𝜔 = 0.4, are the two kinds of risks very similar, indicating that
the scheduling scheme at this time can balance the impacts of
the two risks well. Therefore, we choose 𝜔 = 0.4 in the next
simulations.



Mathematical Problems in Engineering 9

Table 2: Comparisons of the algorithm performance.

𝐻 Algorithm Average number of
opened nodes

Maximum number of
stored nodes

Cumulative total
risk.

2 UCS-BP 87 (56%) 32 744
UCS 126 (81%) 36 734

3 UCS-BP 772 (41%) 107 713
UCS 1168 (62%) 481 700

4 UCS-BP 6659 (29%) 687 702
UCS 9952 (44%) 2036 666

5 UCS-BP 42432 (16%) 1254 711
UCS 67683 (25%) 11136 668
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Figure 5: Comparison of the percentage of opened nodes for each algorithm.

6.2. Algorithm Performance Comparisons. To verify the
advantages of UCS based on branch pruning (UCS-BP),
we introduce traditional UCS to compare with. Figure 5
reveals the comparison of the percentage of opened nodes
for each algorithm under different lengths of 𝐻. Figure 6
shows the comparison of the cumulative total risk. Table 2

summarizes the statistics, which include the average num-
ber of opened nodes, the maximum number of stored
nodes, and the cumulative total risk. The search time and
memory consumption of the algorithm are proportional to
the average number of opened nodes and the maximum
number of stored nodes, respectively [18]. The cumulative
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Figure 6: Comparisons of the cumulated risks for each algorithm.

total risk can reflect the solution quality of each algo-
rithm.

It can be seen that UCS is able to search for a better
solution, so its cumulative total risk is lower than that
of UCS-BP. However, compared with UCS, UCS-BP can
significantly reduce the number of nodes opened and the
maximum number of nodes stored, thus reducing the search
time and memory consumption. In addition, it can be seen
from Table 2 and Figure 6 that when 𝐻= 2, 3, or 4, the risk
decreases with increasing 𝐻. However, the risk rises instead
of falling when 𝐻 = 5. This result is because the prediction
error of the system state will increase with increasing of 𝐻,
resulting in an increase in the risk.

Furthermore, there is little difference between the optimal
solution and the solution under UCS-BP when 𝐻 = 3. Con-
sidering the computational complexity and solution quality
of the algorithm, we choose𝐻 = 3 in the next simulations.

6.3. Analysis of the Scheduling Method. Figure 7 shows the
time-varying total risk curve of the predicted value and the
estimated value. The predicted value is the risk predicted
by the belief state before performing a scheduling action,
and the estimated value is the risk estimated by the actual
measurement after executing a scheduling action. It can be
seen that the predicted value is approximately equal to the
estimated value the whole time. Consequently, the belief state
prediction method can effectively predict the state of the
target and the ELI state in future time steps even if the system
state is not observable. In addition, the results indicate that it
is reasonable to use the predicted risk as the scheduling basis.

Figure 8 shows the projections of the trajectories on the
X-Y plane and the optimal scheduling scheme. Figure 9
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To
ta

l r
isk

6

8

10

12

14

16

18

10 20 30 40 50 600
Time step (s)

Figure 7: Total risk curve.

shows the ratio of the threat assessment risk to the total risk.
It can be seen that as target 1 moves close to defence target
and target 2 moves away from defence target, the uncertainty
in the threat level becomes increasingly small, so the threat
assessment risk also becomes low, and the system will pay
more attention to controlling the sensor emission. According
to Figure 8, we can see that, at the end of simulation time (52-
60 s), the system only schedules sensors 1 and 2 with a low
emission performance, and the threat assessment risk ratio
is less than 10%, which shows that the main factor affecting
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Figure 9: Ratio of threat assessment risk to total risk.

decision-making is the emission risk during these time steps.
It also reveals the reason why the total risk in Figure 7 tends
to be stable after decreasing.

Figure 10 is the threat level error sampling diagram of
target 1 to show the uncertainty in the threat assessment.
It can be seen that, in the process of threat assessment, the
uncertainty in the target state will be transmitted to the
threat model, which will generate the corresponding risk
in the threat level assessment. From 20 to 35 seconds, the
sampling points are widely distributed between both high-
and medium-threat levels, and the risk of threat assessment
is the highest. As the target gradually approaches the defence
target, the distribution of sampling points moves to the high-
threat level range, and the uncertainty in the sampling points
decreases. When all sampling points are at a high level, the
probability of a high-threat level of the target is 1 and the
threat assessment risk is 0. At this time, only the emission risk
of sensors need to be controlled.

To fully illustrate the effectiveness of the proposed
scheduling method (PSM), we choose four existing methods
to compare with, namely, (1) the random scheduling method
(RSM) where the random sensor combinations are scheduled
at each time step, (2) the closest scheduling method (CSM)
where the sensors closest to each target are scheduled [28],
(3) the fixed schedulingmethod (FSM)where the fixed sensor
combinations are scheduled in the simulation duration (in
this paper, we choose to assign sensor 1 and sensor 2 to assess
target 1 and 2, respectively) [28], and (4) the myopic schedul-
ingmethod (MSM)where scheduling plans are decided based
on the total risk of the next time step [29].

Figure 11 shows the total risk curve of each method,
and Figure 12 compares the normalized risk for the different
methods. Since RSM, CSM, and FSM do not predict risk
of scheduling, the corresponding total risk is very high. We
find that PSM minimizes the three kinds of risks among all
methods, indicating that the proposed method in this paper
can control the total riskwell to improve the security of sensor
systems and defence target. The total risk of MSM is lower
than those of RSM, CSM, and FSM but higher than that
of PSM, which reveals that myopic scheduling can control
the risk to some extent by predicting the risk in one step,
but cannot obtain the best risk control effect compared with
nonmyopic scheduling.

7. Conclusions

In this paper, we propose a risk-based multisensor nonmy-
opic scheduling method that schedules sensors to minimize
the uncertainty in the threat level of targets and improve
the survivability of sensors. First, a sensor scheduling model
based on the POMDP is established, and the state transition
law and observation law of target and sensor emissions in
the scheduling process are presented. Next, the threat assess-
ment model and the emission model are established, and
corresponding risk calculation methods are proposed. Then,
a nonmyopic multisensor scheduling objective function is
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built. Furthermore, to determine the optimal scheduling
scheme quickly, an improved decision tree search algorithm,
namely, the UCS algorithm based on branch pruning is
designed. The simulation results show that the proposed
algorithm can obtain high quality solutions quickly and the
proposed scheduling method can reasonably predict and
control the total risk. In addition, compared with com-
mon scheduling methods, the proposed scheduling method
can reduce both the threat assessment risk and radiation
risk.

A sensor management method that has continuity and
relevance for the combination of multiple combat tasks, such
as target detection, target recognition, and target tracking,
needs to be proposed in future studies.
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Figure 12: Comparison of the normalized risk.
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