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Abstract

A new form of the Cramer-Rao inequality for the estimator of
vector parameter constants is presented. For a scalar Cramer-Rao
inequality of the form of the one derived, the so-called Cramer-Rao
lower bound does not have a denominator that must be maximized
over all components of some matrix as was required in previous multi-
varfate derivations.

For a certain class of maximum lkelthood parameter estimation
problems, the Cramer-Rao lower bound is the error of estimation.
For this class of problems, a denominator having the form exhibited
by this lower bound involves a trace and i3 shown to be a norm squared
in a Hilbert space. Minimizing the error of estimation is shown to be
equivalent to maximizing the norm in a Hilbert space while constrained
to a specifi¢c compact set which represents practical constraints. The
specification of input probing functions to aid in the estimation of input
gain parameters in a linear dynamical system with system process
notsc is considered as a special case of this class of maximum likeli-
hood parameter estimation problems. The probing functions are bang-
bang.

1. Introduction

Previous derivations of a multivariate
Cramer-Rao inequality either involved obtain-
ing the denominator of the lower bound by max-
imizing over all components of some matrix
[11,[2], or gave a lower bound in the positive
semi-definite matrix sense [3](which is only a
partial ordering*), The present derivation does
not involve a maximization and yields a scalar
inequality which serves as a total ordering.

The particularly nice form of the new
Cramer-Rao inequalit‘}‘f“‘is applied to a specific
class of maximum likelihood problems to show
that the problem of minimizing the estimation
error is equivalent to maximizing the norm in a
Hilbert space.

2. The Vector Cramer-Rao Inequality

The new multivariate Cramer-Rao inequality

is derived in Theorem 1. The proof parallels a
proof in Nahi [4] before departing, except that
vector rather than scalar arguments are used.
Theorem 1 (Derivation of New Multivariate
Cramer-Rao Inequality): Let g be the n-vector
parameter constant that is being estimated. Let
v(t) be the gq-vector noise (random process) that
affects the measurements. Let y(t) be the

“Standard mathenatical jargon, used for conciseness to represent a

universally accepted definition, are underscored when first used in
this paper.
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measurement p-vector. Let the function f relate
the measurements to the parameters and noises:

y(t) = £[6, v(t)] (i=k,...,k) (1)

Let

b (6) 2E[816] = 0+ 9 (6) (@)

where §i§ an estimate of 9, ¢(6)is the bias of the
estimate g, and

we) - [, 8o @le)ad (®)

A lower bound on the error of estimation is

2 taaT l(gi)ré(a)lz
trace E{(E'E) (a-a) lﬁ} e E{[(%a-)'rlnp(glg)]{(%g-)lnp(z[@)] (4)

Proof: For any probability density function (pdf),
fg,p(élg)dé= 1 (5)

Differentiating Eq. (5) with respect to g yields:

3T e va 0
,’:‘(a—é) p(-e—-l—e—) d_e. = (ixn) (6)
8
Post-multiplying both sides by g yields:
f(%g)TD(éle)edé=o-e = 0 (n
é =T 7T 77 (1xa)(ax1) (1x1)
Differentiating Eq. (3) yields:
a T - a T -~ - ~
(’aﬁ) v(8) -fg_ [(g—e-) P (e!e)] 6d8 (8)

subtracting Eq. (7) from Eq. (8) yields:
(-;‘—9)"'3@ - [i[(&) e 0] G0 ad 3 {; [(%‘)p<éle)](ﬁi-ei)d§ (9)
- -7 1=1 °—

Taking absolute values of both sides of Eq. (9)
and squaring yields:




I(S—Q)Té@l !anl [ [g% p(@18)) G-e) a8 > (10)

n
Applying the inequality 12 2n-l 2
to Eq. (10) yields: l ;1 4 l é |a‘il

|G el -
Applying the Cauchy-Schwarz inequality for inte-
grals n times yields:
[(—%)Tg(g)‘z < 2"‘1;\:1“& [aie‘, p G191 6,-8, I\p(@10) dé |2
Vp@1e)

et B2 [, i o roteinad] - (12)

2“‘1:‘2; | [3[% oei0)] G;-epad|* (11)
= 1

The inequality is all the more true for

18 Taten® « 2 (}:L[ p@in)? 557 _)( > [ o*p@l0ad) (13)

or, equivalently,
I(gz)"',;(gn?‘ zn—l(g -[g[%*_ pite))’ p(els) ) {trace Ef(e-B)e-B) l_J} (14)
Performing a division yields

‘(1)T°‘°)|z
O (T (N ey (15)

trace E [(g-6)9-9) |o] >

Eq. (15) is one form of the Cramer-Rao inequal-
ity. Now let

W=y ), y (), v T (16)

The denommator of Eq. (15) will be converted
from p(:"g)‘to p(W|g), one which does not depend
upon the fo of the estimator. Let the joint con-
ditional density function of the observation vector
W be denoted by p(W|g).

Transform the p+ k dimensional vector W
into a p+ k dimensional vector Z, where
Z =2 (W) (17)

and
W= *(2) (18)

are assumed to exist. Under the above condition
we have

o (zlo) =pW-rr@ls) -| aet { ) T @} (19)

where the determinant enclosed by absolute value
signs is the Jacobian of transformation J. By the
Jacobian of fransformation, the following two
equations result:
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'Jl dz = dw (20)
5;[(%2’>TP(§‘2)] [(-a@).p(zle)]m daz.
- (G151 {) stwiori sl Y
_ Sw[(aa_g‘) pw16][(3) o 19)] fgrrey ¥ 1)

Let Z(W)be chosen so that the first n components
of Z(W) are e(W), that is,

zT(w) = (8% (w), £ (W) (22)
(ixn) (1 x(p-k-n))

where £(W)is a (p- k-n) - vector. Making use of
Eq. (22) yields:

p(z16) = p[6,£16] - p(B19) - p(£ld,0)  (23)

which upon differentiating with respect to g yields:
o) vzie) = [)" eér)] - picid0) + p(é10 [(55 ) pigid o) (24)

Substituting Eq. (24) into Eq. (21) [and using Eq.
(23)] yields:

,[ [(ae) P(W‘G)][( )p(WIO)] 7——1—)—dw

A, 6"y sire] 2 e o

5, [ et o] [Gg) o] abac | (25)

Now since

sg [(a) p (£18,0)] g = [0,0,...,0]  (26)

(Eq. (26) arises as a result of the fact that:

SE p(e18,8) d€ = 1) (27)



the last two integrals on the right side of Eq. (25)
are zero. The result is

f G otwial] (39 vt 18] gy 4w

|5y o[G0 " i10] ) wito] P22 e
== - - p(818)
5 . 0@l -
o (R et o) () pe1d o) s 5 2% (28)

1D

£

Since thelast integral on the right side of Eq. (28)
is always non-negative, the following result is
obtained:

i (G otw1] [3g) wiwio)]

1
pewey 1Y

p(£16.9)
p(816)

: f; (G ool (3g) oire]

b d¢ (29a)

Now since j p(_E_Ié,g)d_E_ = 1, Eq. (292) may be re-

written as >

Sw [(g‘_e:)T p(‘l”_e_)] [(%?) P(\_YIQ)] pTW_l—@ aw

=3 R 219] g

Now the Cramer-Rao inequality of Eq. (15) may be
expressed in terms of the measurements, W, as

Go) we)®

SV w1 |[Ga) e 9] ey 4w

(29v)

(30)

trace E[(e-8)8-0719] = ;TS I

It is sometimes convenient to re-express the de-
nominator of Eq. (30) By using

]

j’w [@‘)T P(W@] [(%g) b(wlgﬂ StwTsy AW

= S\y [@@) In p(W| g)] [(2—2—) Inp(W! g)] p(Wi8) dw
=[G motwiof[G) mocal]

The final result is Eq. (4).®

Remark: Notice that for n=1, Eq. (4) reduces to
the usual scalaﬁ Cramer-Rao inequality.

(31)

Remark: It is‘;\this specific lower bound of the
Cramer-Rao inequality, but the form of the de-
nominator that is of interest as a criterion for a
total ordering in the input probing function appli-

cation to be discussed in the remainder of this
paper. Any other representation of the Cramer-
Rao inequality that has the same lower bound de-
nominator, neglecting any constant factors, will
suffice and will yield results identical to the ‘ones
to be discussed, except that Eq. (46) and (51) will
change by that constant factor.
3.  An Application in Maximum Likelihood
Parameter Estimation

Consider the following problem. Suppose that
the vector of measurements W, defined in Eq. (16),
may be modeled as

\E=H(u)-£n_+z (32)

where m is the unknown vector parameter to be
estimafed, me RN, u is a vector or scalar deter-
ministic parameter which may be selected, ue U
C B, where U is a compact convex set which con-
tains the origin (the significance of this compact
convex set U will be apparent when practical im-
plementation constraints are consgidered in the
model), B is a Banach space, H(u) is a linear
function of u, and V is vector Gaussian measure-
ment noise.

E[V] =d (33) .

L=LT>0

I

Var [V] (34)
(Notice that the observations W are linearin the
parameter m and in the noise V.) The conditional
probability density function of the corresponding
Wgiven m is:

pWIm) - ¢ exp {-5 (W-Hw) - m-a] "L (W-H() - m-al} (35)

where c is the proper normalization constant. The
column vector that maximizes Eq. (35) is the maxi-
mum likelihood estimate m of m.

By differentiating Eq. (35) with respect to m,
setting the result equal to the null element of RN,

and solving for m, the following maximum likeli-
hood estimate is obtained:

m = [HT(u)L'lH(u)]'IHT(u)L‘l[\y -d]  (36)

Not}ce that _r'xi is an unbiased linear estimator since
E[m] = m «.d rris linear in W.

With this estimate é are associated all of the
advantages of a maximum likelihood estimate,
namely:

the maximum likelihood estimate is asymptoticall
unbiased {5, p 185] (the estimate of Eq. (36) is
strictly unbiased).

®

(i) when the observations, W, are linear in the parameter
and in the noise (as it is'in the present application),
then the maximum likelihood estimate is efficient

(1. e., it actually achieves the Cramer-Rao lower

bound) regardless of the length of the data {4, p 252].
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The Cramer-Rao lower bound for this appli-
cation will now be derived.

Theorem 2: For ¢(m) = 0 in Eq. (2)(i. e., Eq. (36)
s an unbiased linear estimator of m), or equiva-
lently

w(m) = m (37)
and W having the pdf of Eq. (35), the Cramer-Rao
inequality of Theorem 1, Eq.(4) becomes
2
° (38)

trace HT(u) L'1 H(u)

trace E i (m-r?!) {m - r;\)T ] n_:z 2
- - 7 2

Proof: Differentiating Eq. (37) with respect to m

yields: |
('ZE_)TQ("_“_)=1+1+...+I=n (39)

hence the numerator of Eq. (4) is
K':Tn;)"’—“—‘—“ ent (40)

Taking the natural logarithm of Eq. (35) yields:
(41)

np (Wim) - tnc -3 (W - Hw-m - LW - Bm - g)

Differentiating both sides of Eq. (41) with respect
to m yields:

(G mp @im - 6T L - Hw) meg) (42)

Applying the following two equalities as lemmas

(1) xF HH'y trace H® xy H (43)

(2) E[xT HHTy] trace HIE [xyT] H (44)

yields:
¢ [ow) e sin] [ v se]

- trace H () L™ 53{\1/ -H(u) m - d] [W - H(u) - _nl-gJTtL'lﬂ(u)

= trace HT(:;%“)LL" H(u) (45)

which is the denominator of Eq. (38). The final
result of Eq. (38) is obtained by substituting Eq.
(45) and Eq. (40) into Eq. (4).8

Since Eq. (36) is a2 maximum likelihood esti-
mate and the noise and parameter enter linearly
in Eq. (32), equality exists in Eq. (38) since the
Cramer-Rao lower bound is achieved. The error
of estimation is

2

n
46
2n-1 trace HT(u) L'l H({u) (46)

This error is minimized when ueU is chosen to
maximize

trace HT(u) 1 H(u) (47)
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4, Insights Into the Problem's Inner
Mathematical Structure

Observe from Theorem 1, Eq.(16), and Eq.
(32) that H(-) of Eq.(32) maps B into the space of
(p- kxn) constant matrices. The linear vector
space of (p- kxn) matrices having the inner pro-
duct

(A, C) 4 trace ATL-IC (48)
where L™} is positive definite, is a Hilbert space
[6, p.72]. Further assume that H(- ) is a contin-
uous linear map of B into the space of (prkxn)
matrices. Now

(1812 2 @), Hw) =trace HT@L THE)  (49)
and HH(u)H2 is maximized when |{H(u)|| is max-
imized.

The above mathematical structure will be
used to accomplish the following two objectives:

(i)  to establish that optimal probing functions exist for problems
having the structure of Eq.(32)-(34) using function space nmethods.

(1)

to determine the nature of the optimal probing functions.

The following Lemmas are arranged in the proper logical order to rigorously
accomplish the above two objectives. However, rather than reinvent the wheel,
references will be given for proofs to Lemmas representing well known re-
sults, the proofs to other Lemmas are sketched to give a feel for what level
of mathematical sophisitication and manipulation is used, while the proofs of
the remaining Lemmas are obvious, once the Lemma is correctly stated.

Lemma 1: |{H(u)}] is continuous in u, where

1 H(w) || =/(H(w), Hw)

Proof: ||- || is a continuous function and H(.)was-
assumed continuous and linear, hence the com-
posite function |[H(u){|2 Tl-[[oH(u) is continuous
in u since the composite of two continoous func-
tions is continuous.®

Lemma 2: ||H(-)]| is a convex functional,

Proof: For any uA,uBg Band ) ¢ FRl,_O <i<l1,
HEOW® + (1P = 1) + (-0EED)) <
Il [HEA + [1-A] @B = x|H@A ]+
(1-) ||H{uB) || by the linearity of H(-).m

Lemma 3: There exists a u* ¢UC B such that

max |[H: (w)|}=|Hu*)|l.
ueU

Proof: ||H(u)|| is upper semi-continuous in u since
it is all the more continuous in u. U was assumed
to be compact in the Banach space B, a normed
linear space. Lemma 3 holds since an upper
semi-continuous functional on a compact subset U
of a normed linear space B achieves a maximum
on U[6,p. 40]. Let u* denote the point where
||H(.)|] achieves this maximum.m

Corollary 1: In Lemma 3, if neither U ={g} nor
H(.) is identically the null function, then
[IHu*){| # 0.

Proof: Obvious.¥




Corollary 2: (Existence of optimal probing func-
tion): If neither U= {8} nor H(-) is identically
the null function, then there exists a u*e¢UcC B
such that 9 9
max |{H(u)||"= |{H(u*){| and
uel g
|[H(u*){|" #0.

Proof: The square of the norm is a maximum
where the norm is a maximum since the square is
a convex function.m

Now the convexity of U and the fact that it
contains the origin along with the convexity of
[{H(u)|| in u are used to establish that the maxi-
mum of ||{H(u}|| occurs on 3U, the boundary of U.

Lemma 4: For the conditions of Corollary 2, for
u* ¢ U, where U is compact and contains the
origin g, such that |{H(u)}|s|{H(u*){} for all ueU,
then u* e U.

Proof: By contradiction, assume that u* §{ 3U.
Since U is compact, U is closed and 3Uc U. By
the convexity of U, there exists a u** ¢3U and
2*¢e(0, 1) such that

u*=x*ur* o+ (1-1) g

where g is the null element of B. Now

@] = [HEGue )+ (1-Nell = [IHu**) 1| < x|[Hu*)] (¥)

(**)

Now A< 1

and |[H(u*)|] #0 implies that |[H(u**)||# 0 by
Corollary 2 and (*). Now from[(**), we have that
X H(u*) ] < |Hu*) i
s0 (*) becomes
HH@*)!) < [[H{u**)]] for u** ¢aUc U
which contradicts the result of Lemma 3, there-
fore u* ¢d3U.m

An intuitive geometric feel for the conclu-
sions of Lemma 3 and égamma 4 may be obtained
from Figure 1, where the convex functional
i/H(- )]l is depicted. The functional is seen to
achieve its maximum on the boundary of U.

Figure 2 illustrates another way to solve the
problem which makes use of the following lemma.

Lemma 5: The image of U under H(-), H[U], is

convex and compact since U is convex and compact.

Proof: Uses Lemma 2 and [7,p. 58].8
Finding the y*, the (p-k xn) constant matrix thatis
contained in H[U] which maximizes the norm

1etl= ,/trace (-)TL-l('),

then taking the pseudo-inverse Hf(y*) yields the
proper u*, i.e.,

u*= Hf(y*):H*(arg max |y |})

(50)
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to maximize the denominator hence minimize the
Cramer-Rao lower bound, the error of estimation
for the maximum likelihood estimate for this pro-
blem is

2
n
- 51)
2" L irace HT(u*) L 1 H(u*) (

By a possible decomposition of H into two con-
tinuous linear transformations such as
H(-) = (Hp o Hy)() (52)

and obtaining the corresponding adjoint operators
for Hy and Hp as Hy* and Ho*, respectively (e.g.,
see [6, ex.1-4, pp. 153-4]), the adjoint of H(-) is

HY() =(H,* o Hy9)() (53)

and the pseudo-inverse of H, used in calculating
u* in Eq. (50), is

Hf= {(Hlt o HZ‘) o [(H2 ° Hl) ° (Hl* ° Hz*)]_li Q] (54)

5. A Special Case: Input Probing
Function Specification

Consider the following continuous time Baye-
sian Model [8, p.28]. System (described by a
stochastic differential equation):

x(t) = Fx(t) + Gw + mu (t) (55)

where u(t) is a deterministic control function, each
component of u{t) being a member of L2[O,T] for
some finite T (a reasonable physical constraint,
since we will only be working with finite length
data records), w(t) is a zero mean Gaussian white
noise (the formal derivative of a Brownian motion

process), )
E{w(t)] = 0 for all t (56)

E[w(t) w (r)] =1 6(t-7) for all t, 7 (57)

x(0) is a random vector initial condition, indepen-
ent of w(t) for all t,

E[x(0)] =0 (58)

Var[x(0)] = P (59)

Measurement: .
z(t)=HI(t)+g

o
H, d are constant
{pxe) (px1)

where ¥, G, m, P,

{nxn) {nxr) (ax1) (oxn)
matrices. Eg.(55) is notation for a mathemati-
cally rigoruous stochastic integral equation where
integration with respect tothe white noise is re-
placed with an Ito integral in which integration is
with respect to the Brownian motion process. (An
apparently more general model than Eq. (55)-(60)
would consist of having Q instead of I in Eq. (57)
and G instead of G in Eq. (55). By factoring

T, T
GOQG0 into GG™,

T el
4




both models may be shown to be equivalent by
demonstrating that the same Fokker-Planck equa-
tion is obtained for both system models.)

Assume that ¥, G, H, P, and d are known
from previous calculations [9][10].

Objectives: (1) find m(i. e., obtain an estimate, m,
of m), the so-called input gain matrix. (2) specify
deterministic inputs u(t) to obtain the "most infor -
mation" about m in the estimate m. (A reasonable
physical constraint is that only bounded piece-
wise continuous inputs may be generated so that:

U = DJo, tk] n{u(f) € I?[O,tk] } ju(t) | =p for Oct:tk} (61)

where D[0, t)] is the function space of piecewise
continuous functions and

{u(t) ¢L2 [O,tk]l Ju(t)] s p for 0 st stk}

is the function space of functions bounded by

p(t, =T). U is the intersection of these two convex
sets and is also convex. U is also compact [11,
p. 44].) ' 9
B = L0, tk] (62)

and is both a Hilbert and a Banach space [12]. For
measurements taken at times ty,ts...,ty, this
problem satisfies the structure requirement of
Eq. (32) with

ty 7
H(u) = So H eF(tl T)\1(1)d-r (63)
t2
f, eF2 7)) dr
=g
50 H eF(t‘\ T)u(-r)dr
C -
v |mf, HeFM Tl a o 1 eMixo) s d (64)
‘ -]
(I)S Heft2rlg g B, + H eM2x(0) + d
B N
n Sok HeFU g a s, 1 eMhx(o) 4
- —
LRI K] 1 (G
E[V] = [dTndT,... 1 d ]T (65)
Var[V] = | Ryy (o) Ryy (t,.t)) Ry (tp 1))+« - Ryy {t,.t,) | (66)
Ryy {t;,ty)  Ryy (o) Ryy {14,8,)
Ryy (!3.11) Ryy (ts.tz) Ryy (o)
RyY (tt)) " Ryy (o)

Now it will be shown that H(-) satisfies all of
the properties that were assumed in the last sec-
tion (i. e., linear and continuous in u).

o e
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Lemma 6: H{-) of Eq. (63) is a linear mapping.
Proof: For any uf, uB ¢ L2 [0, t, ], for any o, g
¢ IR, it may be seen that H(a u® + g uB) =

o H(uA) + BH (uB) by using Eq.(63), the linearity
of integration and the additivity and scalar multi-
plication property of matrices.

Lemma T7: H(-) of Eq.(63) is continuous in u.
Proof: _ L2[0,t)] is a metric space with d(x,y) =
{(x-y, x-y). Since everg metric space is first
countable [14, p. 102], L4[0,t,] is first countable.
Now {up{L. u (strongly) implies that {up}—-u
(weakly) [6,p127]. In a Hilbert space, {up}—=u

(weakly), if and only if (up, y) 2= (T, y)2 as
n~w for each y ¢ L2 [0, ] [15,p. 111]. Therefore,
we have that H(up)—H(U) as n-w by taking the
limit of each element of the matrix H(-) and apply-
ing it to each partitioned row of Eq. (63). Since
this sequential continuity implies continuity in a
first countable space [7,p. 44], H(-) is continuous.m
With these properties of H(-) established and U
compact and convex, the conclusions of the pre-
vious section hold. Specifically, Eq.(36) is the
maximum likelihood estimate of m in Eq. (55) The
error of estimation is given in Eq. (51) and the in-
put probing function that yields the most informa-
tion about m is given by Eq. (50). The probing
function falls on the boundary of piecewise con-
tinuous functions bounded by p, hence the u* that
maximizes the norm-squared is bang-bang. This
norm squared is

trace H'(0) 1 M)
(N T T T )
.So“ Sok{ wx 3 trace {eF - 1dyT( Y m,l!.mi-s)(1(,)-1(r-«“,)]{l(a)-us-q)]}] ulrJulsKrds
(67a)
te tx
=§, §, K@,s)urw(skrds (67b)

where K(r, s) is the scalar kernel that is contained
within the furthest brackets in Eq. (67a), and 1(-)
is the unit step function.

Conjecture: For F with all eigenvalues real and
negative and (H, F) observable and (F, G) control-
lable, u* has at most (n-1) switchings in each of
the intervals (o,t1), (t1,t2), (tg,t3),..., (tk-1,tk)
or at most k- (n-1) switchings total on (o, ty).
(Paralleling the usual result in time optimal bang-
bang control. )

Comment: This conjecture in consistent with a
first order example in [4, p. 264] where the u* was
constant, p, but (n-1)=(1-1)=0 switchings!

Since the optimum input probing function (opti-
mum in the sense that it minimizes the error of
estimation associated with the maximum likeli-
hood estimator of m) is bang-bang, the magni-
tude of u* is known to be p, and all that must be
determined for a complete specification are the
scalar switching times. Hence, the problem of
specifying an infinite dimensional general probing




“he
in-
1@-  #

>bing

function has been reduced to determining a finite
number of scalar switching times.

One may also be interested in selecting the
times at which measurements are taken (t1, t3,..
., tx), a choice which should be based upon Egq.
(sﬁ) which reflects the correlation times of the

noise.

There have been other treatments of optimal
probing function specification for more general
problems [3],[4], [13],[16] but the general problem
does not have this much nice mathematical struc-
ture. Most of the previous emphasis has been on
constrained energy of the input function; while
what is presented here is constrained magnitude
of control on a finite time interval, but\thé ettergy
is also constrained. References [3], [13] and [16]
have extensive bibliographies of the area.

6. Conclusion

A new form of the Cramer-Rao inequality
was presented. It was shown that this version of
the inequality has a lower bound that is particu-
larly convenient since the denominator is the
norm-squared in a Hilbert space of constant ma-
trices. This allows the exploitation of the large
body of knowledge on Hilbert spaces that has been
accumulated by mathematicians. This lower bound
is the error of estimation for a class of maximum
likelihood parameter estimation problems. The
underlying mathematical structure and the method
of solution is detailed for this class of problems.
The problem of optimal bounded input probing
function selection for identifying input gain matrices
in noisy linear systems is shown to be of this spe-
cial class.

The author gratefully acknowledges a helpful
discussion with Dr. Theodore Bick of Union College,
Schenectady, N. Y.
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Figure 1 Existence of Optimal Probing Function
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Figure 2 Spaces and Mappings Used in Finding
u* to Maximize |[H(u)|l
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