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1. Introduction

while reformulations of Sequential
Probability Ratio Tests (SPRT) and Generalized
Likelihood Ratio (GLR) tests have been used
(at least for initial investigations) within
the last ten years for failure detection and

other event or incident detection
applications, there appear to be several
theoretical and implementation problems

underlying SPRT and GLR for these applications
that have yet to Dbe resolved. Somewhat
suprisingly, questions and caveats pertaining
to some of these very problems were first
raised in the preceeding decade by even
earlier investigators as they grappled with
the fundamental assumptions. For this reason,
results and criticisms are depicted here
within a more expansive historical context
than that offered by considering just the last
decade. A perspective on the current status
of SPRT and GLR for failure and event
detection is also provided herein.

Section 2 provides an overview of
unresolved issues in SPRT and Section 3
provides an examination of unresolved issues
in GLR development for failure detection.
Highlightes of several problems are touched
upon in this paper. Unresolved issues
relating to other failure detection techniques
are critically examined in Section 4 while
Section 5 constructively provides new results
for one failure detection approach.

2. Loose—Ends in Adapting SPRT To Failure
Detection

One of the earliest
detecting soft failures in navigation systems
[3] used Wald's Sequential Probability
Likelihood Ratio Test (SPRT) [4]. While there
was some initial controversy 51, [6]
(surprisingly not over the assumption of
independent measurements, where such
difficulties are elaborated upon on p. 96 of
£131), it was generally agreed [7] that there
was no better approach available at that time
to this particularly difficult problem. Later
approaches to detecting the same type of
navigation system gyro and accelerometer
failures [8], [9] also sought to use
modification of the SPRT.

approaches to

Fairly obvious objections to the use of
SPRT in failure detection are that:

® The SPRT is not really appropriate for
detecting transitions from one
underlying system mode (such as
non-failure) to a second mode (such as
a failure occuring) during a trial (or
measurement sampling interval) since
the rigorous foundation of SPRT
(C[13]), [14]) is strictly as a binary
hypothesis test using an upper and
lower decision  threshold to only\
describe which of the two situations'
has persisted since test inception, as
indicated by the test statistic going

above the upper threshold or dipping
below the lower threshold. There are

80 many aspects to the type,
magnitude, and time of failure that
can occur in applications involving

dynamic systems that the underlying
hypotheses are clearly not just simple
binary, but mixed.

The modifications of SPRT to
accomodate detection of failures as
mode changes are widely admitted to be
mere attempts to come up with useful
contrivances that may work acceptably
(e.g.. in [8] when a no-failure
decision is declared, the SPRT test
statistic is immediately reset back to
the neutral midpoint between the two
thresholds, where, in effect, no
decision has been arrived at but
merely more data is to be collected to
facilitate a later decision). This
mechanization obviously alters the
random decision times of the SPRT as
an otherwise optimal decision test as
it was originally conceived of and
justified by Wald [4] (and Selin
[13]). Theoretical justification for
the recent modifications are yet to be
supplied.

The test offered in [8] must have a
priori knowledge provided/specified of
whether magnitude of failure being
investigated is "large" or "amall" in
order to provide unanbiguous test
resolution. That SPRT approaches
require such assumptions (as prior
knowledge of failure magnitude) during
attempts to apply SPRT in situations
possessing unknown parameters is
agreed upon by a rigorous statistical
route, as reported on p. 102 of [13].

The use of initiating
[9] prior to
calculations

"triggers" in
commencing full SPRT
(analogous to use of a

trigger to set-off a bistable
multivibrator) introduces obvious
complications of dual decision

threshold determination/specification
for both the trigger and the
subsequent trailing-window SPRT
decisions that are consequently
cross-correlated to it. No such issue
is addressed in [9] of how to properly
specify dual cross-coupled decision
thresholds for both the SPRT and its
leading trigger test.

Loose-Ends in GLR Development

While Generalized Likelihood Ratios (GL
(where
parameters are utilized within
ratios in lien of the
unknown) are
navenport and Root [10].
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[11] to
techniques in
resolving closely
background of known arbitrary
Gaussian noise or Gaussian
However, Root [11] obtained explicit criteria
that could be applied to indicate conditions
under which one could reasonably expect to not
be able to resolve two known signals Tof
unknown amplitudes and parameters) and
additionally pointed out a difficulty of using
GLR for this purpose. Selin [12] found that
some of the unknown parameters (such as
unknown relative carrier phase) must also be
estimated in order to maximize the a
osteriori probability in the estimation of
two similar signals in white Gaussian noise.
Selin further identified four standard caveats
(p. 106 of [13]) associated with the use of a

of GLR
problem of
either a
correlated
white noise.

investigate
the radar detection
spaced targets in

applicability

maximum likelihood estimate of the unknown
parameters in a likelihood ratio (as utilized
in GLR). McAulay and Denlinger [14] advocated

use of GLR in conjunction with a Kalman Filter
in decision-directed adaptive radar trackers
for air traffic control applications.
Finally, Stuller [15] defined an M-ary GLR
test that ostensibly overcame Root's original

objections [11] to GLR for this type of
application. ([15] alsc provides a limited
history of GLR developments for radar,

excepting no mention of [14],
eluded him.)
The use of GLR for failure

which possibly

detection was

pionec~ed by Willsky and Jones (161, [17]
using an identical  GLR formulation as
presented by McAulay and Denlinger [14].

While Willsky claims [p. 607,
last paragraph, 18] that GLR is the "optimum
decision rule for failure detection" and
McAulay and Denlinger claim [p. 229, 14] that
they present "an optimum maneuver detector" by
utilizing GLR, an explicit indication of what
the criterion of optimality is, or a
demonstration of optimality, or references to
where it is established have eluded this
author to date. similarly, in [p. 109,
paragraph following Eq. 21, 16] it is stated
that some simple reasoning yields the result
that the estimate (provided in the paper) is
precisely the optimal estimate given the
measurements, but  given no a riori
information on the covariance (i.e., initial
covariance being infinite). Only an anonymous
reviewer was cited in [p. 109, 16] for this

first column,

important conclusion without demonstration,
explanation, or indication of what the above
indicated "simple reasoning” required for

justification actually is. The real pity is
that other emergin approaches to event
detection as well as Erevious aggroachea are

unfalir st led somewhat b being measured

against GLR with its ublished "claims" of
optimality and Tclaims" of completed threshold

852, last paragraphl], [16, p. 112, last
paragraph], the reason given for having the
upper limit of

e < k-N (1)
in the constraint of Appendix A, Eq. A-1 was
to aveid observability problems. Any

observability problems were alleged (but never
previously or evidently subsequently
demonstrated or proven*) to be realized in the
non-invertibilty of C(k;e). However, the
single numerical example being common to [16].
[17], [18] has parameters in the model being

1 a 0 O
¢ = ; H=[10]: Q=
o1 0 0.003
A = time step (2)
which can be demonstrated to be completely
observable and completely stochastically

controllable by the Kalman rank test since the
observability and controllability grammians,
respectively, are of rank=2. Yet the N in the
upper limit of Eq. 1 for this two—-dimensional
example is taken in [16], [17], [41] to be

N=6 (3)

For an observable nth_order
discrete-time system, observability
in terms of the nonsingularity of the
observability matrix is theoretically
guaranteed to occur in at least n steps. For
the second order example of [16], [17], [41]
as summarized in Eq. 2, the nonsingularity of
Cc(k;e) should be achieved within an allotted
two steps if C(k;e) is actually directly
related to the observability of the systeml.
It is apparently somewhat contradicatory to
require use of N=6 for the totally observable
system as done in the example of f16], [171],
[41] when it should only require at most two
steps before the necessary c(k:e) is
invertible.

stationary
as gauged

The telescoping property of the
definition of C(k:8) (as Eq. 12 in [16],
Eq. 29 in [41], Eq. 46 in [17]) is wused in
establishing a means of recursively generating
C(k;o) as:

c(x;0)=GT (k;0)Vv-1(k)G(k:6)+C(k-1:0) (4)

In [17, eq. 56], the matrix inversion lemma is
applied to Eq. 4 to result in

specification/evaluation. Because of an
assortment of perceived inconsistences and
other apparently unsubstantiated GLR claims as
GLR relates to the failure and event detection
problem (e.qg., claimed but  apparently
unsubstantiated decision threshold determina-
tion), an itemized scrutiny of pertinent
issues has been prepared as [1], some of which
are previewed below.

INDICATED REQUIREMENT FOR A REAL-TIME
‘ PSEUDO-INYBRSE CALCULATION

In [18, p. 608, first sentence],y (41, p.

’
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¥ However [pp. 44-48, 12] does provide some
first steps in the direction of resolving
the observability issue, but it is done only
asymptotically for the more restrictive
time-invariant steady-state case (using
notatlon for G(k;©¢) Las defined in Egs. 16,
19, 23 of [41), Egs. 32, 37, 39 of [17],
Eqs. 10, A3 of [16]) that suppresses the
crucial dependence of the failure time 6, by
representing it as G(x) onlyl.

t otherwise . the unproven theoretical link to
. system ;-observability (as asserted in [16],
(181, (411).ie ‘suspect. :=af 3.1 Bt ;
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c-l(kre) = [6Tv-la+c(x-158337E7 "0 (5"

- c-l(k-1;e)-c-l(k-1;e)GT[Gé-l(iii;6)GT+v]‘1
agc-l(k-1;6) (5)

However in [17, p. 17, last sentence of
paragraph two], it ie asserted that the matrix
inversion lemma can be used to propagate the
psuedo-inverse recursively (in case all the
G(.;.) are not of full rank and the strict
inverse of C(k-l1;e) is not guaranteed to
exist). However, this assertion was never
proved nor referenced in [17], nor properly
qualified as being merely a conjecture.
Indeed, a counterexample to the property
asserted in [17] that the pseudo-inverse may
be recursively propagated via Eq. 5 is
available as

1 2 1 1 2
C(k-1:8) = ; ct(x-1;0)= —
2 4 25 | 2 4

(6)
G(kse) = Ip: V(k) = v-1l(x) = 1, (7)
which when used in Eq. 4 ylelds
2 2

C(k;e) = (8)
2 5

having a valid pseudo-inverse (which in this
case is the same as the inverse) being

1 5 =2
ct(x;e)=c~1l(x;0) = - (9)
6 |-2 2

However, the following erroneous result

il 1 B
ct(xie) =— (10)
30 {2 4

is obtained when the matrix inversion lemma is
utilized in an attempt to recursively generate
the pseudo~inverse®. More recent results [61]

describe how to reduce (or possibly avoid)
matrix inversions in a discrete time GLR
implementation by more circuitous recursive

computations.

Another recent application of the
generalized likelihood ration [71] to a system
of the same general form as considered in
(141, [16], [17], [41] 1is in detecting
"failures in the Italian power network"
{modeled in [71] with only a 4 state linear
system). [71] distinguishes between this
"different" GLR formulation and that of [16],

* Cautlonary counterexamples are offered in
[2] to prevent widespread reliance on an
improper definition of pseudoinverse as
occurs in [70], on p. 19, and to further
reveal current problems in correct numerical
approximation of the associated "condition
number” in a popular SVD computational
algorithm for pseudo-inverse calculation.

(171, [81] V' (‘hiot Using ¢.a, Kalman _£iltér/ !

rather: relying' ‘instead on ‘Bolving 4 Fredholm ’
integral " equation for the system weighting"
function' '(to " be 'used as optimal ' ‘linear
weightinge of the ’ineasurements
utilized in ' the 1likelihood ratio). However, -
the extremely ' important contribution
encountered in the landmark derivation of
Schweppe's likelihood ratio [72], (as clearly
identified on pp. 659-660 of [73]) 1is that the
solution of this difficult (if not
intractable) Fredholm equation can be avoided
entirely through recourse to an equivalent
tractably calculated Kalman filter. Thus, it
is revealed here that the "new" formulation of

the likelihood ratio is identical to those
previously presented in [14], [16], ([41], but
less tractably obtained.

on p. 92 of [84], attention is called to
the fact that the GLR is not a Uniformly Most
Powerful (UMP) test, while p. 96 of [84]

offers recognition that cases exist where use
of GLR can give bad results. That a maximum
likelihood estimate (MLE) is not necessarily
statistically consistent in general is
explicitly demonstrated in a counterexample on
p. 146 of [74]. Moreover, the difficulty
usually encountered in attempting to
demonstrate consistency of MLE's (as
specifically wused in identifying unknown
parameters of linear dynamical systems) is
conveyed in ([76], [77], [781]. Within the
theoretical formulations of the ideal or exact
GLR for failure detection (discussed in [16],
C17], C18], [41]), both the failure magnitude
(including possible a priori specified likely
"failure directions" or finite enumeration of
possible "failure modes" that could physically
occur for a particdlar system) and the
time-of-failure are obtained from MLE
estimators. These MLE's are subsequently
substituted back into the likelihood ratio to
serve in the role of the unknown parameters.
All alternative approximate implementations of
GLR (offered to data as [41], [16], (171,
(18], [37]), [41]) apparently avoid use of the
explicit exact MLE of failure time in order to
circumvent the impractical requirement that
would otherwise be present of having to

implement a bank-of-Kalman-filters whose
number grows linearly with time (C14,
following Fig. 34], [41, following Egq. 321,
(L7, p. 12], [18, following Eq. 45]). A new
but equivalent reformulation of the

calculation for exact GLR implementation [79]
is more efficient by only requiring a
logarithmic increase with time in the
computational burden, but obviously any
increase with time in the computational burden
is unacceptable for real-time applications
involving long run times or long monitoring
intervals.

time is
above GLR
exact GLR

Use of the exact MLE of failure
avoided completely in all of the
approaches for approximating the
test statistic in order to avoid the
requirement of neeeding a growing
bank~of-filters. Unfortunately, the
sufficient conditions (Item 6, p. 145 of [74])
that guarantee asymptotic efficiency of the
estimates therefore cannot be verified for
these approximate implementations since this
sufficient condition requires use of the exact

MLE of failure time [as needed to obtain
first, second, and third partials of the
underlying pdf. and to then seek to
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demonstrate that these partials are bounded by
integrable functions over (=00, 00)]. The
consistency of estimates supplied by the
practical approximate implementaitons of GLR

is therefore still an open question.

Bewildering or perhaps merely somewhat
anomalous agpects appear in four recent
applications of GLR [30], [311, [32], [59]
with regard to how the decision threshold is
used or, rather, not used in the GLR
implementation. However, [1] offers
constructive suggestions for GLR improvement
in both test statistic calculation and
decision threshold approximation. A Dbrief
survey of rigorously substantiated results
pertaining to both the ordinary likelihood
ratio and the GLR tests is presented in the
introduction to [69].

4. An Assortment of Perceived Loose-Ends

An extremely rigorous alternate approach
to detecting unexpected changes from a
prescribed time-series model is provided in
[19]; however, the theoretical properties that
are exploited in [19] are equivalent to
testing for whiteness of the residuals of a
Kalman filter. Even in the unfailed case. the
residuals are nominally corrupted or non-white
due to the practical computational constraint
in most engineering applications of only
allowing use of a reduced-order filter.
Alternate approaches to the failure detection
problem that don't critically rely on filter
residuals being white are available using the

theory of confidence regions as discussed in
[20]-[24]*, where the theory is tailored for a
specific inertial navigation systen

A complete statistical

application [25]-[29].
[24] to rigorously

analysis is offered in [23]

evaluate Pp and Ppp for the CR2 failure
detection approach. [87] exemplifies recent
additional experience of the anthor in
evaluating detection probabilities. Alternate
approaches to failure detection that are 225
confidence region-based are also surveyed in

[21]-[24]. Promising approaches for detecting
particular types of failures are offered in

(671, [68], [60].

Probability-of-false-alarm (Ppa) and
probability—of—correct-detection (pp) are two
well-known statistics that are at the heart of
all detection decisions and correspond to
performance evaluations of the probability of
making errors of the "first and second kind (a
and p)" as encountered in the terminology of
statistical hypothesis testing. However,
evaluations of these two descriptive
fundamental statistics are nonexistent for
most of the failure detection approaches
previously proposed (as surveyed in [18],
[23], [24]) and a noticable lack of rigor can
be observed to afflict many of the remainder
of those detection approaches that do get

¥ As discussed 1in [23)], the author's two
confidence region (CR2) approach can be used
to detect more general time-varying
failures, while (33] considers only
detectability conditions for time-invariant
systems. Recall that, in general, the
linearization of a nonlinear system is
‘time-varying (pp. 53, 54 of [43]) so failure

. detection algorithms that are compatible
. with ‘time-varying linear systems apparently
“should

"shoild be considered to be more practical,
“Py being more widely ‘applicable.

around to Five

evaluating Ppp
examples are cited below to point out specific

and Pp.

technical problems* in these earlier
evaluations of Ppp and Pp.

Example 1: on p. 745 of [58], the sums of
three triangularly distributed random
variables of =zero mean without unit variance
are taken to be Chi-square with 3
degrees-of-freedom, dispite the well-known
definition of Chi-square as only resulting

from the sums of squares of uncorrelated, zero
mean, unit variance, Gaussian.

Example 2: On p. 110 of [16], the full GLR is
Zsserted to be Chi-sguare distributed under no
failure; however, each of the individual
likelihood ratios 1(k,8) is known to be a
weighted Chi-square, and the nonlinear
operation of maximization to yield the full

GLR test statistic as
t(k)=max t(k,o) (11)

2]
does not preserve the property of being
Chi-square (where the maximizing @ is the
estimate of the time-of-failure and the
computational  burden corresponds to an
additional Kalman filter for each additional
candidate failure time considered). Please
see pp. 193-194 of [57] for analytic

verification that the maximization operation
alters the final pdf even if each individual
pdf were identical.

ambiguity

Example 3: Unfortunate notational

in Eﬁe definition and notational usage for
probability-of-false-alarm and for probabili-
ty-of-correct-detection in the 1978 failure
detection  application of [49], as  now
described. In Eg. 18 of [49], the probability-
of-false-alarm is defined to be ’

Ppa = Probability {Ipyl > Tplb=0} (12)

where

magnitude of the test statistic used
and is shown in Eg. 11 of [49] to be
Rayleigh distributed, based on prior
assumptions of measurement structure
(Egq. 1 of [49]) and constraints
inherent in an underlying parity
matrix V (as defined following Eg. 2
and in Eq. 3 of [491]).

A
|pN| -

e

a constant decision threshold that
should be specified a prior (based
on standard statistical considera-
tions characterizing the well-known

Tp

trade-off between making it small
enough to enforce an acceptably
large Pp:; yet, not so small as to

cause an intollerably large PFA)

¥ The need to sometimes resort to engineering
approximations, where warranted, for more
expediently tractable evaluation is in fact
greatly appreciated. However, the instances
cited herein seem to exceed being mere
approximations but appear instead to be
gross "hacking attempts”, unaccompanied by
the slightest hint or acknowledgement in the
cited reference of its first or subsequent
appearance that what was being presented was
not exact.
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b = magnitude of apparent sensor bias

- " ghift (as defined in Eq. 5 of [491
- as the failure to be detected).

Hence Eq. 12 above defines the probability of
the test statistic |py| exceeding the decision
threshold, when it is known that the magnitude
of the failure is zero (i.e., no failure has
occurred). Furthermore, in Eqg. 13 of [49],
the probability-of—correct—detectLon is
defined to be

Pp = Probability {I\ppl> /Tp} (13)

A minor objection is that both Ippl and
IpN| as used above (following the 1lead of
[49]) is unfortunate and confusing* notation
for the same entity being used as the common
underlying test statistic as:

py being used under conditions of no
failure (as stated in Eq. 4 of [49])

pr being used under conditions of failure
(as stated in Eq. 5 of [49])

and use of this notation involving p is to
represent parity residuals (as defined
following Eq. 2 of [49]), rather than
probabilities. A  blatant inconsistency

between Eq. 12 and 13 above (as repeated from
[49]) is that in Egq. 13, /Tp must be exceeded
py the test statistic; while in Egq. 12,
(/T3)%=Tp must be exceeded. Unfortunately,
this otherwise minor inconsistency between use
of Tp or J/Tp also carries over into the
further evaluations presented in Egs. 19, 39,
40 of [49] for explicit evaluation.

Another instance of an apparent oversight
(rendering most of the subsequent evaluation
results of [49] arguably useless) is that in
the extension from a consideration of the five
gensor case in Section III of [49] to a
consideration of the six sensor case treated

in Sectiom IV of [49], an evaluation of
probability—of-correct—detection for five (5)
sensors as
Pp = = f (x=8) £|p | (a) d (14)
= T= a
D T o leI a
is altered to correspond to the following
expression for six (6) sensors:
1] =
Pp = — J (1 + coss) £|p |(a)da (15)
* O N

corresponding exactly to Egs. 17 and 38 of
{49], respectively) where (from Egs. 15 and 16
of [49]) in the above

n-3
( n b2 + le|2 - Tp

n

¥ Adding to the confusion is the fact that the
distinction between occurrences of upper and
lower case p's in Ppp and Py, respectively,
is blurred in [49] due to the type face used
throughout.

and : P
O for . x<-1 jod
g = x for .. .rl<x<l (17)
1 for  1l<x
A " - St T ]
n = number of sensors being considered

or monitored for failure occurrence
in each case (i.e., n=5 or 6):

A
f|py| = probability distribution function

of the magnitude of the test
statistic in the unfailed case
(b=0).

The discrepancy being explicitly called out

here is between the integrands of Egs. 14 and
15 above (repeated from [49]) which appear to
exhibit unexplainable differences. Especially
disconcerting is the presence of the cosé§ term

in Eq. 15 (Eq. 38 of [49]) since, by the

definition of Eq. 16 (repeated from Eq. 15 of
[49])

coss = cos(cos=l{g(.)}) = g(.) (18)
as an obvious simplification, but, which
apparently cannot be physically justified as

requiring an arccos in the integrand of Eq. 14
for 5 sensors and none in the integrand of Eq.
15 for 6 sensors. Further discrepancies
between the mix-up between use of /T and Tp,
similar to occurrances already commented upon
above, are also evident in Section IV in Egs.
35 and 39 of [49].

Example 4: A significantly improved
computational reformulation of the GLR for
event detection is provided in [61]. However,
while acknowledging (in the last sentence in
the paragraph following Eg. 2.lla of [61]) the
need to specify the decision threshold
(corresponding to the role of Tp in_ Eq. 13,
above), there is no indication in [61] of how
it is to be set explicitly nor is a reference
offered where such setting is provided as
having already been worked out,

Example 5: Instead of offering rigorously
substantiated evaluations of the fundamental
statistical parameters Ppp and Pp underlying
any detection test, some researchers [18],
[37] have diverted attention away to other
quantities such as (p. 25 of [371):

e Probability of cross-detection (sic),

e Probability of wrong time-of-failure
indicated,

e Probability of time-to-detection (sic),

which they assert are even more important.
(Notable is that while definiing the
parameters that these quantities depend upon,
the decision threshold was left off even
though it appears explicitly in the
definition).

While a measure of "delay time for
failure detection" first appears explicitly on
p. 25 of [37] as a definition of "probability
of time to detect" Ppp), unfortunately mno
procedure is provided in [38] for evaluating
or approximating this probability. Similarly,
a definition of "probability of wrong time"
(Pyp) is also provided on the same page of
[3g3. without benefit of any evaluation
procedure. On p. 608 of [18] it is indicated

that for the Simplified Generalized Likelihood
Ratic (SGLR), the special case of GLR failure




detection (where the magnitude and type of
failure is perhaps unrealistically known a
priori as discussed in Eq. 47 of [18]), then
the expected time delay in detection c¢an be
calculated. However, explicit mention of
where that calculation has been performed is
wanting.

that a
failure

It is perhaps worth mentioning,
measure of the delay time for
detection is inherently available from a
rigorous evaluation of Pp. As can be seen
from the expression for the CR2 instantaneous
probability of correct detection (Egq. 49 of
[23]), that depends on the signal-to-noise
response of the system to a specific failure
and can also be seen from Eq. 9 of [23], as
the signal-to-noise ratio* (justified as Eq.
35 of [23]):

sNR(k) = /AT(x) P(x)1 (k) (19)

(with increasing X
the elapsing of time) then
the probability-of-detection, which is a
monotonely increasing function of SNR,
increases accordingly. 1In an application [23]
of detecting uncompensated ramp
gyro-drift-rate as a failure, the ramp is
initally small, but grows with time until it
is sufficiently large to be well-above the
packground noise as indicated in an evaluation
of the corresponding signal-to-noise ratio. A
plot ¢i the signal-to-noise ratio (SNR) wversus
time provides sufficient information to
determine when Pp as a function of BSNR will
reach a prescribed level. Scaling can also be
used to determine how the detecting time will
be altered by those same failure types of
greater or lesser magnitude.

becomes larger
corresponding to

on p. 676 of [39], it is stated that the
formulas of Rice for level-crossing problems
(as provided in Eq. 10.3.1 on p. 194 of [621],
[57]) can be used as an analytic technique to

compute estimates of the false alarm rate.
Use of the above mentioned formulas of Rice
(pre-1950) for standard level-crossing
problems involving Markov processes usually
indicate that an infinite number of
level-crossings are expected to occur in any
time interval (no matter how short) [55].

(See Section A, p. 304, of [63] for additional
elaboration.) A lead toward an appropriate
modification to allow a proper handling of
this problem from a practical point of view is
offered in [56]. An exception is also taken
here to the comment (on p. 677 of [39]) that
"when digital 1logic is wused in detection
schemes, analytic methods [for level-crossings
analysis] are rarely available in their
routine evaluation". While it is true that
such analytic methods are rarely available for
most failure detection schemes that have been
proposed, a particular digitally implemented
failure detection technique has been developed
for the Navy [27], [28] that does in fact
possess an analytically tractable underlying
level-crossing analysis [24].

The so-called model following approach,
pursued by Beard and Jones in [48] and [42],
respectively, requires that the failure
detector have the same mathematical structure

¥ In Eq. 19, d 1e the vector signal to be
detected and P is the covariance of the
effective noise background. 55
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as a Kalman filter (i.e.,
system model). However,
gains are chosen not to
square error of estimation,
optimal Kalman filter; but are chosen instead
to emphasize or enhance the estimates of the
failure mode states and to not necessarily
satisfy any other objectives such as
acceptably tracking the other important system
atates that necessitated the use of a Kalman
filter in the first place. The approach of
these two authors also makes use of a novel
decomposition* of the state space into the
controllable (observable) and uncontrollable
(unobservable) subspaces. This decomposition
is especially amenable to purely deterministic

incorporating a
in [43] the filter
minimize +the mean
as done in an

systems subject to failures, but some
questions relating to extent of applicability
are raised when these same concepts are

extended to apply to the failure detection of

systems having plant and measurement noises
(as are frequently encountered in most
navigation applications). The random
contribution of the effects of noises can defy
confinement of the failure response to the
controllable (observable) subspace as is
otherwise exploited to an advantage in the

case of failures in a purely deterministic
system.

Other researchers first indicated that
the standard reliability framework and
techniques were not general enough [34]-[36]

to accomodate rigorous analyses of the effects
of failure detection on the systems management
of the overall problem of control in dynamic
stochastic linear systems subject to failures
of the type characterized in [18]. However,
more recent 1980 results [38] use exactly the
same discrete-time Markov reliability
techniques [40] as were used by the author
[271, [22] in 1976 for the failure detection
portion of the same type of problem.

The previous
trigger decisions
later more sophisticated maximum
estimates subsequently utilized
detection applies to [47] also.
please notice that the
illustrated by simulation in [47] are those
that would correspond to a constant bias
occuring directly in the measurements, modeled

critisms about having
ecross-correlated with the
likelihood
in failure
Additionally,
only failures

as (continuous time analogue of Egq. 43 of
[181):
Type 1: y = Hx+v+vé(t-o) (20)

while practical avionics/marine navigation
systems are typically also vulnerable to gyro

and accelerometer bias-shifts corresponding to

a dynamic system model of the form (being a
continuous time analogue of Eq. 40 of [18])
as

Type 2: X = Fx+Gu + w+vs(t-o) (21)
which represents more of a challenge in trying
to extricate reasonable estimates of the
bias-shift. Caution is being extended here to
place in proper context the illustrative
examples offered in [47] as being

representative of only relatively benign Type

¥ The analytic methodology provided in [42],
_ [48)" for implementing the ' decomposition is
7" valld only for time-invgritnt"linear system

" inodelss !




1 systems (as designated in Eqs. 3, 4, 6 of
r47]) rather than the more likely Type 2
(designated in Eq. 40 of [18]) or a mix of
Type 1 and 2. The above notation and
designation are explained in f1sl.

The failure detection approach developed
in [45]-[47] is based on having to solve a Two
Point Boundary Value Problem (TPBVP), as
formulated by Friedland in 1966 [s11]. Since
most practical applications for navigation
systems seek real time indications of fallures
when they occur, the need to solve a TPBVP in
real time appears to be quite a computational
barrier. However, the approach of [45]1-[47]
proceeds by attempting an approximate solution
of this TPBVP via use of a Kalman filter.
Only scalar and two dimensional examples are
used to illustrate the performance of the
approach of [45]}-[47], rather than use of the
higher dimensional examples routinely
encountered in real navigation applications.

Certain TPBVP's can Dbe converted to
initial value problems (more ameanable to real
time solution) via the technique of Invariant
Imbedding. I1f the original problem is purely
linear, then Invariant Imbedding provides a
solution that is exact (pp. xi-xiii of [501)
rather than merely approximate, as occurs in
the nonlinear case. TPBVP's involving
Lyapunov and Riccati Equations (such as in
523, (53], and [54]) can be converted, if
necessary, to the associated 1linear equations
(of twice the dimension) [80] where Invariant
Imbedding could offer exact solutions as
initial value problems.

While it is in fact fairly unusual for a
Kalman filter to be used to solve a TPBVP as
done in [45]-[47], it is perhaps interesting
to note that an approach for deriving the
Kalman filter is via a TPBVP [81] (82, pp:
291-295] as has also been generalized for
deriving some decentralized filters (as
jllustrated in Section 2.3 of [83] with a
detailed view being offered in Appendix A of
[86]). An important example of a TPBVP
(involving both a Riccati equation to be
solved forward in time and a Lyapunov equation
to be solved backwards in time) is provided in
(53] for a navigation system application
having realistic dimensions.

Occassionally, the so-called sampling
approximation [64] is used as an approach to
obtain a close approximation to the
probability of false alarm over a time
interval consisting of N consecutive check
instants as (e.g., [65, p. D-91):

PpalN; Nplal-(1-Ppp )V (22)

where Ppp i instantaneous probability of false
alarm. However, it is demonstrated in [64]
using an analytically tractable level-crossing
formulation for a simplified representation of
a square-law detection device [66], that the
approximation of Eq. 22 provides an indicated
false alarm rate that 4is Dbetter (i.e.,
smaller) than is actually present ([64, p.

24]). A recent simulation approach for
evaluating Ppp is reported in [39].
5. New Results

The following discussion is offered to
aid those interested in implementing the Two
Confidence Region (CR2) approach of [21]-[24].

The following result is a response to the
charge of an anonymous reviewer of [24] that
the filter convariances would grow too quickly
with time in most applications to b& capable
of utilization in a failure detection
algorithm in the manner claimed for CR2 and
that use of a Kalman filter or a CR2 failure
detection algorithm would be useless for
detecting failures in a system whose linear
truth model is unstable. The reply follows
below.

The covariance values that are used in
the CR2 hypothesis test of [21]1-[24] are
provided in Eq. 11 of [24]. While Eg. 11 may
indeed result in covariance values that may
grow with time (if the failure modes being
monitored are modeled as random walks or
integrated Markovs or integrated random
walks), the covariances only grow to
appropriately reflect how the system was
modeled. Even growing covariances cause no
numerical problems in the calculation of the
CR2 test statistic, as can be conveniently
seen for the scalar case in Eq. 14 of [24],
where the covariances only appear in the
denominator. That growing covariances cause
no particular numerical problem in the
calculation of the decision threshold can be
conveniently seen for the scalar case through
a rearrangement of Eq. 16 of [24] as

1 JVPl(k)/Pz(k)

Ky (k)=b2 * (23)
= 1 +\Py (k)/Pa(k)

(where b, Pj, and P, are consistently defined
in [23), [24]) which remains bounded even if
P,(k) goes unbounded (and P;(k) always being
<Pa(k) since the covariance without using
measurements is greater than or equal to the
covariance making use of measurements).

The following two cases are more routine
and more likely to be encountered in an actual
failure detection applicationt,

e Covariances that do not grow, but with
initial uncertainty that is not
exceptionally large,

e Covariances that quickly die down even
if the initial covariances comprising
Pp are large.

The benign latter case is not a completely
hypothetical supposition since it is
frequently encountered in navigation error
models as Markov gyro drift-rates.

While Kalman filtering is applicable to
an unstable system to track well as long as
the system is observable and controllable (or
detectable and stabilizable as weaker more
generally met necessary and sufficient
conditions [85, pp. 82-83]), failure detection
in a unstable system is not a usual goal. The
big problem is the unstable system that is
going unbounded, not the soft failure of minor
consequence . There are no problems of
tracking or failure detection in a marginally
stable (oscillatory) system.

The fundamental consideration in

determining whether only large failures will
result in detections is the underlying
Signal-to-Noise-Ratio (SNR) .

For the failure




failure
linear system

detection application, the signal

consists of the response of the

to the Failure (scaled by the magnitude of
failure as discussed following Eq. 9 and in
Section III of [23]) while the corrupting

background noise consists of the effects of
measurements and process noises and to a very
small degree on the initial uncertainty. Only
if the SNR is small will detection be
difficult (due only to the application
environment), If the magnitude of measurement
and process noises are large, then a failure
of comparable magnitude will be required for
detection.

An expression is provided in Eq. 35 of
[23] for the multidimensional signal-to-noise
ratio (SNR) and Appendix A of [23] offers a
proof (i.e., Theorem 1) that the two
dimensional SNR is greater than or equal to
the maximum of the two associated scalar S5NRs
that don't account for any existing
cross-correlation between them. wWhile the
above mentioned SNR relationship is
demonstrably true, a proper appreciation for
the real benefit of using a two dimensional
CR2 test over two corresponding scalar CR2
tests can only be instilled after comparing
explicit gquantifications. To illustrate just

how much larger the two dimensional SNR
(associated with use of the two dimensional
CR2 test) is over what is offered by the
underlying SNRs of the corresponding two

scalar tests, consider the following example:

9 9 -9.6
d = s P = (24)

- 16 -9.6 16
Using this example, the two scalar SNRs are 3
and 4 units, respectively, while the two

dimensional SNR (repeated herein as Eqg. 19) is
14.86 units (being greater even than the sums
of the two scalar SNRs). For mnavigation
applications, use of a two dimensional CR2 is
most appropriate for monitoring for gyro
drift-rate or accelerometer degredations
beyond what is acceptable for the mission
(incurred as soft failures) in two-degree-of-
freedom gyros having Foters with two input
axes.
APPENDIX A: DIFFICULTIES OF SUGGESTED PARTIAL
GLR IMPLEMENTATION WITHOUT USE OF
MLE FAILURE TIME

While the rigorous implementation of GLR
over a sliding data window of fixed size (N+1)
corresponds to candidate failure times being
restricted to the time interval of k-N<eo<k, a
further narrowing of the candidate time
interval (as explained in last paragraph of
[41]) to

k-M < 0 < k-N (a-1)
(0<N<M) is made in [17, pp. 16, 171, [41, p.
852, last paragraph], [16, between Egs. 15 and
161, [18, p. 607, bottom of page]. The stated
purpose of the additional restriction, using N
on the right side of Eq. A~1 is imposed to
avoid problems with "failure observability and
false alarming”. It is _ further mentioned in
{17, p. 31] that an implementation alternative
is to utilize a Egrt1a1;~GLR algorithm* in
which the optimization to arrive at an
estimate of the time of failure is replaced by

¥ Also referred to by the term “fixed-lag
GLR". .

the explicit assumption that

ep(k) = k-M+1 (A-2)

without requiring any maximizations.

Use of Eq. A-2 or any estimate of 6 other
than the maximum likelihood estimate yields
only a pseudo-GLR test. While the version of
a pseudo-GLR test obtained by utilizing the
suggested Eq. A-2 is desirable from the point
of view of eliminating all the optimization
operations and confining the calculations to
just one Kalman filter, the fundamental
guestion of whether the resulting test
statistic is adequate or close enough to the
objective of an exact GLR test statistic
sufficient for practical engineering purposes
is not always answered in the affirmative (and
perhaps seldom answered in the affirmative) as
shown next.

Since the proposed partial GLR
uses an estimate of o(k) other
maximum likelihood failure time
problems can potentially arise. A numerical
example is now provided to illustrate one
problem., Consider the following maximization
problem:

algorithm
than the
estimate,

max {£f(e,Vv)}
e,v

(A-3)
where

£(e,v)

(1+462) - (v-206)2 (p-4a)

1 - 302 - v2 34ev (A-4Db)

and
k-M < 0 < k-N (a-5)
while v is arbitrary.

in
be

indicated
[141]) can

maximization
(following

The specific
Eq. 24 of [41]
abstracted as:

max{a(e) - bT(e,v)ble,v)} (A-6)
where

o the scalar a(e)>0 for all & under
consideration

(n-7)

o the scalar bT(s,v)b(e,v)>0 for all o,¥v

(A-8)

Maximization of the abstracted representation

of the problem above is achieved for yv=v
chosen such that

R(OJXJ 59_ (A-g)

Applying this general result to the specific
cost function of Eg. A-4a yields

v=20 = 0 or, equivalently, v = 26 (a-10)
and
max (£(e,v)} = max (1 + 62) (A-11)
0, Vv k~M<6 <k~N
v=20

té which value of ¢ at
true maximum liklihood
by maximizing the cost

S8

The conclusion as
time Xk should be the
failureg ‘time' estimate
function ‘of ‘Eq. ‘A-4 is

973



~

(k) = k-N (A=12)

by being the largest allowable value of the
constraint of Eq. A-5, yields a GLR of

2(k) = (1/2) max {(£(e,v)} = (1/2){1+(k-N)2))

0,V
(A-13)
Using the choice advocated in Eq. A-2 as the
failure time estimate to be used in an
implementation of the partial GLR algorithm,

yields a pseudo-GLR of

2

Lp(k)=(1/2)max{f(e,v)} =(1/2) {1+ (k-M+1) )
v o=k-M+1

(A-14)

To illustrate" more explictly how
different the resulting GLR test statistics of
Eq. A-13 at time k is from the resulting
pseudo-GLR test statistic of Eq. A-14 at time
k, use the values of

M =12, N =6 (A-15)

simple two
repeated in
quantification of
the GLR test

as advocated for the single
dimensional numerical examp?e
[161, (17], [411. For the
Eq. A-11 at say time=13,
statistic of Eq. A-13 is

£(13) = (1/2)(1 + (13-6)2} = 25

while the pseudo-GLR test statistic
A-14 is

(a-16)
of Eq.

lp(l3)=(l/2)(l + (13—12+1)2} = 2.5 (A-17)

a difference for this example and this check

timet of a factor of ten. A recent approach

for analyzing the performance of a moving

window detector is offered in [75].

REFERENCES

1. Kerr, T.H., "A Conservative View of the
GLR Failure and Event Detection Approach”,
submitted to IEEE Transactions on
Information Theory 1in 1982.

2. Kerr, T.H. "On the Proper . Computation of
the Matrix Pseudo-Inverse and Its Impact

in MVRO Filtering”, submitted to IEEE

Transactions on Aerospace and Electronic
Systems in 1982.

3. Newbold, P.M. and Ho, Y.-C., "Detection of
Changes in the Characteristics of A
Gauss-Markov Process", IEEE Transactions

on RAerospace and Electronic Systems, Vol.

AES-4, No. 5, pp. 707-718, Sept. 1968.

*~A deterministic example was selected here to
illustrate what is actually occurring during
the GLR maximization. In an actual
application the details of the evaluation
would be less transparent than the example
offered here since the maximization is
performed over a window of filter residuals
which differ markedly between and within
Monte Carlo runs, depending on where the
sliding window is currently located.

T with this

same example and parameters (for

time k=14), 1p(l4)=5 vice 1(14)=32.5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Wald, A., Sequential Analysis, John Wiley,

New York,:I;§7. il Sl it
\ ¥R A 7 182

Prabhu, K.P.S., ~ "Off the Detection of a

Sudden Change in Syetem Parameters”, IEEE

Transactions on - Information Theory
Corresp. pp. 497-500, July 1970.
v
Phatak, A.V., "Comments on 'On  the
Detection of a Sudden Change in System
Parameters'"”, IEEE Transactions on

Information Theory (Corresp.), p. 349, May
1971.

Prabhu, K.P.S., "Author's Reply", IEEE
Transactions on Information Theory
(corresp.), P. 249, May 1971.

Chien, T.T., and Adans, M.B., "A

Sequential Failure Detection Technique and

Its Application", IEEE Transactions on
Automatic Control, Vol., AC-2I, No. 5, PpP.
750-757, Oct. 1976.

Deckert, J.C., Desai, M.N., Deyst, J.J.
and willsky, A.S., "F-8 DFBW Sensor
Failure Identification Using Analytic
Redundancy", IEEE Transactions on
Automatic Control, Vol. AC-22, No. 5, pp.
795-803, Oct. 1977.

Davenport, W.B., Jr. and Root, W.L, An
Introduction to the Theor of Random

Signals and Noise, McGraw-Hill, “New York,

1958. .

Root, W.L., "Radar Resolution
Spaced Targets”, IRE
Military Electronics,

197-204, April 1962.

of Closely
Transactions on
vol. MIL-6, ©pp-.

Selin, I., "Estimation of the Relative
Delay of Two Similar Signals of Unknown
Phases in White Gaussian Noise", IEEE
Transactions on Information Theory, Vol.

IT-10, pp. 189-191, July 1964.

Selin, I., Detection Theory, Princeton
University Press, Princeton, §J 1965.

McAulay, R.J. and Denlinger, E., "A
Decision-Directed Adaptive Tracker", IEEE
Transactions on Aerospace and Electronic
Systems, vol. AES-9. No. 2, pp. 229-236,
March 1973.

Stuller, J.A., "Generalized Likelihood
Signal Resolution”, IEEE Transactions on
Information Theory, Vol. IT-21, No. 3, May

1975.

Willsky, A.S., and Jones, H.L., "A
Generalized Likelihood Ratio Approach to
Detection and Estimation of Jumps in
Linear Systems", IEEE Transactions on
Automatic Control, Vol. AC-21, No. 1, pp.
108-112, Feb. 1976.

Willsky, A.S5., and Jones, H.L., A

Generalized Likelihood Ratio Approach to

State Estimation in Linear Systems Subject
to

to Abrupt Changes, Report No. ESL-P-538,
M.I.T. Electronic Ssystems Laboratory,

Cambridge, MA, 1974.
willsky, A.S., "A survey of Design
Methods for Failure Detection in Dynamic




19.

20.

21.

22.

23.

24.

25,

26.

27.

28.

29.

30.

. Algorithms in the  Analysis
. Bystem Test Data

Systems", Vol. 12, pp-

601-611,

Automatica,
Nov. 1976.

Segan, and Sanderson, A.C., "Detecting
Change in a Time-Series", IEEE
Transactions on Information Theory, Vol.
iT-26, No. 2, pp. 249-255, March 1980.

J.

"A Two Ellipsoid Overlap Test
for Real-Time Failure Detection and
Isolation by confidence Regions",
Proceedings of the IEEE Conference on
Decision and Control, pp- 735-742, 1974.

"Real-Time Failure Detection: A
Nonlinear Optimization Problem that Yields
A Two-Ellipsoid Overlap Test", Journal of
Optimization Theory and Applications, vol.
3%, No. 4, pp. 509-535, August 1977.

Kerr, T.H.,

, "Failure Detection Aids for
Human Operator Decisions in Precision
Inertial Navigation System Complex™,
Proceedings of Symposium on A lications
of Decision Theory to ProElems of
Diagnosis and Repalr, sponsored by the
American Statistical Association,
Fairborn, Ohio, pp. 98-127, June 2-3,
1976.

a

, "Statistical Analysis of a Two
Ellipsoid Overlap Test for Real-~Time
Pailure Detection", IEEE Transactions on

Antomatic Control, Vol. AC-25, No. . PP.
762-773, Aug. 1980.

’ "False Alarm and Correct
Detection Probabilities over a Time

Interval for Restricted Classes of Failure
betection Algorithms", IEEE Transactions

on Information Theory, Vol. IT-20, No. 4,
pp. 619-631, July 1982.

Kerr, T.H., "Poseidon Improvement Studies:
Real Time Failure Detection in the
SINS/ESGM", TASC Report TR-418-2, June

1974 (Confidential).

, "Failure Detection in the SINS /ESGM
System", TASC Report TR-528-3-1, July 1975
(Confidential).

, "Improving ESGM Failure Detection
in the SINS/ESGM System (U)", TASC Report
TR-678-3-1, October 1976 (Confidential).

, "TASC Refinements of SINS/ESGM
Failure Detection Procedures", TASC slide
presentation sp-889-3-1, for Sperry
Systems Management, Feb. 1977.

’ "Modeling and Evaluating an
Empirical INS Difference Monitoring
Procedure Used To Sequence SSBN Navaid
Fixes", Navigation: Journal of the
Institute o

Navigation, Vol. 28, No. 4,
Winter 1981-1982,

wWillsky, A.8., Chow, E.Y., et
*pynamic Model-Based Techniques for
Detection of Incidents on Freeways",
Transactions on Automatic Control,
=25, No. 3, pp. , June 0.

al.,

the
1EEE
vol.

E:M., Medler, - Colie, and Kasper,
*Use  of Filtering and Smoothing
of Missile
%, 1 'and “validation of

Duiven,
J.F.'

L

-

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

975

Filter/Smoother Models",

in Advances in
the Theory and Technology of Applications

of HNonlinear Filters and Kalman Filters,

edited by C.T. Leondes, NATO Advisory
Group for Aerospace Research and
Development, AGARDograph Noordhoff
International Publishing, Leiden, 1981.
caglayan, A.K., and Lancraft, R.E., "An
Aircraft Sensor Fault Tolerant System",
NASA Contractor Report No. 165976 by Bolt
Beranek and Newman, Inc., Cambridge, MA,
April 1982.

Caglayan, A.K., Necessary and sufficient
conditions for detectability of Jjumps in
linear systems", IEEE Trans. Automat.
contr., Vol. AC-25, No. 4, pp. 833-834,
Aug. 1980,

Birdwell, J.D., and Athans, M., "On the
relationship between reliability and
linear quadratic optimal control", Proc.
conf. Decision and Control, New Orleans,
LA, pp. 129-134, 7-9 Dec. 1977.

Athans, M., "The role of operations
research in system theory and
applications”, Rep. LIDS~-R-922,
Massachusetts Institute of Technology, 28
June 1979.

Chizeck, H.J., and Willsky, A.S., "Towards
fault-tolerant optimal control", Proc.
conf. Decision and Control, New Orleans,
LA, pp. 19-20, 7-9 Dec. 1977.

Chow, E.Y., "Analytical studies of the

generalized likelihood ratio technique for

failure detection”, "M.S. thesis,
Massachusetts Institute of Technology,
Feb. 1976.

Harrison, J.V., Daly, K.C., and Gai, E.,

"Reliability and accuracy prediction for a
redundant strapdown navigator", Proc. AIAA

Guidance and Control Conf., Danvers, MA
pp. 403-413, 11-13 Augus. 1980.

Chan, Y.K. and Edsinger, R.W., "A
correlated random number generator and its
use to estimate false alarm rates of
airplane sensor failure detection
algorithms", IEEE Trans. Automat. Contr.,
Vol. AC-26, no. 3, pp. ©676-680, June
1981.

Shooman, M.L., Probalistic Reliability:
An  Engineering  Approach, New York:
McGraw-Hill, 1968.

Willsky, A.S., and Jones, H.L., "A

Generalized Likelihood Ratio Approach to
State Estimation in Linear Systems Subject
to Abrupt Changes", Proceedings of the
IEEE Conference on Decision and Control,
Phoenix, AX, November 1974.

Jones, H.L., "Failure Detection
Systems" Ph.D. Thesis,
Astonautics Dept., MIT,
T-608, August 1973.

in Linear
Aeronautics and
Draper Report No.

Schwargz, R.J., and Friedland, B., Linear
Systems, McGraw-Hill, New York, 1965.

Friedland,
Estimation

B., "Maximum-Likelihood
of a Process with Random



45'

46.

47.

48,

49.

50.

51.

52.

53.

54.

55.

56.

57.

Transitions (Failures)®, IEEE Transactions

on Automatia Control, Vol. AC-24, No. 6,
PP- Dec, 9.

Friedland, "Multidimensional
Maximum—Likelihood Fallure Detection and
Estimation", IEEE Transactions on
Automatic Control, Vol. AC-26, No. 2, pp.

- , ApYr 8l.
Friedland, B., and Grabousky, S.,

"Estimating Suddent Changes of Biases in
Linear Dynamic Systems", IEEE Transactions

on Automatic Control, Vol. AC-27, No. 1,
pPp. = Fe 2.

Friedland, B., "Maximum Likelihood Failure
Detection of Aircraft Flight Control
Sensors", Journal of Guidance, Control,
and Dynamics, Vol. 5, No. 5, pp. 498-503,
Sept.-Oct. 1982.

Beard, R.V., "Failure Accomodation in
Linear Systems Through
Self-Reorganization", Ph.D. Thesis No.

MTV-71-1, Aernautics and Astonautics Dept.
MIT, Feb. 1971.

Gai, E., Harrison, J.V., and Daly, K.C.,
"Failure Detection and Isolation
Performance of Two Redundant Sensor
Configurations", Proceedings of Position
Location and Navigat on Symposium [PLANS),
San Diego, CA, Pp. 122-131, 1978.

R., Imbeddin
Mathematics,

1973,

Casti, and Kalaba,
Methods in Applied
Addison-Wesley, Reading, Mass.

Je,

Friedland, B., and Bernstein, Ly,
"Estimation of the State of the Nonlinear
Process in the Presence of Nongaussian
Noise and Disturbances", Journal of the
Franklin Institute, Vol. 281, pp. 455-480,
June 1966.

Athans, M., "On the Determination of
Optimally Costly Measurement Strategies
for Linear Stochastic Systems",
Automatica, Vol. 8, pp. 397-412, 1972,

Kerr, T.H., "Modeling and Evaluating an
Empirical INS Difference Monitoring
Procedure Use to Sequence SSBN Navaid

Fixes", Navigation: Journal of the
Institute of Navigation, Vol. 28, No. 4,
Winter 1981-1982.,

Kwon, W.H., and Pearson, A.E., "Linear
Systems with Two~Point Boundary Lyapunov
and Riccati Equations", IEEE Transactions
on Automatic Control, VoI. AC- No.
April 1982,

McFadden, J.A., "On a Class of Gaussian
Processes for Which the Mean Rate of
Crossings is Infinite", Journal of the
Royal Statistical Society {B), pp-
339-502,71967. '——

Barbe, A., "A Measure of the Mean

Level-Crossing Activity of Stationary
Normal Processes", IEEE Transactions on
Information Theory, Vol. IT-22, No. 1, pp.
96-102, January 1976.

Papoulis, A., Probability, Random
Variables, and Stochastic Processes,
McGraw-Hill, New York, 1965.

58.

59.

60.

6l.

62

63.

64 .

65.

66 .

67.

68.

69.

79.

71.

Gai, E.G., and Adams, M.B., 'Dotermination'
of Failure Thresholds 4in .- 'Hybrid
Navigation®, 1EEE Tranaactiona on
Aeroogace and Electronlc Systems,

ot ] O. T ppo ’zz-’ss, OoV. 76-
Motyka, P.R., and Bell, J.W., "Failure
Detection and Isolating for Tactical

Alrcraft Using the Generalized Likelihood
Test", Proceedings of the IEEE 1980
National Aerospace  and Electronics
Conference (NAECON), Dayton, OH, May
1980.

Hertel, J.E., and Clark, R.N., "Instrument
Failure Detection in Partially Observable
Systems" IEEE Transactions on Aerospace
and Electronics Systems, Vol. AES-18, No.
3, pp. 310-317, May 1982.

Chang, C.B., and Dunn, K.P., "On the GLR
Detection and Estimation of Unexpected
Inputs in Linear Discrete Systems", IEEE
Transactions on Automatic Control, Vol.

AC-24, No. 3, pp. 499-500, June 1979.

Cramer, H,., and Leadbetter,
Stationary and Related Processes,
York, 1966.

M.R.,
New

Blake, I.F., and Lindsey,
"Level-Crossing Problems for Random
Processes"”, IEEE Transactions on

Information Theory, Vol. IT-9, No. 3, pPp.
395-315, May B

w.C.,

C.W. Helstrom, "The accuracy of
probability distributions computed by the
sampling approximation”, Westinghouse
Research Rep. 8-1259~R2, May 1956.

K.S. Tait, E.F. Toohey,
“Improved guidance
interim report",

Corporation, Tech.
1977 (Confidential).

and C.J. Vahlberg,
study results: 2nd
The Analytic Sciences
Rep. TR-836-2, Nov.

\

C.W. Helstrom,
Envelope Process"”,
pp. 139-140, Sept.

a Markov
Vol. IT-5,

"Two Notes on
IRE Trans.,
1959,

Talwar, P.P., and Gentle, J.E., "Detecting
a Scale sShift in a Random Sequence at an
Unknown Time Point", Applied Statistics,
pp. 301-304, Vol. 30, No. 3, 1981.

Hibey, J.L., "Performance

Differential Systems Incurring Abrupt

Random Changes" IEEE Transactions on

Automatic Control, Vol. AC-26, No. 2, pp.
, April 1981.

Analysis for

Kallenberg, W.C.M., Asymptotic Optimalit

of Likelihood Ratio TEEE&“";E_ExEQnenEIaE
Families, Mathematical Centre Tracts, No.
77, 1ISBN 90 6196 134 3, Amsterdam,
Netherlands, 1978.

Gelb, A (EQ.) Applied Optimal
Estimation, The M.I.&., Press, Cambridge,
MA, 1974.

Fiorina, M., and Maffezzoni, C., "A Direct

Approach to Jump Detection in Linear
Time-Invariant Systems with Application to

Power System Perturbation”, IEEE
Transactions on Automatic Control, Vol.
AC-24, No. 3, pp. 428-433, June 1979.




72.

73.

74.

75.

76.

717.

78.

79.

Van Trees, H.L., "Applications of State
variagble Techniques in Detection Theory”,
Proceedings of the IEEE, Vol. 58, No. 5,
pp. 653-669, May 1970.

Schweppe, F., "Evaluation of Likelihood
Functions for Gaussian Signals", IEEE

Transactions on Information Theory, Vol.
IT-11, pp. 61-70, January 1965.

patel, J.K., Kapadia, C.H., and Owen,
D.B., Handbook of Statistical
Distributions, Marcel Dekker, Inc., New
York, 1976.

Mao, Y-H., "The Detection Performance of. a
Modified Moving Window Detector", IEEE
Transactions on Aerospace and Electronic
Systems, Vol. AES—17, No. 3, pp. 392-400,
May 1981.

Lee, T.S. and Kozin, F., "Almost Sure

Asymptotic Likelihood Theory for Diffusion
Processes", J. of Appl. Prob., Vol. 14,
PP- 527-537, 1977.

Lee, T.S. and Kozin, F., "Consistency of
Maximum Likelihood Estimators for a Class
of piscrete Multivariate Time-Varying

Models", Proceedings of the 9th
International Conference on
Science, Honplulu, Hawaii,

1976.
Nakajima, F. and Kozin,
Characterization of Consistent
Estimators", IEEE Trans. on Autom. Contr.,
Vol. AC-24, No. 5, pp- 758-765, oOct.
1979.

F., "A

stalford, H., "A Computationally Efficient
GLR Algorithm for Detecting and Estimating

State Jumps in Linear Systems",
Proceedings of the IFAC Symposium on
Tdentification and System  Parameter

Estimation, pp. 827-832, 7-11 June 1982.

Systems

80.

8l1.

82.

83.

84.

85.

86.

87.

vaughan, D.R., "A Nonrecursive Algebraic
Solution for the Discrete Riccati
Equation", IEEE Transactions on Automatic
control, Vol. AC-15, No. 5, pp. 597-599,
Oct. 1970.

Athans, M., "A Direct
Derivation
Using the
Transactions on

AC-12, No. 6, pp.

and Tse, E.,

of the Optimal Linear Filter

Maximum Principle", IEEE

Automatic Control, Vol.
690-698, 1967.

Sage, A.P., and Melsa, J.L., Estimation
Theory with Applications to Communications
and Control, McGraw-Hill Book Company, New
York, 1971.

Kerr, T.H., and Chin, L., "The Theory and
Techniques of Discrete-Time Decentralized
Filters", in Advances in the Techniques

i of

and Technology OF the Application
Nonlinear Filters and Kalman Filters',
edited by C.T. Leondes, NATO Advisory
Group for Aerospace Research and
Development, AGARDograph, Noordhoff
1981.

International Publishing, Lieden,

Van Trees, H.L.,
and Modulation Theory,
Estimation, and Linear
John Wiley and Sons,
1968.

Detection, Estimation,
Part 1: Detection,
Modulation Theory,

Inc., New York,

Anderson, B.D.O., and Moore, J.B., Optimal
Prentice-Hall, Inc., Englewood

Filtering,
Cliffs, N.J., 1979.

Kerr, T.H., "Stability Conditions
RelNav Community as a
Estimator"”, Intermetrics
30 September 1980.

for the
Decentralized
Reports IR-480,

Kerr, T.H., "Impact of Navigation Accuracy
in Optimized Straight-Line Surveillance/
Detection of Undersea Buried Pipe Values",
Proceedings _ of the National ToN Marine
Meeting, Cambridge, Ma, 27-29 October
1982.

‘. 3
eSFIRRTN 0T

a7




