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Impact of Matrix Spectral Factorization

Matched filtering problem (vector case).

Putting a problem having colored system or measurement
noise into the proposed form for applying Kalman-Bucy
filtering. |

A general synthesis teqhnique for linear multiport
networks. |

Inability to perform matrix spectral factorization is
precisely what limited the Wiener filtering theory to
the scalar case.

Modeling a biack box having multiple inputs and multi-
ple outputs (also includes a hypothesis test to deter-
mine if the proposed mathematical model is adequate).

Item 2 may be performed forithe discrete systems also

by making use of a simple trick involving a bilinear trans-

formation.

The factorization will be of the form S(p) =

WT(-p)W(p), where

(a) the matrix W(p) has elements that are'rétioé of
polynomials in p,

(b) each element of W(p) is analytic in the right haif
p-plane, Re(p) > -u, u > 0,

(c) each element of W—l(p) is analytic in the right

half p-plane, Re(p) > -y, u > 0,



(d) the matrix W(p) is real, (i.e., W(p) = W(p)) when

S(p) is real.



1 Applications of Matrix Spectral

Factorization in Communications

(Specifically, applying matrix spectral factorization
to the n-dimensional matched filtering problem having

correlated colored noise)
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Approach:

(1)

(2)
(3)

(4)

review the solution of the one-dimensional matched
filter problem,¥*

significance of using white noise,

how procedure is altered (pre-whitening) if the
noise is colored,

how procedure is aitered for the n-dimensional
problem (pre-whitening) when the noise is colored
apd cross correlated. (This is where matrix

spectral factorization is used.)

*An
radar.

obvious application of matched filtering is in



One Dimensional Matched Filtering

Given a deterministic signal s(t) corresponding to a

particular message, and noise n(t), where the effect of

1-2

transmitting the signal through a communications channel is

as though the noise is added to it

+|n(E)
(i.e., S(t) +<l> > s(t) + n(t).

If at the receiving end of the channel we have a linear

filter having impulse response h(t) as shown in the figure

below

+ n(t) | : V
+& ‘ sa(t) + n,(t),
s (t) S0 T h(t) (———» "0 0

and we define the output signal-to-noise ratio at time t

sg(t)

ng (t)

Z(t) = + then we can pose the following problem:

Find the causal linear filter h(t) such that Z(t) is a

minimum at time t. This problem is most easily solved if

as

the input noise is white. (Even if the input noise is not

white the problem may still be solved; the trick of pre-

whitening may be used to an advantage.)

Theoretical solution to the one dimensional matched

filtering problem.

n(t) is white; Snn(p) = G0 & Rnn(T) = Goa(t)



2o}
o~
~
~
it

ngng I_m h(Tl) f_w h(TZ)Rnn(T"TZ'i'Tl)dTZdTl

Elng(£)] = Ry 1 (0) = [ h(t)) f*_ h(1,)Gy8(0-1 %1,)dr,d1;

~ Rghy -

i 2
- h (Tl)dTl.

[eo]
J__ h(t)h(r))Gydt; = Gy [
The output signal at a given time t is, by convolution,
A R ~
so(t) = IO s (t-u)h (u) du.
"The problem is to maximize the function

2

IO s (E-u)h (u)du :
by picking the proper h(t). For

A

Zo (t) =

oo 2 )
Gy J L hlry)ary

a given so(ﬁ), the maximum value of Zo(ﬁ) occurs when the

. 2 . s
output noise n" (t) is a minimum.
Using variational methods, we then consider a function

of the form

2 ~
Q = po(t) + us, (t)
where p is the Lagrangian multiplier. . The problem is now

» - » 3 : . ~ 3 V I3
one of minimizing Q since so(t) is considered constant.

‘The function whose minimum is sought becomes

Y 2 £
Q= jo [Goh® (X)) + us; (E-A7)h(xq)1dA;.
This function may be minimized by first rewriting it as .
follows:

Q =G, f: h(A) [h(A)) + %E s; (E-1p)1ax .

This function is clearly a minimum when

= - M A
h(dy) = & s; (£-17).
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It now becomes evident that p is simply a gain constant for
the network.\ Since the output sigﬁal—to—noise ratio will
not depend upon yu, we are at liberty to choose u for our
convenience. Thus, let p = -Go. The solution now becomes

h(xy) = s;(E-1).

If an impulse is applied to a realizable»network at t = 0,
the impulse responsevonly exists for t > 0. The impulse
response for the optimum realizable filter is théﬁ

h(t) = s; (E-t), t>0."

Significance of Using White Noise

As you aré probably aware, white néise is a mathemati-
cal idealization wﬁich does not really exist., The white
noise assumption is made when the noise has a power spectral
density function which is essentially flat well beyond (or
above) the response freéuency of thelcompdnents.' For a
white noise process, tﬁe procéss at'tl is completely uncor-
related with the process at t, for all tir ty (tl # t2).
Analyzing a process corrupted by white noise is siﬁilar to a
"worse case" analysis since if the process haé correlation
between two different times there would beA"éomething.knoWnn

about the trend of the process; however, with white noise

‘there is nothing known.

The white noise assumption entails such physically im-

possible implications as the noise having infinite power (as
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made famous in the "ultraviolet catastrophe"). Even though
the white noise assumption has all.these drawbacks, still it
is useful since it simplifies the analytical calculations,
and even after making the white noise assumption, the
results of analysis are close to what is actually observed
physically.

How Matched-Filtering Procedure Is Altered
(Pre-whitening) if the Noise Is Colored

There are situations, however, where the white noise
assumption would be bad and it would be more reasonable to
acknowledge that we have colored noise. The matched-
filtering problem is most easily solved when we have white
noise. What we can do is pre—whiten'the noise (i.e., find
the filter that will give a white noise output for a colored
noise input). After this pre-whiténing ﬁas been applied,
the remainder of the pfoblem is exéqfly'the same as what was
done in the white noise case (thn‘C. Hancock, 1961,
pp. 142-43). | | |

The filter Hl(s) is chqsen so that the npiée ni(t) ;s‘

S 1.1 (s) ="

(s).) The signal at the output of the pre-

white with unit variance. (1 =

Hy (s)H (-8)8, o

whitening filter is found from si(s) = Hl(s)si(s) or

si(t) = [ hy(t-m)s; (v)dt,

The filter Hz(s) is chosen so that
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h, (t) = s}(E-t), t >0
so that the signal—to—noise ratio aﬁ t = E‘is a maximum.
The two filters Hl(s) and H2(s) can be considered together
as Hy(s) or hy(t) = [ hy(t-M)h; ()@}, the matched filter
for the colored noise n; (t).

I
f
!
!
i

colored noise, white noise _
¥ | Pre- ¥ Matched :
. + n, . . ! ' .
Sl(t) nl(FZf whitening sl(t) + nl(t) filter 'SO(t) + nO(tl
|
Hl(s) Hz(s) t

matched to signal s{(t) )

matched filter for the
colored noise problem

How Procedure Is Altered for the n-dimensional
Problem when the Noise Is Colored
(Multiple Matched Filter Detection)

1 2 n T . .
Assume N = [ n, n, ..., n] consists of nonwhite,

i ,
perhaps cross correlated noise. The signals s on each of
the n channels corresponding to a particular message may be
different or the same.

The relationship between the input to H,(s) and output

power spectral density matrices is

S,ipe (8) = Hy(-s)S__(s)H] (s).

If n' is uncorrelated, unit variance, white noise, then
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ln 1 1
ls +h ls + 111’ 1s' + ln' | 0 * o
i 2 2
+ s
ZS t{%) 2S + Zn’l 25' + Zn' 0 + n0
. . Hl(S) . H2 (s) ¢
. ) nn ) s L ]
n' . n . . 1'1 e n
] ‘/i\ s + nn_» ns' + 2n' S0 * n0
o\ g > —

Sn'n'(s) = I, the identity matrix. If we apply a_matfix
spectral factorization to Snn(s) to yield Snn(s) =

T
W (-s)W(s), then all we need to pre-whiten the noise is a
linear filter having the transfer function matrix Hl(s) =
L | : . |
[W (s)] °. This can be seen since

Spipt (8) = Hl(—S)Snn(S)HT(s) = Hl(—S)WT(-S)W(S)Hf(s) or
1

Spene (8) = [0 (-8) 17 W' (-s)W(s) W(s)1 ™" = 1.
There is no worry about [W(s)]—1 existing and being realiz-
able since the matrix factorization proéedure yields matrix
W(s) which has an inverse W—l(s) béghnof which have 'all
their poles in Re(s) < 0 (i.e.,Athe L.H.P.).

From here, the matched filtering préblem iS'the
sténdard problem. It may be formulated aﬁd solved in.vécébr
notatibn in a mannefvcompletely analogous té_what_was,d;ne’
in the review of the scalar problém.

One problem that exists for the n-dimensional matched

filter that was nonexistent in the scalar case is that the

signal-to-noise ratio may be defined in several different
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ways.

S\ _ sguared magnitude of signal at time £
1 " average squared magnitude of noise

S\ _ square of the sum of the signal components at time £
2 average squared magnitude of noise

S5\ = sum of signal-to-noise ratios of each component.
3
A. V. Balakrishnan (1961, p. 52) showed that all of the

above signal-to-noise ratio definitions for the veéctor

process problem yield the same matched filter.
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In recent years there have been several exciting appli-
cations of the Kalman-Bucy theoryrfor optimal linear estima-
tion. There have been many applications of the theory in
the aerospace area and avfew applications in the process
cbntrol area. |

Before the Kalman-Bucy theory can be appliea, the prob-
lem must be put in the proper form for applying tbe theory.
The proper form is that the system be modeled by
(1) %(t) = F(t)x(t) + D(t)u(t) + G(E)w(t), x(ty) = x4, t 2 t,
ahd that the measurements be modeled by
(2) y(£) = M(E)x(E) + N(E)V(E),
where w(t) and V(t) are zero mean, Gaussian, white noises,
u(t) is a deterministic input, x is the state, and the
y-vector constitutes the measurements.

When w(t) and v(t) are not white, bﬁt colored or cor-
related Gauésian noise; the system‘ié nbt in proper’form for
KRalman-Bucy filtering to be applied. Applying matrix
spectral factorization allows one to transform (by‘using
state-space augmentation) a problem that is not in the

proper form to one that is of the proper form.

J "

G

4Given: —D 3 j- % M

A
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Ax + Du + Gwl
y = Mx + n
Wl is white, zero-mean, Gaussian noisg WlWl(T) =
Qs(t), Q > 0 ]
n is colored Gaussian noise,'Snn(p) is given.
The above system is not of the proper form for applying'the
Kalman-Bucy filtering'theory. |
The above problem can be put in the proper form for
applying Kalman-Bucy filtering theory by using matrix
spectral factorization and state augmentation.

spectral factorization

Spn(P) = W (-p)W (p)
T -1
W (p) = Hz(pI = F2) Gz + Jz
R :
-+ Kalman method for obtaining a realization
from the transfer function. '
n Wy

S | WT(P) —

. z :
n A —~~ - 2 - ’ A wZ
n &_____( )¢ H2 A\ A\, v
#
J2
b o ' zy = Fozy + GoW,
Let R = |----| <« state augmentation

Z)

omros g



(1) = Q8(1); R (1) = IS (1)
RW]_W]_T T W2WZT T

L
o .
58 | |
g O X A0 D Gi0 Wy State and
ahe R = = |-+--|R + |-|u + [-1-- | measurement
5 @ 22 O:F2 0 O;G2 W, noise are
08
4m correlated.
Y
o)
& y = [MEHZ]R + J,W,
g
1) W,
G
Given: . . o
u == D ‘J' : M y
A
%X = Ax + Du + GC
y = Mx + w,
W, is white, zero mean Gaussian noise,jR ’ (1)
2 ) . W2W2
RS (T)
¢ 1is colored Gaussian noise S;C(p) is given.
The above system is not of therproper form for applying
the Kalman-Bucy filtering theory.

The above problem can now be put in the proper form

spectral factorization

-

W' (-p)W(p)

S;;(P)

T -1,
+ .
Kalman method for obtaining a realization

P wip =M1




N\ 1—v
- | s F
b4 . zq Flzl + GlWl
Let R = <« state augmentation A
Z7 d r = Hyzy + JW,

(1) = Ré(1); R (1) = I8(1)
R wgu, R g, '

e

o

E

o . % A0 D 0

M E R=] | = |-4-—|R + [-|u+ |--|w
$ 0 . ' 1
0 & Zq 0Fy 0 G,y
Y

4

o

As a final example of how spectral factorization can

help in Kalman-Bucy filtering consider the following:

U

: u
Given: —~ p f —

L

Measurement and system noise are both colored and possibly

S

‘?‘y»

cross correlated.

[}

X = AX + Bu + DC

Mx + n

y

: Snn(p); SCC(p);_SCn(p) are given.
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s _(p)! S, (p)
Define f;( p) = |--M0li TEn
Spe (@)1 S, (P)
T -1
+
Kalman realization
n
4
C— T (——w
W (p) 3
X
R = ; z3 = F3z3 + G3W3
Z3
n
——— = H323 + J3W3
g
A IR TR R
R = |A:\D H3R+ Blu
1
; L0 Taxq _
- 0. F 0
g L -3 : o
£
S
Y] i ; Toup O
[8) J
@ Lo o
H 1]
¥
[3)
O

IR oW, (T) = I8(T).
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= W' (-p)W(p)

1.

-+

spectral factoriza-
tion

Here the state and measurement
white noise are the same.

In all truthfuiness, the first example demonstrated on

page 1 may be solved another way as shown in a paper by

Edwin Stear and Allen R. Stubberud, "Optimal Filtering for

Gauss-Markov Noise," International Journal of Control,




Vol. 8, No. 2, 1968, pp. 123-30. This approach does not
involve state augmentation, however it is restrictive in the
sense that it assumes Nt exists in eq. (1) (y = Mx + NV (t)).
In reality, N need not be square let alone be nonsingular.

In the recent text by Sage and Melsd, Estimation Theory

with Applications to Communication and Control, McGraw-Hill,

l971,vit is stated that if the Gauss-Markov process ?(t) can
be generated by u(t), a white noise process in such a way
that y(t) = E(t)y(t) + I(t)u(t), then the state equation may
be augmented so that the whole model is driven by white
noise. Here they assumed that Z(t) and X (t) were already
known. 1In a realistic situation, you wéuld only hé&e the
power spectral density maﬁrix obtained from the measure-

ments. From this you would obtain the E and I by spectral

factorization and obtaining a realization.
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3 Applications of Matrix Spectral Factorization

in Network Synthesis

(Specifically, a general synthesis technique for linear

multiport networks using the scattering matrix)

Includes:

Suificient Conditions for Matrix Factorization and How:

Satisfied by the Intended Applicétions

I All Applications of Matrix Factorization in Communica-

tions Theory Encountered Thus Far Involve a Power

Spectral Density Matrix

II A Network Synthesis Applicaﬁion of Matrix Factorization



sufficient Conditions for Matrix Factorization and
How Satisfied by the Intended Applications

All that is needed to applyvthe mathematical technique
of the matrix factorization procedure of Youla, Davis, or
Anderson to a matrix S(p) is that the following four condi-
tions be satisfied (sufficiency):

(i) the elements of S(p) are rafios of polynomials in

the complex variable p,
(ii) S(p) = S(p), where the vinculum denotes taking the
complex conjugate,
(iii) 87 (-p) = S(p) (i.e., para-Hermetian),

(iv) s(p)| = S(jw) is positive semidefinite

p=jw

(i.e., S(Jw) > 0 for all real w).

I All Applications of Matrix Factorization in Communi-
cations Theory Encountered Thus Far Involve
a Power Spectral Density Matrix

It will now be shéwn that an arﬁitrary power spectral
density matrix satisfies conditions (ii), (iii), and (iv)
and mayrbe approximated arbitrarily closely by é‘matrix
that, in addition to satisfying (ii), (iii), dnd‘(iv), also
satisfied (i).

For any two real valued random processes'{yi(f)}teT
,and’{yj(t)}th that are second ordet processes (i.e.,
E[lyi(t)lzl < © and E[]yj(t)|2]'< © for all elements t of an

ordered index set T, which by Holders inequality assures
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that E[|yi(t)yi(s)|] < » for every t, s € T), the correla-

tion function is Ryiyj(t,s) = E[yi(t)yj(s)] =
A . oy
E[yj(s)yi(t)] = Ryjyi(s,t). If, in addition, yi(t) and
(t) are jointly wide sense stationary, then Ry v (t-s) =
N l J
(t-s,0) = R (t,s) = R (s,t) =R (s-t,0) =
RYin ! Yi¥y ' Y5¥5 Y4Y3 !

Ry.y_(s—t). Upon substituting 7 = £t - s in the above ex-
)41 .
ression, the result is R T) = R -T). Since the

P ' ylyj( ) yjyi( ) nc
power spectral density function is here defined to be the

bilateral Laplace transform of the correlation function, we

have that
syiyj (p) 2 f°° Ry;vs (1)e Pt ar = f: Ry.vs (-t)e Pt dT
= ffw Ry_y.(T')c-(-p)T' az' B ¢ Sy.vs {(-p)
)41 J*1
by a change of variable (1t = -1'). Therefore, for power

T~(—p) =

spectral density matrices, it is alwéys true that Syy

s~~(p)l where Y (t) = [yl(t)l Yz(t)( coey Yn(t)]; SO power
spectral density matrices always satisfy condition (iii).
For v € [R and the fact that the conjugate of .a product

is the product of the conjugates, we have that e &Pt =

1 - pt/1t + (p1) /2! - ee. =1 - Et/l! + (p1) /2! - he. =

e PT.  fThe preceding is a useful lemma in showing that

= —— -pt - (7 no. -pT -
Sy (P) f - Byy(m)e dt =.[_ Rgg(t)e © dt

/ Ryy(r)e dt = [ __ Ryg(T)e

T _ (=Y .
drt “~Syy(p)° Therefore,

for power spectral density matrices it is always true that
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Syy(p) = yy(p), so, power spectral density matrices always
satisfy condition (ii).

Since the power spectral density matrix satisfies both
(ii) and (iii), it follows that S~~(p) = Sgy(ﬁ) = Syy(-ﬁ),
which is the definition of a paraconjugate Hermitian matrix
(Youla, 1961, p. 173); thus, power spectral density matrices
are paraconjugate Hermetian;

As pointed out.in Kraus and Po6tzl, 1956, p. 283,
equation 6, a necessary and sufficient condition for a
matrix Syy(p) to be the power spectral density matrix of a

wide sense stationary vector random process is that

b S§~(jw) b > 0, for every complex n-vector b # 0 , for

e
sics A

all w ¢ R . Therefore, power spectral density matrices
always satisfy condition (iv).

Since power spectral density matrices satisfy condi-

tions (ii) and (111), it is true that S~~(p) = S ( P) . The_

Hermitian part, SH(p), of a matrix S(p) is defined as fol-

T :
lows SH(p) (1/2) [S (p) + S(p)]. For power spectral
density matrices, the Hermitian part, for p = Jjw; is

_ T . . _ T sy o4
S~~ gliw) = (1/2)[S§~,§,(Jw) + SW(Jw)] = (1/2)[S§§,( jw) *

S~~(Jw)] (1/2)[S~~(]w) + S (jw)] = S~~(jw) Théreforé,

for power spectral density matrices, the condition that
b S§~(jw) b > 0, for every complex n-vector b # 0 , for all

nx1l
wefR 1is equlvalent to the condition that b S~~H(jw) b >0,



3-4

for every complex n-vector b # '0 , for all w ¢ IR . This
nx1l

lgst test is one of several conditions that must be satis-
fied in order that a matrix be positive real as defined in
Newcomb, 1966, p. 117 or Anderson, 1967, p. 171l. However,
the fact that a matrix satisfies this last condition is not
equivalent to the matrix being positive real since the
matrix must also satisfy se&eral other conditions, one being
that the matrix be analytic in Re(p) > 0 which, in general,
is not satisfied by power spectral density matrices.

Laning and Battin (1956, p. 381l) show that an arbitrary
correlation function of a real wide sense stationary process
may be approximated to within any desired accuracy in the
integral square error sense by a class of exponential func-
tions. These functions have bilateral Laplace transformé
that are ratios of polynomials having réal coefficients;
thus, the power séectral density métti%lof any arbitrary :
wide sense stationary process can be approximated in this

. : 3
manner by a matrix consistihg of the ratios of polynomials
and still satisfying‘conditions (ii), (iii), and‘(iv). .

Approximation of an arbitrary power spectral density
matrix by a power spectral density matrix having elements
that are ratios of polynomials with real coefficients can be

done directly in the frequency domain by any of the methods

of approximating the spectral density functions by

BT Y
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meromorphic functions (i.e., functions only having singu-
larities consisting of a finite number of poles) mentioned
in Solodovnikov, 1960, p. 169. These methods for approxi-
mating the power spectral density function in the frequency
domain are:

(a) interpolation,
(b) approximation based on a Fourier series_expaﬁsion,
(c) approximation based on a Laguerre series expahsion,
(d) approximation of the logarithmic curve of the power
spectral density by intersecting straight line
segments.
By any of the above mentioned methods, an approximate power
spectral density matrix can be obtained that has elements
cbnsisting of ratios of polynomials with real coefficients.
This apprgximafion to the>power specfralldensity matrix
satisfies (i), (i), (iii), and (iv), so that the various
factorization procedures may be applied.

«

II A Network Synthesis Application of Matrix -
Factorization o

A. The general>n—port synthesis method that Newcomb
describes (p. 309, p. 145, Newcomb) which is origihally due
to Belevitch uses a Gauss diagonalization procedure to
effect the required factorization of R'aﬁd Ry into

~ ~

R = 221*221 and Rip = 212212*, respectively. An important
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step in the procedure involves using 21%, which Newcomb
admits ohly exists "formally." The reason for this is that
the Gauss diagonalization procedure does not guarantee any-
thing about the existence or analyticity in Re(p) > 0 of the
inverses of the factors; some factors may have inverses
while other factors dornot; however, the Youla, Davis, and.
Anderson factorizations do guarantee the existen¢e of'inf
verses that are analytic in Re(p) > 0. It is ﬁhe Youla,
Davis, Anderson method that we desire to develop a computer
program for.

B. The matrices R and Ry; satisfy conditions (i) -
(iv) for applying the factorization procedures. |

1. Conditions (i) and (ii) are trivially satisfied
since all elements of the matrices R and Ry are.ratios of

polynomials

2. Since R(p) £ I - &, (p)S(p)

ne>

Ryp I - S(p)é*__(p), then
R(p) = I - 5. (0)S()] = T - 5(p)S, (p)
Ryp(P) = [T - S(p)Sx(p)] = I - S4(p)S(p)
and fy(p) = R(-p) = I - §,(p)S(p) = R(p)
and ﬁII*(p) = ﬁII(—p) = I - S(p)§¥(p) = Ry (p); hence condi-
tion (iii) is satisfied.
3. We éan verify condition (iv) by‘éssembling the

proper string of proved theorems from Newcomb's textbook.
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a) Table on page 105 of Newcomb's text states that a
property of a passive (linear, sol?able, time ihvariant)
network is that the impedance matrix Z is positive real.

b) Theorem 5-2 ([p. 121] An Alternate PR Test): An
An X n matrix Z is positive real iff S 8 2+ n7lz -1
exists (see p. 52, p. 130) and satisfies the following

1. S is real rational

2. S has no poles in ¢ > 0

3. I, - $*(jw)S(jw) > 0 for all real w.

¢) Theorem 5-13 (p. 130): If Z is PR, then
S = kZ + I)-l(Z +.I) exists and is bounded real (BR). By
a), ¢}, and b), S exists and I, - S*(jw)S(jw) > 0 for all
real w. Since R(p) 4 I, - S4«(p)S(p), we have that R(jw) =
I, - S*(jw)s(jw) 2 0 for all real w; hence condition (iv) is
satisfied for R. |

d) Theorem 5-21 (ﬁ. 147): If S‘(p) is BR, then

R(p) = I - 5,5 and Ry (p) = I - S8, have the same rank and

RII(jw) > 0. Therefore RII(p) satisfies condition-(iv).
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Extra-1

Two Typical Examples of Problems That Linear
n-Port Network Synthesis Theory Solves

Problem 1: Antenna Feed Structure (three ports)

(R. W. Newcomb, Linear Multiport Synthesis, McGraw-Hill Book

Co., Inc., New York, 1966, p. 235)

Y

© ¢

Recoiver L
Keceiver 2

Pdc

.33

o

"It is desired to have an antenna feed two separate
receivers, as shown in the above figure. Upon normalizing
to l-ohm terminations (ibid., p. 145), all ports are tb be
matched (i.e., for a scattering matrix S5{p), s;;{p) - a5 .
It is also desired to have no coupling between receivers,
S93 = S35 = 0, or transmission bétween receivers and |
antennas in the backwafd direction, S13 = 819 = 0. _Equal
transmission from the antenna to the two receivers of a
second order Butterworth characteristic with a zero at the

origin is also desired; thus Sy1 = S37 = p/(p2 + /2 p+ 1.

The coupling network, N, is then described by

[ 0 o o ]".
p
P

..p?+/7p+l 0 0.4

This synthesis problem is solved in Newcomb's textbook.
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Problem 2: Antenna Feed Structure (2m—-ports)

(ibid., p. 104)

© —C

. i
= . m m L4
[ 4

[ ]

v 4
W
m—-channel Feed m-element
Transmitter Network array

or Recgiver
If the antennas are to be used in an identical manner
for transmission and reception, we desire that”the feed net-
work be reciprocal, and certainly it is'reaspnably required
to be lossless. It is also desirab;é fo match and isolate
the m transmitter channels. Thus we desire the scatteriﬁé

matrix I of the 2m-port feed network N as

Since we want Ny to be lossless, 1 is para-unitary. By the
para-unitary property of %, 221 is para-unitary and Iy9 =

O Thus, at a fixed real frequency p; = jwo, Zzl(jwo)
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T 2 3 2 |
i=1 i=1
Now, aij represents the illumination of the i-t--'-l'—l antenna due

to an excitation at the jg—1 transmitter, and thus, if we
require similar excitations to give similar responses, we
can specify lajll = I“jil' i=1, ..., m for each j; that
is, the magnitude of amplitﬁdes in a fixed row may be chosen
= 1/v/m.

equal. Using this in the above shows that |a

5]
1]
If, further, a fixed wave sent into ports, 1, 2, ..., m must
be progressed in phase to add at the first antenna, then we
can extract the phase progressions as factors exp[jei],

i= 1, ...,_m_from the iEE column of 221. The remaining
columns must still have unit magnituqe, and if we distribute
the beams in a maximally flat manner when any one feed is
excited, each column can be considered és consisting of the

m roots of unity. By, perhaps, a prbper ordering of Fhe

output ports we can then guarantee that

1 1 ...1 1r7e%% o .. 0 1
a u2 .o am—l 0 eje'l ) 0
2 3 . j6
Z ('w) — l a d. * o @ Ot 0 0 ej 0
21 V1% Ja . . . ’
am_l o2 L 0 0 ... ei01 ]

where o is an mEE root of unity.

This then gives a possible

specification for the feed network for single-frequency

operation.
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4 Applications of Matrix Spectral Factorization

in Communications

(Specifically applied to Wiener filtering)



b

h

+ .
+ 4 € .
“ - A oS -

L)

Find the h(t) (realizable) to minimize o> = E[e(t)’],
the mean-square error. (Assumptions: stationary s(t),
stationary noise n(t), corresponding power spectral densi-
ties of both are known, noise is additive, impulse responses
h(t) and i(t) correspond to time invariant linear systems so
problem may be solved in the frequency domain.)

In order to obtain a causal filter, must perform a

. scalar spectral factorization (Sage, Optimum System Control,
1968,Ap. 190, eq. 8.3~12). Manipuiafions are used‘whichn
assure that filter has poles in LHP only.

The analogous Wiener filtering problem maybbé poséd and
solved for the multidimensional case (ibid., pp. 209-11) but
matrix spectral factorization is required (ibid., b. 211,
eqd. 8.5-36). Matrix spectral factorization is a véry for¥
midable problem unless a computer method is available. This

is why Wiener filters are usually only for the scalar case.
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5 MApplication of Matrix Spectral Factorization in

Modeling a Particular Class of Multiple

Input Multiple Output Black Boxes

Synopsis of the Paper as Applied to the Scalar Case
(More readable)
Paper Which Generalizes the Idea to the Multiple-Input

Multinle-Output Cace



A The Scalar Case

Synopsis of the paper as applied to a single-input
single-output black box rather than to a general multi-input
multi-output black box. (The paper solves the general prob-

lem but the notation becomes cumbersome.)

Modeling a scalar problem having inputs and outputs

Consider the following black box:

b A Black Box -

N C

random output deterministic input
Want to use a model of the form

dx ‘
= + 4+ M
( % Fx : Gw (t) v

\. white noise, Gaussian

x(0) C, a random variable

y(t) = Hx(t) + m,

<whereAE[C] = 0, E[CC] = P, E[w(t)] =‘0 for all t,
Elw(t)w(s)] = Q6(t-s), Q > 0.
Unknown parameters: F, G, H, m;.P, Q, M (7 unknown).
Approach: test to see if the above mathematiqal médel is
adequate for the black box. (Hypothesis tesﬁing, where we
determine the number of trials we must make fo have o con-
fidence in the outcome of the test.) |

By an argument involving equivalent Fokker-Plank equa-

tions} mathematical model(Z)is equivalent to mathematical

model @ |



P

dx _
a-E = Fx + GOW(t) + Mv,
white noise
(:> x(0) = C, a random variable,
y(t) = Hx(t) + m,

where E[C] = 0, E[CC] = P, E[w(t)] = 0 for all t,
E[w(t)w(s)] = I8(t-s), Q > O.
Unknown parameters: F, GO,'H, m, P, M (6 unknown).
(Modified Bucy-Joseph approach)
Procedure;

Clamp v = 0

~

Y o Black Box = A4

i
(=]

Make measurements for v = 0:

o1 ,T .
R§§(T) = %iz = IO Y(u + 1)¥(u)du (from data)
sy () = L 1r[Ryg(T)]

"bilateral Léplaée transform

.1 T
m = lim = fO ¥(u)du (from data)

T—)-oo_

T
= lim = fo [$(u + T) = m][¥(u) - mldu (from data)

)
2
14
—~
sl
~
|

T>c0 T

sy3 (1) = JfII[REE(T)]

Can derive theory for model (:) which says that for z =

Yy - m,

1 1

S,,(P) = H(pI = F) "G,G,(-pI - F) "H

E[CC] = P, where P satisfies FP + PF + GOGO = (,
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® Ft Ft
P = e GAG e dt).
(=] 0%0 )

Factor , S3z(p) = W(-p)W(p),

1 1

W(-p)W(p) = Sz5(p) = 8,,(p) = H(PIT - F) "G,G,(-pI - F) H

~ N

factored measurements theoretical
model

Let W(p) = H(pI - F)—lGO

Can find H, F, GO easily (Kalman) (Gibson). Once we know

. . © Pt Ft
(H, F, Gy), can find P: either by P = fO e ~ GGy e  dt,
or, since this is the scalar case, by (ZF)P = —G2 or
2 o
p=- S Recall that m = lim 2 [ F(wdu
= Spe a = Tiw T I ¥(u .

We now know 5 of the 6 parameters. Must now test to

see if the linear mathematical model (:) is adequate and if

it is, determine the gixth

Navramnt+nv M
& LA

Now for v Z O

A

Black Box

Theoretically:
If the mathematical model (:) is correct, then x(t) is

a Gaussian process, with mean

t -
Blx(t)] = [ eF "y (1) ar
unknown
and variance _
: t Ft Ft Ft Ft
Var[x(t)] = fO e GyGy-e dt + e Pe

(at a particular time, x(t) is a Gaussian random variable
with unknown mean but known variance).

Now y(t) = Hx(t) + m.
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l. Hx is a linear transformation on x and so is also
Gaussian.
2. Adding the constant m maintains Gaussian.
At a particular time, x(t) is/a Gaussian random vari—
able with unknown ﬁean but known variance

F(t-T1)

T
Ely(t)] =_f0 He Mv (t)dTt

t -
Var[y(t)] = fo H et GOGO\eFt Hdt + He © PveFt H

-IE 12 Goz o2Ft ge 4+ g2 2Pt p

Hy: The black box is adequately descfibed by the mathe-
matical quei (:) . We can now determine the number of
trials we need to make to have a-confidence (0 < o ; 1l) in |
the outcome of the test.

The test is essentially a test to see if the actual
black box behaves linearly and in a time invariant manner.
If it doe;, then superposition shoﬁld épply.

Apply an input VA(t), where“vA(t) is an arbitrary
scalar function of time. Apply this input sevefal_times,
say N times (it is this N, the number of trials that will ge
determined a priori és will be-shown‘below),_and record the
outputs, yA(t), corresponding to the N trials (for each
trial, "enough" time should elapse betweeh trials to allow

the system to decay back to its original'status_[how much

time is "enough" should be evident from the previously



determined F matrix: 10 times the reciprocal of the
smallest eigenvalue]); the record should extend from t = 0
to t = T*, where T* is chosen for convenience. Divide the
time interval [0,T*] into equispaced points, so that

A =T*/m, For t = kA, for every fixed k, a member of

[1, 2, ..., m], average the N outputs [yA(kA)] to yield

k) =

Z |-~

[y (k) 1.

o~ 2

n=1
. B B . .
Now apply an input v (t), where v (t) is an arbitrary

scalar function of time different from uA(t). Similarly

obtain

=B .. A
y (ka) = ly (k&)i,.

Z|=
i t~12

n=X%

(A+B)

Finally, apply an input v (t) = VA(t) + VB(t). Simi-

larly record the response and obtain
;A+B 1 N A+B
y o (ka) =S ] Iy (k)1
n=1

If the black box were linear and the inputs entered in

a time-invariant manner, then [yA(kA)n]E=l, for a fixed k,

is a sample of size N from a Gaussian populatioﬁ where the
population has a known variance of

Cov[yA(kA)] = ka H eF(kAﬂu) G

F(kA-u)
0 0~0 ©

G0 H du

+ 1 A p JFKA

and unknown mean



5-6

eF(kA_T) uA(T)dT]M, where M is an unknown

A kA
Efy (kA)] = [fo H
vector.

For t = kA, for any fixed k, the probability that the

A . . ‘s
sample mean y (kA) of a sample of size N is within € of the

population mean uA(kA) is given by

P[-:!‘- (72 (kA) - uP(ka)) 2 < EZ] - P[_];|'2'I2 < e?‘]
N oy (k)] 1 N

= P[|'z'|2 <N e’] = a,

where use has been made of the transformation

Lo YA - P k)
CovIy™ (ka) ]

14

where z 1s a Gaussian random variable having pZ(B) =
£ expl- L zz]. Note that for t = kA, for any fixed k, the
Vam 2 ,
problem transforms into the same problem in z with the same
sample size N. From a table of areas under the Caussian
curve, it is possible to calculate; a priori, the sample
size N required so that we have o confidence that the sample
mean (a maximum likelihood, sufficient, unbiased, feffi—
cient," and "consistent" statistic for the population mean
[Hogg and Craig, 1970, p. 255]) is within & of the true
population mean, where a and € are set in advance.
Returning to test the linearity hypothesis, if the

i

actual black box were linear, then

A A —_ 2 2
N7 &) - vy (122 = (12115 < =



Py
EANEY

and we would have:
A —B A+B A ;
77 sy + 7 (k8) = y™ P a) -1 < HyPk8) = wP (k) | [ g1
B B A+B A+B
+ T A - w kM) [ g-1 + YT (kA) = (k&) | [g-1

+ HpA(kA) + pB(kA) - uA+B(kA)”R—lr

where

'Ili?A(kA) - uA(kA)Hf{—l»; e N, etc.,
k) + 1Py - 2Py 1201 = o
therefore

17508 + 7o 0ea) = PPy 12, <9 2w

(R was used in the above to represent the appropriate
covariance.)

Define

_A B . A+B 2
[T (xk8) + ¥y (k&) =y (kD) | |5-1-

<
I
e~ 8

k=1
Therefore, to accept the hypothesis that the actual black
box is linear and time invariant, itimuSt be that

2
Y 9me N.

N A

If y.? 9 me" N, ﬁhe conclusion is that the black box under
consideration cannot be modeled by the mathematical .
model  <:>. | |

The criterian can be interprefed pictorially in'the.

following figure



T (kA) + T (kA)

If§y
sions outside the e-sheath are compensated for by its

proximity to ?A(kA) + ?B(kA) at other times such that
Y £9 me” N, the hypothesis that the actual black box is

\5"’ )" ©
o,
]
8 .
€
» t
A 2A 3A .« o T*
A+B . . . .
(kA) is within the e-sheath to a degree that, at the
m time points at which it is checked, the sum of the excur-

linear is accepted.

Now ;eﬁuxning TO tne problem of identifying M, we have

1N A A F(T*-T) A

S I WhEnl, FESEN] = [ He TP (r)ar]u;
n=1 , T

that

7o (T*) =
- G .
.[IT* H eF(T*_T) uA(T)dT] ,




MODELING A PARTICULAR CLASS OF MULTIPLE INPUT *%
MULTIPLE OUTPUT BLACK BOXES WITH STOCHASTIC INTEGRAL EQUATIONS
*
Earl D. Eyman and Thomas Kerr
Department of Electrical Engineering
University of Iowa, Iowa City

ABSTRACT

In this paper, a method is given for obtaining a mathe-
matical model of a class of black boxes having multiple in-
puts and multiple outputs in terms of Ito stochastic integral
equations. This method is applicable to the class of black
boxes having ergodic correlation functions when there is zero

- applied input. The point of view adopted in this paper is

phenomenological in that it is desired that calculations made
using the mathematical model should be "close" to what is
actually observed at the output of the black box.

STATEMENT OF THE PROBLEM

Given a black box, as shown in Figure 1l:

_ \\j
1L [ . 1
~ BLACK 2
Y< T BOX [ ‘v
Figure 1

The black box has outputs l to p and deterministic in-
puts l to g If when the 1npu 8 the output Y has an
ergodlc correlatlon function matrlx, then it is desired to use
a mathematical model of the form ‘ ’

| t t t | .

X, = C + J F Xu‘du + (I) f G dBu + f MV (u) du , . (1)
o e} o '

Y. =HX +m, o (2)

ThlS work was partially supported by a NASA Grant NGR-OOl 090.

Presently at General Electric, Corporate Research & Develop-
ment Laboratories, Schenectady, New York.



E[C] = 0 , E[ccT] p P,

T .
\E[Bu] =0V u, E[Bth] = Q min (trs)r Q > Or“

as the model for the black box, where Y represents the p-
dimensional random vector output of the black box, V(t) is
the g-dimensional deterministic input of the black box, C is
a Gaussian random vector initial condition, is a vec-
tor Wiener process independent of C, and (I) f% G dBu is an
Ito stochastic integral. Equation 1 is a 11near Ito sto-
chastic integral equation. The Gaussian random vector ini-
tial condition C is completely characterlzed by its mean,
E[C] = 0, and its variance, E[CCT] = P. The Wiener process

{Bu e R is completely characterized by its mean vector, 7
E] Bu? = 0 V u, and its correlation function matrix, EI[B Bt]—
Q0 min (t,s). Essentially, the problem is to find the matrlx

parameter constants F, G, M, H, m, P, Q [in Appendix 4, it
is shown how to reduce the number of unknown matrices by one]
so that the solution of equations 1 and 2 satisfy the con-
ditions that:

(1) the mathematical model has the same output mean
vector as the black boxk, '

(ii) the
1

e mathematical model has the same output corre-
atic

n functicon matrix as the black box,

(iii) the output of the mathematical model has the same
type of sample functions (either continuous or
piecewise continuous) as the output of the black
box. [When the black box has piecewise continuous
sample functions, the Wiener process {8ylycy should
be replaced by a centered Poisson process and the
integral will still have meaning-as a stochastic
lntegral with all its desired properties (Anderson,
1966)1].

The above conditions (1), (ii), (iii) are the criteria of
"closeness" that were alluded to in the Abstract.

Overview of What is Done

A procedure is given for testing the actual black box
under consideration to determine whether the assumed form of
the mathematical model, equations 1 and 2, is acceptable.

This test is based on manipulating the problem into a hypo-
thesis testing situation, where the hypothesis is: "does the
black box behave in a manner corresponding to the mathematical
model of the particular form of equations 1 and 2?". A test
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procedure is formulated and a method is derived for determin-
ing, a priori, the number of trials, N, required for a cer-
tain confidence, o, in the conclusion of whether to accept or
reject the hypothesis. If the hypothesis is accepted, that
is, if it is found that equations 1 and 2 do adequately de-
scribe the behavior of the black box, then the methods of the
pseudo-inverse are employed to determine M. Prior to the
determination of M, the other matrix parameters are determin-
ed by the method of Bucy and Joseph (see Appendices 4 and 5)

with the input V(t) = 0. .

PROCEDURE AND DERIVATIONS

The solutions of a system of equations that are equiva-
lent to (1) and (2), which bear the same relationship that
(1") has to (1') in Appendix 4, are

t t

Xt = ¢(t,0) C + (I) J.@(t,'r)GodBT + J d(t,t)MV(t)dr ,
o o
. t t
Yt = He (t,0) C + (I) J H@(t,'r)GodBT + J He (t,t)MV{(t)dr ,
o o
where ¢(t,t) = eF (t=10) (see Appendix 1 for a pertinent dis-
cussion). For t = T, we have that
¥ ¥
* * * ) T %
Y(T ) = HO (T ,0)C + (I) J Ho (T ,T)GodsT + f HO (T ,t)MV(t)dr.

) o]

Since {¢(t,0)C + (I) fg o(t,t)G dBT}t is a Gauss-Markov pro-
cess (Jazwinski, 1970, p. 111) Becausé it is the solution of
the stochastic integral equation

t

t
X, =C+ J F X dt + (;) J G, dB._
o o

*

. * * N * *
we have that for fixed t =T , &(T ,0)C + (1) fg (T ,T)GOdBT

is a Gaussian random n-vector (recall that a Galussian procéss
is completely characterized by the first and second order dis-
tributions which are Gaussian and jointly Gaussian, respect-
ively). Since premultiglying the above by a constant H to ob-
tain H@(T*,O)C + (I) fg H(T",t)G_d8, just represents a linear
transformation from R® into RP, tBe result is still*a Gaussian
random p-vector. Adding the constant term fg HO (T",t)V(t)dr
to the above, for a specific V(-), to yield
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. , m

Y(T') = He (T ,0) C + (I) J H@(T*,T)GodBT + j He (T, )MV (1) dr,
o o

which, is, again, a Gaussian random p-vector.

Since M is an (n x g) constant matrix, let M=[m1!m2;.,.!mq],

where each mj is a column vector. For an input

VO (t) A [8,4,6,000.0,8::17 8(£-T"/2), where &, is the
Kronecker delta, Jle%J[Y‘S(T ??3 represent the corresponding
p-vector output. An expression for [YS(T*)]J using the sift-

ing property of the Dirac delta function is
*

J

% .
Ho (T ,T)MVGJ(T)dT

e (r*y13

¥
* : * .
He (T ,0) C + (I) JH@(T "T)GodBT +
o

* *

* T*
Ho (T ,T)ﬁ(T—i”)dT}mj

"

% .
H@(T*,O)c + (I) Ho (T ,7)G_dB + {

*
*

* ' * *
He{T ,0)C + (I) | HO(T ,7)GydB  + HO(T ,5-)m,.

O *+——3 00—+

(The use of the "impulse function" in this analysis is just
for convenience, later it will be replaced by any arbitrary,
easily generated function, without affecting the conclusions
of this section).

The mean of the impulse-excited output is
T
§ %7 * , % P
E[Y (T )~ = He(T ,0)E[C] + E{(I) Ho (T 'T)GOdBT} + HO (T ,——)mj.
-

Since E[C] = 0 (see Appendices 1 and 2) and the expectation of
the Ito integral is 0 (Varadhan, 1968, p. 129), we have that

. * T !
E[Y‘S(T’)k]J = H@(T*,%—)mj. R (4)

The covariance matrix is

*
T

* 1 * * * ‘ *
covivd(r )13 = J Ho (T ,u)GOG§¢T(T ,u)H du + He (T ,0)Po~ (T ,0)H ;
| ! 0" ,

this result is obtained by using the fact that C and 84 are
independent for t > 0 and other properties of the expectation



of the TIto integral and of the ‘Ito integral squared (Varad-
han, 1968, p. 129). Note that the covariance, Cov[Y(T¥*)]J,
is independent of j and is the same for any input.

With the aid of the above established results and the
material of the Appendices, the procedure for modeling a
black box having outputs and inputs will now be given in de-
tail. '

First, clamp the inputs V(t) = 0. If the output of the

-actual black box behaves in such a manner that the correlation

function is ergodic, evaluate the unknown matrices H, F, G_,
P, m as described in Appendix 5. Now everything is known In
the mathematical model, equations 1 and 2, except M. We must
first determine if the added term fg MV (t)dr validly repre-
sents the manner in which the input affects the acgtual black
box under discussion, (i.e., is linearity valid?). A test
procedure will now be given and a criterion set to determine
if this added input term is valid for the specific black box.
If the criterion is satisfied, a method is given for deter-

‘mining M from the same data used in the test.

The test is essentially a test to see if the actual black

- box behaves linearly and in a time invariant manner. If it

does, then superposition should apply.. For fixed jA apply

an input VAJ(t) = [slj,szj,...,a j]T uA(t), where u(t) is

an arbitrary scalar function of %1me. Apply this input sev-
eral times, say N times (it is this N, the number of trials
that will be determined a priori as will be shown below),

and record the corresponding N outputs 1[YA(t)]J, i = 1,...,p;
the record should extend from t = 0 to t = T where T* is
chosen for convenience. Divide the time interval [O,T*] into
equispaced points, so that A = T*/m. For .t = kA, for every
fixed kel[l,...,m], average the N outputs 1[YA(kA)]J to yield

Tt kay13 =

2=

N . . )
n£1 l[YA(kA)]IJI (i =1,2,...p).

Still for fixed j, apply an input

VBJ(t) = [61.,62-,...,6 -]T uB(t), where uB(t) is an ér— .
bitrary scalar fuﬂctlgn of time different from uA(t). Simi-
larly obtain :

. . N . . .
P w1 = 5 ) rPan1) o= 1,2,..0,p).
n=1

Finally, for the same fixed j, apply an input V(A+B)J(t) =
[61-,62j,...,6qj]T [uP(t) + uB(t)]. Then, again for every
fixéd k; average the outputs to obtain

B
%)
Y



N .
L

n=

Fe*Bay1d = L 1 vA*B (ka) 1] (i=1,...,p).

1

This same test procedure is followed for each of the g compon-
ents of the input.

If the black box were linear and the inputs entered in
a time-invariant manner, then {[YA(kA)]%}§=1, for a fixed k,
is a sample of size N from a Gaussian population where the
~population has a known variance (eq. 5) of

kA
coviv®(ka)1d = f Ho (kA,u)G_Goo" (k&,u)H du + Ho (ka,0)Pe” (ka,0)H ;
O
and unknown mean
| kA
E[Y* (k8)17 = [j H@(kA,T)uA(T)dT]mj,
o]

where mj is an unknown vector.

For t = kA, for any fixed k, the probability that the
sample mean [Y2(kA)]1J of a sample of size N is within e of
the population mean y®J is given by

1 - ] An 2 2 2
Pls| | (T (xa)13 - BI] - . _1<e”]
N (Cov [T (ka)19) L

L] 1Z]12<c%1 = 21]1Z]]2<Ne?) = a

where use has been 93de of the transformation Z = {[YA(kA)]j -
uAJ}{Cov[YA(kA)]}—l where Z is a p~dimensional_Gaussian
vector having p,(8) = (1/(2n)P/2 exp{-(1/2) ||| [} as a pro-
bability density function. Note that for t = kA, for any
fixed k, the problem transforms into the same problem in Z
with the same sample size N. Since [Y”(ka)]J was Gaussian,

7 is Gaussian since only the above linear transformation was
used.

Since the 'Z's are independent and have a Gaussian dis-
tribution, their squares have a X2 distribution and are also
independent. The sum of p indegendent random variables hav-
ing a x“ distribution is also x¢ distributed with p degrees
of freedom, XS' This distribution is well tabulated. From



the XZ table, it is possible to calculate, a priori, the
sample size N required so that we have o confidence that the
sample mean [a maximum likelihood, sufficient, unbiased,
"efficient", and "consistent" statistic for the population
mean (Hogg and Craig, 1270, p. 255)] is within ¢ of the true
population mean, where o and ¢ are set in advance. The num-
ber of degrees of freedom p is the number of outputs of the
black box. ’

Returning to test the linearity hypothesis, if the actual
- black box were linear, then

=A i Ay, 2 - 2 2
11T (k8) 17 = w21 = [[Z-uyl T2,
and we would have:
NE a1 + [P En1? - w171

< wa)1? - Pl + [ iBaka)d - B3] 1

e PPk - W BEBII | BT AT L By

P2 ke 17 - W3] 2e1ce®ns eten, [[WBT 4+ 0B - BT 1204,

1217 + 12k 17 - (9B (ka)179] ] 2-120¢2,

(R was used in the above to represent the appropriate covar-
iance). Define

m “. . . .
) P13 + [ Paa? - B3] )21,
=] .

Therefore, to accept the hypothesis that the actual black box
is linear and time invariant it must be that

Y < 9m52N for i=1,2,...,9.

If y > 9mezN, the conclusion is that the black box under con-
sideration cannot be modeled by the methods presented.

The criterion can be interpreted pictorially in (p + 1) -
dimensional Euclidean space in Figure 2. Let the solid line
represent [YA(ka)]J + [¥B(ka)]J in p-dimensional Euclidean
space. When ¢, o, and consequently N have been specified, an
¢ sheath is defined around the solid line in p-dimensional
Euclidean space as represented by the dashed lines in Figure 2.




6

[T2(ka) 17 + [T2(ka)])

A 2A  3A... T :
Figure 2
SA+B J o et :
If [Y (kA)]1- is within the e-sheath to a degree that, at

the m time points at which it is checked, the sum of the ex-
cursions outside the g~sheath are compensated for by its
proximigy to [YA(ka)1J + [¥B(ka)]I at other times such that

Y < 9me”N, the hypothesis that the actual black box is linear
is accepted.

Now returning to the problem of identifying M, we have

that
*
T

- . N : \ .
whrh1? = ¢ 1 rramrt el - o] et ol mann,.
n=1 ‘
: O

— * 3 ’
Now, [YZ:(T*)]J is a gyown p-vector, H is a known (p X n)_matrix,
and (T ,T /2) = eFT*/2 ig a known (n x n) matrix, and uA(t)
is a known deterministic scalar control; therefore,

*

_ T
[YA(T*)]J = [J H@(T*,T)uA(T)dT]mj
O

is of the form of the algebraic equation Y = Ax, where A is
a known (p x n) matrix, X is an unknown g-vector, and Y is a
known p-vector. We wish to solve the above equation of m.,
which corresponds to solving Y = Ax for x. If A were squAre
an? nonsingular, the solution would be x = A“lY._ Even when
A" does not exist, it is desirable to solve Y = Ax in some
approximate sense; the theory of the pseudo-inverse and how

to find it is given in Appendix II of Aoki (1967, pp. 318-

324). Let At represent the pseudo-inverse of the (p x n)
matrix A; then the solution x is x = AYY. The above analysis




cah be applied for each j(j = 1,...,q) so that each m,

(3 = 1,...,9) is determined. The (n x q) matrix M = {im, m% e My 1.
Y

has been identified. The problem of modeling a black box
a linear, constant coefficient, stochastic integral equation
has now been solved.
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o« APPENDIX 1: The argument for the zerd mean restriction follows. The
“ equations of the mathematical model

X

Yt H Xt

have the solutions
X = o(£,0) C + (I) ét 3(t,u) G 48

t t
c+/ qudg+(1)£ G a8,

_ t
Y, = He(t,0) C+ (D) é Ho(t,u) G dsu,

where ¢(t,u)=exp F(t-u), as can be verified by applying Ito's lemma to
each scalar component of the vector solution for X to obtain the original
stochastic integral equations (Bucy and Joseph,1969.,p.24) . To satisfy

the condition that the output of the black box have the same mean as the
output of the model requires that

m = E[Y(t)] = E[Y(t)] = H®(t,0) E[C], Vt.

Since m is a constant and &(t,0) is varying‘with time, in general, this
‘equation is satisfied if and only if m = 0 = E[C].

APPENDIX 2: The zero mean restriction can be removed by assuming a

* mathematical model of the same form except that Y, = H X¢ + d. Now
m = E[Y(t)] = E[Y(t)] = H®(t,0) E[C] + d,Vt is satisfied if and only if
m = d and E[C] = 0. This causes no added difficulty since the covariance
can be transformed, factored, and manipulated in the same way that the
correlation function is transformed, factored, and manipulated in Bucy
and Jospeh (1968, pp.25-26, 29-42). Using this approach with Y¢ = H X,
+ d, we have that the mathematical model and the black box have the same
mean vector and  -covariance function matrix; therefore, they have the
same correlation function.

APPENDIX 3: From the solution of the stochastic integral equation
mentioned in Appendix 1, from the unique properties of the Ito integral
(Varadhan, 1967-68, p.129) or Jazwinski, 1971,p.99) and the fact that
the black box is wide-sense stationary, the following equations are
derived which hold true for the problem of modeling the black box with
no inputs (Bucy and Joseph, 1968, pp.39-42). :

$55(@) = BRI-DT 66 (pI-F) T H
E[CCT] = E[X(t)XT(t)] = P, where FP + PF + Gocz =0,
WT(p) = H(pI-F)“1 G, where S§§(p) factors
PR ' into 85?(p) = WT(—p) W(p) (Please see Appendix 5d).

Appendix 4: If GQGT =G Gz,/then the system of equations used as a
mathematical model in this paper,

t t
1) X =C [FX du+ (D GdB

RO PR T e ARG ¢ S e B e EE e e An



&

E[C] = 0; E[cC] = P; E[8,] = 0,V t

E[8,6.]1 = Q min (£,8), Q20

.

where F, G, H, P, Q are the five unknown matrices, can be;replaced by
the equivalent system of equations :

. (lll) Xt

N _
@) Y =HX

E[c] = 0; Elcc’] = P; E[B)=0,vt

It

c+ /P FX du+ (D) /Fe ag
(o] u [ (o] u

Ty _ .
E[BtBs] = 1 min (t,S) ]

where F, Go’ H, P are only four unknown matrices. This replacemeht can
be done since the solution of the two X, stochastic integral equations
in both (1') and (1") are Gauss-Markov processes (Jazwinski,1970,p.79)and

. @8 Markov processes do not require specification of the entire family

of all finite dimensional distributions for a complete characterization;
knowledge of the transition probability denmsities of the form pX,t 1 y,s)
suffices. The solutions of the X, stochastic integral equatioms in amy
and (1") have transition probability density functions which satisfy the
forward Kolmogorov-or Fokker-Planck equations '
(Xt X ,t )

r v 4—‘\11
-7 37

a T [0 \ 1 /E___\ E_\Tl',n ~T iv o+l
= -GG IFXpstiX )] + stri(sp GGp T 16Q8 pULEIR,,

ot ) (o} o]
and
ap(X,t[X ,t ) '

o’ o’ 3T 1.8 8 T, T

respectively (Jazwinski,1970,p.130). If GoGz = GQG, these two Kolmogorov
equations are the same, so their solutions are the same; therefore, the’
Xt processes in (1') and (1") are the same process.

APPENDIX 5: The procedure for identifying the unknown matrices of (1"),
(2™ from measurements made at the output of a black box follows below.

_a. Obtain an extensive time record of ¥(t), the actual output of the

_black box. .

b. Process this data by time averaging to obtain the correlation
function matrix, Rv~(T), and the mean, E[y(t)]. The only assumption on
the whole procedure’ is that the correlation function matrix is ergodic.
(However, this one assumption implies ergodicity of the mean and wide-
sense stationarity [Papoulis, 1965,p.329].)

c-i. Approximate this correlation function matrix in the t-domain by
an exponential series (Lang and Battin, 1956,p.381). Then take the
bilateral Laplace transform of the approximating correlation function to
obtain the power spectral density matrix, S§§(p). Since the approximating

t
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'(F,Go) is completely controllable, is known: P

correlation function consists of exponential terms, the power spectral
density matrix has elements that are rational functions (i.e., ratios
of polynomials).

~ c~ii., An alternate procedure to c-i. Instead of approximating in
the t1-domain, first obtain the power spectral density matrix by taking
the bilateral Laplace transform of the correlation function matrix, then
obtain an approximation for the elements of the matrix in terms of
rational functions by any one of the four methods mentioned in
Solodovnikov, Chapter V; Methods of Approximation of Spectral Den51ty

Functions by Meromorphic Functions, 1960.

d. Since every power spectral density matrix which has elements that
are ratios of polynomials satisfies the sufficient conditions for applylng
the matrlx factorlzat on procedure (Kerr,1971,p.330-333), factor S~~(p)
into S¥ ~(p) = Wt (-p) W(p), where W(p) is analytic in p in Re(p) > 8 This
factorX%atlon can be accomplished by either of the two methods presented
by Youla (1961, method I is theorem 2, method II is theorem 3) or by the
method of Davis (1963,pp. 296-305). Slnce Ss5(p) is known, wr (p) is
known. Let WI(p) = H(pI—F)'lGO, where the tt¥iple (H,F Go) is to be -
determined. ’

e. A triple (H,F,G,) [not necessarily unique] can be found which

satisfies Wi(p) = H(pT—F) G,s and suck that (H,F) is observable, (F,G)

is controllable, and F is stable, either by the methods of obtaining a
realization from a "transfer function'" as mentioned in Kalman(1963,p.152)
or by an original method in Kerr (1971, p.255). T
f. Once (H,F,G,) is known, the solution of 0 = FP + PF + G Go, where
[ Ft 6, rT FTt g¢

{Anderson, 1367,p.173).

g. From Appendix 2, we have that E[¥(t)] = m; therefore the matrices
H, ¥, G,, P, m in the mathematical model of the black box have all been
determined. The modeling problem for the black box without inputs is
solved. '

APPENDIX 6: From the method of Appendix 5 and from the main method of
this paper, mathematical models in terms of Ito stochastic integrals
were obtained. Eventually, these mathematical models will be used to
make computations which represent what actually occurs at the outputs
of the black box. Digital computers do not normally perform Ito
integrations, but this can be resolved by using the methods of Wong
and Zakai which relate Ito integrals to ordinary integrals (1965 [l],
p. 1560 and 1965 [2], p. 213).

R —



