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There have been two new algorithms of fairly recent origin offered for the
calculation of the matrix pseudoinverse. Unfortunately, nonpathological coun-
terexamples can be constructed, as offered herein, that demonstrate the questionable
nature of these two algorithms; however, a resolution is offered here (o help pre-
vent possible uncritical propagation of the questionable algorithms. As a rigorous
alternative, a well-established technique (endorsed by numerical analysts) is re-
viewed for calculating the correct matrix pseudoinverse using a compuler, Addi-
tionally, this technique possesses existent independently verified/validated and ac-
cessible software code for a convenient implementation. However, historical loose
ends in calculating the associated condition number are singled out here as cause
for concern and as a topic for future resolution and refinement. Although an opli-
mal control applicatfin of pseudoinverses is also presented here, the primary mo-
tivation for considering these pseudoinverse issues is offered in an application ex-
ample from estimation theory in the implementation and analysis of a minimum
variance reduced-order (MVRO) filter, having proper performance that critically
hinges on the correct computation of the matrix pseudoinverse. While examples
of applying MVRO to navigation applications were provided almost a decade ago,
a clear indication of the somewhat restrictive conditions of applicability were
wanting, and so are elucidated here, since there appears L0 be a resurgence of inter-
est in this analytic technique. Another contribution is in providing a tally of the
drawbacks 1o be incurred in using MVRO, as well as its previously publicized
benefits. This is done in order that a balanced view be offered on what should be
considered in a fair tradeoff to assess the utility of using MVRO for a particular
application.
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I.  INTRODUCTION

Although fairly widely utilized in select areas of control and estimation
theory (notably in forming bounds and in numerical calculation of the transition
matrix and the discrete-time process noise covariance matrix for time-invariant
linear systems [19-21]), it is fairly well known that a previous measure thought
to be a norm for over twelve years (as evidenced in Refs. [19-21, 39, 110]) has
now been demonstrated to be invalid [1-3]. Additional, more severe, analytical
misconceptions currently exist in related arcas and have been somewhat perva-
sively propagated (as representatively identified in Refs. [4, 5, 22, 23, 46, 49,
115, 148] for correction). Some counterexamples are presented herein (o point out
weaknesses in two approaches offered recently for calculating the matrix pseudoin-
verse. Previously unacknowledged limitations in even the preferred computational
technique are offercd here as representative of what hurdles are to be encountered in
atlempting to implement an MVRO filter for navigation applications. These
caveals are provided in the same construclive vein as the above-mentioned correc-
tions. A brief theoretical overview is provided in Appendix A of whal constitutes
a valid pseudoinverse.

Counterexamples are offered in Section 11 to two recent approaches sug-
gested by researchers, and some textbooks (as identified) for calculating and propa-
gating the matrix pseudoinverse. A technique, currently becoming the standard
solution approach, as endorsed by numerical analysts, is reviewed in Section I,
along with a brief consideration of implementation details, validation history, and
acknowledged although not well-known loose ends in the associated "condition
number" estimation (related to the ratio of the largest to smallest eigenvalue en-
countered in the matrix of concern, being a measure of the degree of ill condition-
ing encountered). While some varied applications of pseudoinverse calculation are
offered in Section IV, Section V concentrates on its impact in minimum variance
reduced-order filtering. Section V also provides new insights and explicit restric-
tions or conditions for valid implementation of an MVRO filter and for the subse-
quent engineering utility of such an MVRO filter as the main contribution of this
article. A brief overall summary is provided in Section VI. Certain augmenting
details and illustrative examples are relegated to Appendices A, B, and C.

II. COUNTEREXAMPLES TO TWO
QUESTIONABLE PSEUDOINVERSE
ALGORITHMS

Two recent apparently fundamental misconceptions pertaining to the cal-
culation of the matrix pseudoinverse are now identified by means of transparently
simple counterexamples.

MVRO FILTERING AND CONTROL 59

A. PSEUDOINVERSE ALGORITHM NUMBER 1

icati i ikeli io (GLR) to failure de-
In an application of the generalized hk'ehhood ratio ( _
tection and other event detections, the telescoping property inherent in the follow-
ing definition [6, Eq. (46); 7, Eq. (29); 8, Eq. (12)]:
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where 0 is a fixed scalar variable representing an unknown event time.; j is the
time index: k is the current time; G(j; ©) is an m x n matrix not necessarily of full

j) i i iti ini ix; T as a superscript rep-
rank; V(j) is an m x m symmetric positive defmx_te matrix; '
resents a vector or matrix transpose, and Eq. (1) is used in Refs. [6-8] to establish
one means of recursively generating C(k; 6) as in [6, Eq. (55)]I:

2
C(k; 6) = GT(k; ©)V-1(K)G(k; 6) + Ck — 1; ). @

In Ref. [6, Eq. (56)], the matrix inversion lemma is applied to (2) when each
G(s; ) is of full rank, to result in:

-1
C-1(k; 6) = [GT(k; ©)V-1()G(K; 6) + C(k - 15 0)]
=Clk-1;8)-Clk-1;0)GT 3
x [GC1(k - 1; )GT + V]-1GC 1k - 1; 0).

However, in Ref. [6, p. 171, it is asserted that the? matr.ix inversion lemma can
also be used to propagate the pseudoinverse recursively in case all the G(e; ) are
not of full rank [such that the strict inverse of C(k — 1; 6) is not gl'laranteed to ex-
ist]. However, this assertion was never proved nor referenc_ed_ in R_ef. [6], nor
properly qualified as being only a conjec.lure_, and no such matrix-inversion iemma_l-
like property is acknowledged to exist in either of the'th}'ee recent encyc opedic
references [9], [10], or [29], or in other recent specialized discussions ([123,
Section 5.2]; [124, Chapter 3}). Indeed, a countt_zrexample to the.: property asserted
in Ref. [6], that the pseudoinverse (denoted herein by a superscript dagger) may be
recursively propagated via (3), is offered below.

B. COUNTEREXAMPLE TO ALGORITHM NUMBER 1
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where I is the identity matrix, which when used in (2) yields

24 2

Ck; 0) =

having a valid pseudoinverse (which in this case is the same as the inverse) being

CT(k’ e) = C_l(k, 9) = %[_; _g :|_ (7)

However, the following erroneous result

ot 1 |
&O=31, 4 @®

is obtained when the matrix inversion lemma of the form of (3) is utilized in an
attempt 1o recursively generate the pseudoinverse according to the path advocated
in Refs. [6-8]. (The algorithm described above, as offered for pscudoinverse
updating in Ref. [6], was encountered in the GLR approach to failure detection and
other event detection; however, there are other alternative approaches to failure
detection in navigation systems, such as in Refs, [40—4%, 55-57, 62], or as sur-
veyed in Refs. [62, 90-92], that do not require any calculation of the pseudoin-
verse as well as the GLR modification in Ref. [132].) Recent insights that
obliquely relate the matrix inversion lemma with calculating pseudoinverses is as
providcd'in Bel’. [52, Theorem 5] and Ref. [122, Theorem 3.1]. However, use of
the matrix inversion lemma in performing recursive calculations (rather than
merely to provide theoretical and structural insight) has been demonstrated to be
numerically unstable in general [98, p. 1038]. Valid generalizations of the matrix
inversion lemma are in Refs, [130, 131]. Another slightly different, but com-
monly encountered, theoretical misconception relating to the matrix pseudoinverse

in discussed next.
C. PSEUDOINVERSE ALGORITHM NUMBER 2

In the textbook [11, p. 19], it is asserted that the matrix pseudoinverse
always takes one or the other of the following two forms:

ct =cTccTy-! )
or
ct=(cTcy-1cT, (10)

ﬁ—
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It is emphasized here as a warning of the possible theoretical o':rer.s':' ght or deﬁqfre
oversimplification in the above dichotomy asserted for pseudoinverse calculation
in the textbook [11] that the above two forms are appropriate to represent pseu-
doinverse calculation only if either (CCT) or (CTC) is nonsingular, respectively.

D. COUNTEREXAMPLES TO
ALGORITHM NUMBER 2

A simple example that illustrates a frequently encountered general case
when neither of the above two simple forms is appropriate to represent the pseu-
doinverse is (Ref. [12, p. 168, Exercise 20], with the solution provided h-erc being
original, as derived in Appendix B as an example of the requisite calculations to be
performed in determining the pseudoinverse via hand computation for even simple
low-dimensional examples):

1 21
C, = 110 (11)
110
having pseudoinverse
-1 1 1
3 2 2
il 1
=l 3 12
Cc 1 3 0 0 (12)
2 1 -
3 2 2

(as can be verified by showing that it satisfies the necessary and sufficient Proper-
ties 1-9 of a pseudoinverse [12, p. 165] or as found in Ref. [51, Chapter 4], as
previously referenced by Ref. [50]); yet

341 6 3 3
T i T _ 13
c,c,=|4 6 2| ¢ c/=[3 22 (13)
121 322

are both singular (since for C;TC, the sum of the first and third columns equals
the second, and for C;C,T the second and third columns are identical). The word-
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ing in the dichotomous pseudoinverse definition of Ref. [11] indicates that when C
has more columns than rows, then there is no worry that (CCT) could be singular.
The following example demonstrates that this is not the case. Another
representative nonsquare matrix that does not fit into either dichotomous alterna-
tive offered in Ref. [11, p. 19] of the above Egs. (9) or (10) is

1 3 2 4 (14)
C 0= 2 5 3 4
1 0 -1 2

being of rank 2. That both (9) and (10) fall short of adequately handling every case
is not just a consequence of the matrix being used for the counterexample being
square, since the counterexample of (14) is a rectangular matrix.

This apparently fundamental conceptual error, overlooked in the method-
ology advocated in Ref. [11] for pseudoinversé calculation, persists in the first
through eighth (current 1984) printing.

As indicated in Ref. [100, Sections 7.1 and 7.2], if the general rectangular
m xn matrix C is of rank r(>0), then it admits to a rank factorization of the form

(mxn) (mxr) (rxn)

=D E (15)

and the corresponding Moore—Penrose generalized inverse (or as simply designated,
the pseudoinverse of C) is

ct = ETEET)-1(DTD)-1DT (16)
or simply

The results of (15)—(17) are what is neglected in the textbook of Ref. [11] that
would make the story complete. Otherwise, the expressions of (9) and (10) merely
represent the right and left inverses of C, respectively, when they exist [124, p.
70]. However, finding the necessary factorization/decomposition indicated in (15)
and unequivocally establishing the true rank r are computationally relegated to the
use of the SVD, as discussed further in Section IIL

While some matrix pseudoinverse examples can be calculated easily be-
cause the structure degenerates to a very simple form (as illustrated in the block
upper triangular examples of Section V), the calculation of the matrix pseudoin-
verse in the general case is well known to be quite a formidable problem, as sim-
ply discussed in Refs. [51] and [136] for hand calculations. However, for the
higher-dimensional matrices to be encountered in most practical applications that
are intractable by hand calculation, an accepted computer algorithm is apparently
available for pseudoinverse calculation, as now reviewed.
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[II. PROPER CALCULATION OF MATRIX
PSEUDOINVERSE BY VALIDATED SOFTWARE:

A STATUS REVIEW

An approach that has been endorsed by numcrilcal analysts [13,lpp. 257-
258; 14, p. 171; 101] for calculating the matrix pseudoinverse of an iarbll.rary n %
m matrix C is to utilize the well-known singular value decompositions (SVD),
represented as indicated below for the following three (exhaustive) cases (where the
asterisk denotes the conjugate transpose of the matrix).

Case 1 (m = n).

A I 0 (183)

forrsuchthat 1 <r<n.
Case 2 (n > m).

A

c=ul-"= |v*. (18b)
0

Case 3 (n < m).
l (18¢)
C=U[A, 10IV*.
|
i he left
In the above, U (the orthogonal eigenvectors of C*C, denoted as the :
singular vectors of C) and V (orthogonal eigenvectors of CC*, denoted as the right
singular vectors of C) are unitary:
UU* =1 (19)

n

(20)
VvE=1

and A, is a diagonal matrix (not necessarily nonsingular). The pseudoinverse is
then available [13, 14] as the corresponding case below.
Case 1' (m = n).

(21a)
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Case 2' (n > m).

CJr =V f—\im-- U*
G (21b)
0
Case 3' (n < m).
¥ I
c =V[A1 :O]U*. (21¢)
where any i-dimensional diagonal matrix of the form appearing above,
rdlag(crl, Oy ves 6 [ 0 .
agf® 7 o = ol el
; " 1 0. (22)
L 3

f I(l{v...'(_) - -+ I’ i i
f ? g ps u s'e’

[ (11 1
P ey
[ (23)

= 1

1 | = === = = -

If r = n in Case 1', then the original square matrix is nonsingul

clomyerse is identical 1o the standard in%erse; consequently, lhgeusa{,]z)mig 1t1|(1;1: rl::ﬁllly
required where a standard matrix inversion routine will suffice, unless particular
caution is b'emg exercised in situations of possible numerical ill conditioning, as
can occur in some Kalman filtering applications. (In the calculation of ,Lhc
covariance of estimation error for some Kalman filter applications, the additional
expense incurred in utilizing the less severely affected SVD-based p;occdure is jus-
tified to enable gdded insight into pinpointing any sources of ill conditioning due
to pathological circumstances not initially anticipated to be encountered in the ap-
phcauo'n, and to allgw the "robustness" of being able to continue the numcricgl
evaluations ot: covariances unhindered by indicated underflows or by zeros occur-
ring on the principal diagonal that would otherwise halt computations without use
ofan § VI?uban_:d (gr UDUT-based [45]) procedure.) This particular detailed struc-
tural specification in terms of the above three separate cases was presented here to
avail the reader of the exact form of the correct solution (for ease in actual compu-
tational venﬂcapon) and to avoid any possible slight confusion on where the zeros
should occur within the solution matrix, as has arisen in the past in some refer-
ences (e.g., Ref. [14, Theorem, Section III, p. 166] trying to include the slightl
different structural forms encountered in each of these three cases in one apparanI§
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overly compact statement). A brief historical summary of the evolution of the
correct SVD solution procedures for each of the cases of square/rectangular matri-
ces having real/complex elements is provided in Ref. [14, introduction to Section
111]; thus, no further comments on this topic are warranted here.

Decompositions of the form illustrated in Cases 1, 2, and 3, as appropri-
ate, can be computationally accomplished using a commercially available imple-
mentation as an EISPACK [15] software routine (as recommended in Ref. [14, p.
167] as being perhaps the best version for SVD currently available). The LIN-
PACK [26] implementation of SVD is similar to that of EISPACK; however, in
the years following [14], it became apparent that there may be a slight error in the
LINPACK version. The IMSL version of SVD (as LSVDF) is an implementa-
tion based on the routine SVDRs, written by Charles Lawson and Richard Hanson
[95], and should be similar to that available with EISPACK. Details of the EIS-
PACK validation and, in particular, the validation of the SVD routine by seven-
teen cooperative but independent universities and government laboratories across
the country, are available in Ref. [15] (which additionally serves to compare the
efficiencies of different machines for the same test problems). The practical deci-
sion as to which of the o;'s should be effectively considered to be zero in computer
calculations (affected by roundoff and truncation errors) is usually accomplished for
so-called "equilibrated” matrices C, i.e., scaled such that 6; = 1, by a simple com-
parison to a tolerance threshold consisting of the larger of the following two
quantities: (1) the square root of the particular machine's precision or, (2) a con-
stant reflecting the uncertainty in the data comprising the most uncerlain element
of the matrix C [14, p. 171]. Alternative suggestions also exist (e.g., Ref. [51, p.
711) for the proper choice of a decision tolerance threshold to determine an effective
zero.

Additionally, a so-designated "backwards error analysis” has been previ-
ously performed by Wilkinson and Reinsh for the SVD implementation utilized in
EISPACK so that an approximate measure of the "condition number" [13] is os-
tensibly available (as asserted in Refs. [15, p. 78 271) for user monitoring as a
gauge of the degree of numerical ill conditioning encountered during the computa-
tions that consequently dictate the degree of confidence to be assigned to the final
"answer” that is ultimately output. (Less reassuring open research questions per-
taining to SVD condition numbers are divulged in Refs. [33, 38], indicating that
some aspects of its calculation are still open questions, even though the earlier
user manual [15] offers only reassurances of its validity.) An update to the condi-
tion number calculation has recently become available [53; cf. Ref. [121, pp. 289
3011.

Upon computationally completing the indicated decomposition for the
particular case of (18) via an SVD software routine, the reciprocals indicated in
(23) should be performed; then the corresponding recombining matrix multiplica-
tions of (21) carried to completion to yield a valid matrix pseudoinverse (of mini-
mum norm, denoted as a Moore-Penrose generalized inverse), as the primary goal.
While other approaches to matrix pseudoinverse computation are available (e.g.,
Refs. [19, 109]), only the SVD-based approach has been successfully validated to
this author's knowledge. However, other approaches to SVD computation have
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recently emerged [47, 48] and are undergoin i

_ rged . . g further independent test-
lng/cnrrohorauqn, including a version that is feasible as a systolic array [71], im-
plementable using VHSIC or other commercially available multiprocessor chips
such as the NCR45CG72 geometric arithmetic parallel processor (GAPP).

IV. A SURVEY OF PSEUDOINVERSE
APPLICATIONS

As further motivation warranting such detailed consideration of the

SVD computational issues, consider the following reasonable predic(:iolzlﬁr? bfgf
[14, p. 166]: "It is likely that within five or ten years SVD will be one of lht;
most important an.d fundamental working tools for the control/systems commu-
nity, .pamcul_arly in the area of linear systems." Evidence substantiating the
validity (_Jf 1_1113 prediction is in Ref, [128]. Indeed, the usefulness of the SVD in
accomplishing a factorization generally required in order to apply the so-called
surely locally unbiased (SLU) decentralized filtering approach [24, 32, p. 17], but
apparently not previously recognized, has recently been demonstrated in Ref, ’[25
Section 2.2.2]. New high-resolution signal detection also exploits use of SVD
[99, 104106, 116]. [However, some complaints by way of counterexamples do
exist 1o lhe_usq of the pseudoinverse in lieu of the true inverse in the calculation
of array gains in the direction of jammers when using the sampled matrix inver-
sion (SMI) t{;chniquc for adaptive beamforming and in estimating jammer bearings
via the maximum likelihood (ML) method in spectral analysis [106]. Perhaps
these cot_mterexamplcs should be more thoroughly re-examined. ) Additionally
SVD variants constitute the preferred method of verifying or establ ishing positivc‘
d_efmnleness or semidefiniteness of matrices encountered in realistically dimen-
sioned computer problem simulations and typical industrial implementations [93].
The SVD has been referred to in Refs, [14, 96] as the only reliable method for de-
termining the rank of a matrix. However, for large symmetric matrices of dimen-
sion 200, angl even up to 500, Lanczos techniques [97] may be the preferred ap-
proach for eigenvalue/eigenvector determination. Practical applications of the
Moore—l_)enrosg generalized inverse (which is a continuous operator [29]) already
abounq in statistics [28], electrical engineering [29, Chapter 5], and linear pro-
gramming (29, Chapter 11]. Reference [29] also offers multitudinous applications
of thq extremely useful, alternative Drazin inverse in such areas as Markov chains
and linear systems theory [29, Chapters 8 and 9]. Generalized inverses of po!y‘-
nomial matrices of the form of transfer function matrices (normalized by multipli-
cation 1hrough(_}ul by the least common denominator), as encountered in linear
systems theory in the frequency/transform domain, have also been considered [30]
The topic of generalized inverses has also been considered in the design of Luen-
bergg:r observers [50,' 119] and in image restoration and pattern recognition [129]
The importance of this pseudoinverse topic is illustrated in a particularly lucid a['J-'
plication examplt? appearing in Ref. [12, p. 162], where employing the pseudoin-
verse neatly provides the explicit minimum energy optimum control solution for a
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linear system with specified initial conditions, final conditions, and final time, as
demonstrated in Appendix C. The expert system symbolic manipulation program
MACSYMA, developed over approximately ten years at MIT (now available from
Symbolics, Inc., and from National Energy Software/Argonne National Labora-
tory) has recently been successfully used by Charles Stark Draper Laboratory in
providing explicit pseudoinverse representations for concatenations of direction
cosine matrices representing successive rotations or the referencing of one coordi-
nate frame to another, as occurs with robotic linkages and navigation systems.
The matrices encountered in this application routinely involve numerous trigono-
metric functions that must be manipulated and ultimately simplified, using identi-
tics. Estimation theory examples, where the correct computation of the matrix
pseudoinverse is critical for proper performance, are discussed in Section V.,

V. DEPENDENCE OF MINIMUM VARIANCE
REDUCED-ORDER FILTERING
ON THE PSEUDOINVERSE

The standard linear dynamical system for which Kalman-type filters are
designed has a discrete-time representation consisting of an n-dimensional state
vector x, and a p-dimensional measurement vector z of the following well-known

form:

(24)

1=d>x +Wk

xk+ k

z, = Hx + v, 25)

where wy and v, are zero-mean, white Gaussian process and measurement noises
(independent of the Gaussian initial condition) of covariance level Q and R,
respectively. The usual conditions of observability/controllability (or less restric-
tive detectability/stabilizability conditions [82, p. 82], or even nondetectable
[134]) are assumed to be satisfied here by the system of (24) and (25). [Only the
standard unadorned form of the linear estimation/filtering problem is addressed here
[81]. Straightforward modifications of what is offered here can be routinely
accommodated according to existing accepted techniques in order to handle the less
standard, but still tractable, variations of linear filtering, such as the cases of
having a singular R (i.e., some measurements being uncorrupted by the
measurement noise), of a system (24) failing to be process noise control-
lable/stabilizable and having cross-correlated process and measurement noises, time
or serially correlated Gaussian noises, nonindependent initial condition, non-
Gaussian initial condition and noises (but distributed according to an "elliptical”
family). There can be comprehensive handling of filter replicates for multitarget
tracking, the Magill-Laniotis bank-of-filter multimode hypothesis discrimination,
use of noises that are centered white Poisson processes rather than Gaussian, and
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use of mixed combinations of Gaussian and point processes for tracking. These
variations are also of significance in seeking something other than LQG feedback
control of stochastic systems where filtering is to be performed first to obtain ade-
quate estimates of the current state of the system before corrective control is ap-
plied.]

Use of a reduced-order suboptimal filter model of a smaller dimension m
(<n) is frequently necessitated to meet constraints on the computational capacity
available for the filtering function on board ships or aircraft in aided navigation
applications [18, 34, 43, 62, 65, 92]. However, standard a priori covariance
analysis can still be carried out to account for this expedient reduced-order
approximation by establishing the anticipated realistic error of estimation as
obtained by both (1) acknowledging use of a reduced-order filter model as required
as a compromise fit to computer resources available for the particular application,
and (2) utilizing any known higher-order real-world model of dimension n (m < n).
Standard conventional methodology for accomplishing such an exacting evaluation
(11, Chapter 7; 17; 18, pp. 325-341; 63, 88] usually involves working with an
augmented state vector of the form

A
| oo, &

where, in the above, T(M x 1) (ysually consisting of only zeros and ones) is used to
circumvent a dimensional incompatibility that would otherwise exist. The second
moment of the augmented vector x', being E[x'()x'(1)"], satisfies a so-called time-
varying Lyapunov or variance equation that constitutes a computer burden that
goes as (n + m)? following the completion of a first pass of order m? needed to
specily (and store for use in the final pass) the suboptimal filter gains as calculated
by the reduced-order filter (cf, operations counts in [94]).

A self-contained original derivation of the so-called minimum variance
reduced-order (MVRO) filter introduced in [16, 35, 36, 111: cf. Ref, 118] is
provided below by following the basic steps of Ref. [36], but by further
augmenting them here to include subtle crucial intermediate steps and to explicitly
feature critical assumptions (left implicit in Refs. [16, 35, 36, 111]), and 10
further elucidate previously unacknowledged limitations in the MVRO approach as
it currently stands.

Suppose that the reduced-order filter to be utilized models a subset of m
states of the full n states, x,, as represented by

27

where the transformation T (possibly time varying as treated in Ref. [36, Eq. (5)]
and Ref. [16, Eq. (29)] but not assumed to be so here for simplicity, and as the
prevalent case to be encountered in practice of having fixed constant state selec-

—.—7'_ - ——
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tion) effectively serves to delete undesired less important states from consideration

in the filter model. . o
The following three assumptions are implicitly utilized in Refs. [16, 35,

36]. ]
Assumption 1 (state subset selection).

1 (28)
TT = Imxm

[(28) can.usually be met when availed of complete frqedqm in sele(;ting .T. As
noted following [16, Eq. (2)], T'T is an n xn matrix which is not the identity ma-
trix.]

Assumption 2 (extrapolate structure).

9k 1k = TOT g (29)
Assumption 3 (update structure).
9kik = ki — 1 + Kk [zx — HT 9k - 1]. (30)

(Assumptions 2 and 3 can also be interpreted as computational constraints being

complied with in using an MVRO filter.) _ o
i If the residual in (30) were in fact [z, ~ HRyy 1l then the filter gain in

(30) should be

) 31)
K, =TKy

(where K * is the standard well-known Kalman gain},.as could bc justified by pre-
multiplying the standard Kalman filtering mechanization equations lhrpughout by
T. However, since the residual term in (30) is nonstandard, Ky is open for .spec.lfl-
cation, as pursued in the MVRO approach to minimize the variance of estimation
error as reflected in the following criterion:

- A . .T
trPy S UE | i | 32)
where
CARE LA o8 33)
Crie = Ykik K

It is frequently more convenient to work instead with
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AT
k= T Fu — X (34)

which may be premultiplied by T throughout to yield

1.
Teklk = T(T 9ka - xk) 352)

-l.
=TT §y ~ T, (35b)

By Assumption 1 in (28), (35b) simplifies to yield

Te

A
=% e =
Kk = Yilk ~ 1% = ©

NG (36)

Now, utilizing the constrained structural form of (30) to substitute for 9, (34)
can be re-expressed as

1 +
S =T [9ka o R HT 1])‘ X

(37a)
—(I—TTK H)e +(I—TTK H)x, —x
- K kK - 1 Kk Tk
(37b)
+ TTK Hx, + TTK v
k' k k'k
=(1- 'k H)e +TK v
K ek -1 k'K’ (37c)
where a fairly obvious notation consistent with (34) as
At
k-1 T </\klk 1 % (38)

is utilized in (37). It should be noted that a term T'K,Hx, was both added and
subtracted in order to obtain (37b).
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Using (37¢) to form [ekkefk] , and taking the total expectation throughout,
yields:

I fe T L of Tt
Pop= [1-T KkH]Pklk B 1[I -TKH] +T KR K (T) 39)
with
A T
Pklk = E[eklk ~ 1%k - 1]' (40)

Now combining the criterion of (32) to be minimized with (36), (39), and (40)
yields:

- A T
tr{Py ) = U{E [(yklk = TGy ~ T ]} (“1a)

t to T
—u[Ta-T K P, (-TKH'T
(41b)

+ TTTKkRKI(TT)TTT].

By using standard matrix gradient formulas [37], a necessary condition
(that is additionally a sufficient condition for the specific nonnegative definite
quadratic form within the trace) for achieving the minimization of the criterion of
(32) [re-expressed as (41b)] with respect to the filter gain K, is

R R T

0= K Py ]=-2T)' T TP H
(42a)

oD, = F T
T
+ 2 T (T )Kk[HPka_lH +R]
T T

__2TPk|k_1H +2Kk[HPk|k_1H +R], (42b)
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where Fhe simpliﬁcation of (42b) is obtained via Assumption 1 as (28). It then e el
comes immediately from (42b) that the MVRO filter gain that minimizes the error Pklk -1 B ki - 1k - 1 7
in estimation for filters of the form of Assumptions 2 and 3 is

e

-1
T T

=TP
k klk—lH [Hpklk—lH +R] :

T T T
43) =E[(Dek- ik - 1% - 1 - 1% ]+E[wk- k- 1] (470)

To complete the MVRO filter specification, a recursive expression for the T
time evolution of Pyy.; is needed. Retuming to (38) and substituting structural - (I)Pk -1k - i N @
Assumption 2 from (29), yields

+ o since cross terms betweene,_j;, _ ;and w, _qare uncorrelated and have zero mean.
eklk e T TOT yk ko1~ % (442) Use o_f (47c) for covariance propagation in conjunction with (39) fqr upc_iatmg the
TR covariance to reflect measurement incorporation completes the specification of the
MVRO filter of (29), (30), and (43), as summarized in Table 1 in juxtaposition
T + with the standard mechanization equations of Kalman filtering to facilitate a later
=T TOT § - ®x -w (44b) comparison,
k- 1k -1 k-1 k-1 If the condition of Assumption 4 in (45) does not hold, then MVRO fil-
tering can still be done by state augmentation, as offered in Ref. [16, Eqgs. (42)-
+ + " (52)], but the computational burden is then of the order of (n + m)3, and thus of no
=T ToT 9]( | + 0T 9 -X significant computational benefit over the conventional approaches of Refs. [11,
- lk-1 k-1k-1 k-1 17, 18]. This is a point that had not previously been adequately emphasized.
+ There are generally two well-known ways that this rather severe structural
- T 91( TR (44c) constraint of (45) can be satisfied. One way this constraint is satisfied is when
; ; (TTT - I)(I)TT =0, “8)
= de + (T T -Do -
k-1k-1 ( i S)k -1k -1 wk -1 ¢49 as occurs when the structure of the original system of (24) is block upper-triangu-
| lar and the filter model stzfltes constitute a precise proper subset of the upper truth
| For systems having the following s s model states with a line of demarcation that matches exactly the block partitioning
| following Eq, (17)], but not explicitly idiﬁtég((:itlilrrla%{g;.n?lé}d::égﬁol? x Sgés[?n% of the original system (as obtained in exhibiting its block upper-triangular struc-
allusion in Ref. [16, Eq. (54)1): ture). The other way the constraint of (45) can be easily satisfied, even if (48)
Assumption 4. does not hold, is if control compensation is being performed, such as subtracting
off the estimates from the system at the end of each filter measurement incorpora-
¥ ¥ tion cycle (as is frequently done for navigation applications in the resetting of gyro
(T'T-DOT § =0, 45) drift rates and in the correcting of platform tilts through torquing, as discussed in
k-1lk-1 Ref. [18, pp. 306-3071), so that
The middle term of (44d) is zero; so (44) reduces to 9 =0 (49)
k-1k-1
k-1 P tk-1 Yk (46)

and the condition of (45) is thus trivially satisfied. However, all of the states of
| the filter must be reset to result in (49), but not all applications offer this
from which flexibility or capability. A third milder situation that is less well known (and
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A direct explicit comparison between the mechanization equations of a
standard Kalman filter (of dimension n) and an MVRO filter (of dimension m, m <
n) is provided in Table 1. Please note that the covariance calculations of both ap-
proaches are of dimension n. Also notice that any standard filter mechanization (or
any conventional suboptimal filtering analysis mechanization) may be expediently
converted to an MVRO mechanization simply by the additional inclusion or
insertion of the appropriate transformation matrices T and Tt, as indicated in the
bottom line of Table 1. Notice the ample opportunity of MVRO results to be ad-
versely affected by any errors in the pseudoinverse calculation since, as clearly
portrayed in Table 1, three of the five MVRO mechanization equations rely ex-
plicitly upon employing the correct pseudoinverse. While only the case of a time-
invariant transformation matrix T was considered here (since most physical appli-
cations use a constant subset of truth model states as the filter model states for the
duration of a mission), where only one pseudoinverse computation of Tt suffices
for this MVRO mechanization, the presentations in Ref. [36, following Eq. (5)]
and Ref. [16, following Eq. (29)] deal with a time-varying transformation T, that
therefore exhibits increased MVRO sensitivity to pseudoinverse calculation. This
increased sensitivity occurs because a new T, ! is needed at each time step (see Ref.
[49] also). In addition, a further consideration is that pseudoinverse computations
are fairly time-consuming calculations, except for extremely simple degenerate
cases.

Since structural Assumption 1 was utilized twice in developing the equa-
tions describing the MVRO framework, this condition of (28) is now examined to
demonstrate that it is sometimes satisfied by coincidence or by objective selection
in specific applications. To motivate how the condition of (28) could be invoked
so readily, please consider the following example.

A, A BLOCK UPPER-TRIANGULAR EXAMPLE

Consider the following time-invariant continuous-time block upper-
triangular system of the form

O |Fp Fy Fig[Ix0 [wO
k0 1=|0  Fyy Fya [ 2,0 4 [Wy® (50)

J'cj(L) 0 0 Faa || %30 w4 (D)

(where the discrete-time formulation has the corresponding block upper-triangular
structure) that is to be tracked from its measurements by a filter that estimates the
block subset of states

x, )

0= 5D
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where Xy, X,,.and x;3 are of dimension ny, n,, and n,, respectively. A straightfor-
ward observation is that

K
x®] [L, 0 o° TI(.?

yl) = x2(k) “lo 1o % ® (52)
R P

From (52), the transformation T is therefore implicitly defined to be

T= (53)

and, consequently,

Tt = TT(TTT)! (542)
10 oo\
ny Inl 0 0 ny
= (54b)
o .11, Lo 0o 1
0 0 | > dlo o
1 0]
T
=lo 1 )
L)
0 0 |

I 0 O [“ 1 9
| ™ 0 1 (553)
10 Irl 0 Ty
2 0 0
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- - 55b
0 I _In1+n2. (55b)

Even if the constraint of the application is that no resets can be performed to
satisfy (49), a system structure such as (50) and (53) also leads to the condition of
(45) holding, since the transition matrix corresponding to the dynamics matrix of
(50) is of the form

All A12 A13

o=[0 Ay Ay _ (56)

0 0 Agg

which simply yields the following calculation:

00 0 A“ A12 A13 In'l 0

ir-per =[0 0 0 ([0 A, Asllo I (572)
0 0 -In3 0 0 A33 0 0

=0, (57b)
B. AN EXAMPLE THAT IS NOT

BLOCK UPPER-TRIANGULAR

A different selection for a filter model that is also a proper subset of the
block upper-triangular truth model is

x,(K)

y(k) = ;3'(1(5 (58

as represented by the transformation

T=low0o 1 F (59)
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For this example, the critical Assumption 1 [as (28)] holds, and the pseudoinverse
again degenerates to Tt = TT, but Assumption 4 is violated in general [since (48)
does not hold] unless it is possible (and practically desirable from the standpoint of
convenience and economic feasibility) to implement control compensation in the
particular application, such that (48) holds. Thus, two cases, one conveniently
tractable and one less tractable, have been presented to illustrate realistic MVRO
implementation considerations for a time-invariant block upper-triangular system
truth model, such as is frequently encountered in realistic navigation and guidance
(and even passive bearings-only sonobuoy target tracking) filter applications (e.g.,
[34, 43, 55-62, 72-80, 146, 147]). A block-diagonal example and one- and two-
state filter subsets of an inherent third-order system are treated in Ref. [16, pp.
790-791] with all details visible, while the more realistic navigation examples
involving 18-state, 15-state, and 11-state MVRO implementations treated in Ref.
[16] unfortunately do not expose any of the detailed considerations needed to
establish that the Assumptions 1-4 hold, as has been demonstrated here to be of
fundamental importance.

Several useful surveys of Kalman filter procedures, experiences, and suc-
cesses have been offered over the years [54, 64, 65], the most recent being in Ref.
[54]. InRef. [54, p. 5031, it is stated that "systematic implementation and analy-
sis of reduced-order models were unavailable" prior to the introduction of MVRO
(in 1972 [35] to 1973 [36]). The use of MVRO is advocated in Ref. [54] as a
systematic way to handle reduced-order filtering applications and is asserted to be
much preferred to current covariance and Monte Carlo simulation techniques,
which are referred to in Ref. [54] as being "expensive in both time and computer
cost” and essentially "ad hoc.” On the face of it, MVRO offers a type of analytic
beauty that appears to continually entice unwary onlookers (in 1973 [35], in 1979
[44], in 1981 [63], and in 1986 [111]). The other worrisome aspect is encounter-
ing these exhortations to use MVRO without corresponding explanations, such as
that provided here, of what lies beneath the surface (or what likely disappointments
each new enthusiast should expect to encounter after devoting time and effort to-
ward implementing this apparent panacea). It is acknowledged in a somewhat as-
tonished tone in Ref. [54] that conventional approaches to reduced-order filtering
continue to be routinely used in practice rather than MVRO. This section ex-
plains why, in general, the conventional reduced-order filtering practices are appar-
ently the prudent approach to follow, and should be continued until MVRO is re-
fined beyond its current state, such that the open questions raised herein are ade-
quately answered and resolved. Much stronger objections to the use of MVRO
(along other lines) appear in [140] than (charitably) are raised here; these are
endorsed here as valid criticisms. The scrutiny of [140] was evidently spawned by
my earlier critique of [112].

Other objections to standard reduced-order filtering practice (also embrac-
ing the MVRO approach) have been raised in the past [31] on the grounds that ex-
plicit consideration of the bias introduced in utilizing a reduced-order filter had not
yet been explicitly evaluated. However, current practice is to perform a
representative off-line bias evaluation tailored to the intended mission scenario to
enable rigorous verification of a satisfactorily low bias magnitude such that the
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bias does not interfere with the goal of filtering: "to tractably provide reasonably
close estimates on-line in real time of the true states of interest."

A UDUT-type square-root factorization of the type associated with Bier-
man [45] has more recently been performed for the MVRO [44] under somewhat
restrictive conditions. These conditions are [44, p. 578] that:

1) The block-partitioned state vector is arranged so that

X

1
y=[1,0] == (60)
2

2) The filter error estimate is instantaneously reset to zero through im-
pulsive control;

3) The measurement covariance matrix R is diagonal,
It is further suggested in Ref. [44, p. 578] that the condition of 1) is not restrictive
since such ordering of the state vector can be either performed! by the analyst in
setting up the problem or be automatically performed via pointer arrays in the re-
sulting computer code, 2) will depend on the structure and flexibility of the partic-
ular application, and 3) can be attained, if not already present, by using well-
known "whitening" procedures. It is agreed here that 3) can be attained using data
"whitening" procedures since

y' = R—l/2y = R-12hyx + R-1/2y (61a)
=Hx+V (61b)
E[kaIH:I. 62)

However, we note here that these whitening procedures are cumbersome if R is
time varying. Moreover, it is noted here that such a whitening would violate any
state rearrangement that resulted in the condition of 1) as (60) being satisfied.
Thus, in general, it appears that requiring an arbitrary system to satisfy both 1)
and 3) is contradiclory, while either 1) or 3) is routinely achievable.

Besides the use of MVRO and safer conventional approaches to reduced-
order filtering discussed at the beginning of Section IV, many other novel ap-
proaches to reduced-order filtering exist [82-85, 102, 103, 107, 108, 117, 118],
but the utility of these other results to navigation applications is yet to be
demonstrated. Indeed, knegjerk response commentaries/caveats for some of these
other approaches are that:

1) Reference [82] requires that a full two-point boundary-value problem
(TPBVP) be solved for reduced-order filtering. (While solving backward and for-

1 However, an explicit algorithm for achieving this prescribed reordering was not provided in
Ref. [44], nor referenced as being easily available.
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ward in time for Kalman smoothing as a Bryson-Frazier two-filter smoother is
standard practice [87], having this comparable computational burden for just filter-
ing is somewhat unexpected, i.e., defying prior physical intuition, and would tend
to preclude a convenient real-time implementation.)

2) Reference [83] is less computationally burdensome than Ref. [82], but
requires that the state size of the reduced-order filter be the same as the dimension
of the measurements in (25) [while the identities of the original underlying states
x in (24) are lost]. While the approach of Ref. [83] appears to be mathematically
correct, it is of almost no interest for most navigation applications where the di-
mension of the underlying states can be fairly large: 15-100 states, while the di-
mension of the measurements is usually fairly small (on the order of 2 or 3). If
the method of Ref, [83] were applied to these navigation applications, the dimen-
sion of the resulting reduced-order filter would correspondingly be only 2 or 3, re-
spectively, depending on the actual measurement dimension. This is a severely
confining restriction on the dimension of the tolerable reduced-order filter that is to
capture the essence of the system's underlying dynamics.

3) While Ref. [84] offers a wonderful historical survey and insightful
revelations into the various alternative approaches developed to handle filtering
situations with some noise-free measurements present, the technique that is devel-
oped and advocated in Ref. [84] invokes a similarity transformation where, in gen-
eral, underlying physical state identities are lost. Practical navigation applications
routinely utilize reasonableness tests based on anticipated behavior of the physi-
cally enumerated states. In order to employ reasonableness tests (e.g., Ref. [89, p.
288]) for the reduced-order filter of Ref. [84], such tests would have to also be
converted to the newly established coordinate system and later backed out for
problem isolation (thus constituting a nontrivial computational burden). The ad-
vanced algebraic techniques of Ref. [84] are applicable only for time-invariant sys-
tems, while many navigation applications are inherently time varying due to the
way specific forces and/or gravity anomalies/vertical deflections are handled [114].

4) Reference [85] is in the same vein as Ref. [83], but remedies many of
the above-mentioned concerns. However, Ref. [85] is applicable only to time-in-
variant systems (see caveats above for Ref. [84]) and (as acknowledged in Ref.
[85]) does not offer a numerical method for solving the simultancous matrix equa-
tions that arise, nor does it offer a way of avoiding spurious solutions associated
with likely multiple local minima that would satisfy the same optimal projection
equations. More significant is that the problem formulation is only concerned
with asymptotically good estimation and tracking as time gets large rather than
being concerned with good tracking for finite horizon mission epochs of usual
concern in navigation.

Perhaps newly emerging approaches to reduced-order modeling, such as in
Refs. [102, 103, 107, 108, 138, 139, 141-144], will be more fruitful. References
[102, 103] require further optimization operations and by so doing depart from a
standard Kalman filter formulation, with an additional computational burden
incurred. Reasonable complaints have already been raised in Ref. [120] concerning
the approach of Refs. [102, 103]. The author also has strong reservations
regarding the practical applicability of Refs. [117, 118], but constraints on space
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prevent further elaboration here. References [108], [139], and [141] appear to be
particularly promising for future filtering applications.

VI. SUMMARY

Simple nonpathological counterexamples have been provided to demon-
strate that two recently proposed algorithms for matrix pseudoinverse calculation
are unsatisfactory by not giving the correct answer in the general case. The ele-
ments of a widely endorsed computational approach for calculating the matrix
pseudoinverse of Penrose, based upon an SVD algorithm, as available in either an
EISPACK or IMSL software package, were reviewed as a correct approach to
solving this problem. The reader was also availed with insights into related issues
and less-well-known open questions and the corresponding followups pertaining to
currently used approximate estimates of "condition numbers" employed as a gauge
of numerical ill conditioning actually encountered in pseudoinverse calculation of
specific matrices. Pointers were supplied to constructive impacts of pseudoinverse
calculation across a fairly broad spectrum of application areas as the reason the
applications-oriented engineer should be concerned about the proper calculation of
the pseudoinverse.

Focusing attention on a likely beneficial impact of pseudoinverse
calculation in estimation theory for navigation applications, the so-called mini-
mum variance reduced-order design methodology for selecting reduced-order filters
was explored in detail here. The outputs of this investigation are:

1) Analytical statements of inherent assumptions and conditions being
offered here as clarifications of requirements that must be met in order to validly
use MVRO (but were not previously made explicit).

2) A revelation of the heavy reliance on a correct matrix pseudoinverse
computation within the MVRO filtering mechanization equations, thus evidence
exists of:

a) Sensitivity of MVRO to computation time expended in forming
the pseudoinverse;

b) Sensitivity of MVRO performance to accuracy of pseudoinverse
calculations as a required intermediate computation.

3) A balanced treatment of both benefits and drawbacks that should be
considered in pursuing an MVRO implementation for a particular application.

Throughout this investigation, constructive remedies were offered whenever
possible: 1) to strengthen observed weakness in previously recommended ap-
proaches for pseudoinverse calculations and, 2) to bolster the MVRO design
methodology.

By alerting Kalman filter practitioners to these weaknesses associated with
MVRO, the previous pitfalls can be circumvented. It is hoped that the cautions
extended here are viewed constructively along with the following other warnings in
the Kalman filter analysis and application area:
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1) On limitations of a structural reformation for solving an algebraic
Riccati equation [68] associated with filtering;

2) On some pitfalls in seeking to use age-weighted filters [66];

3) On problems in particular formulations of extended Kalman filtering
[69] (with additional remedies offered in Ref, [86]);

4) On problems in the early analytic proofs of the stability of the Kalman
filter [67; 70, Appendix C] and even in later proofs (see Ref. [25, Section 4.2 and
Appendix A.1] for additional occurrences and ramifications);

5) On tradeoffs existing between degree of accuracy achievable versus
computational time delay incurred (as gauged in terms of operations counts) for
several popular alternative square-root filter formulations [18, Chapter 7].

6) Some problems relating to the lack of numerical stability when using
the widely hailed "Schur Approach” for calculating Matrix Riccati equation solu-
tion [135];

7) Some problems associated with certain approaches to Matrix Spectral
Factorization (as discussed in [137]) in putting a problem involving serially time-
correlated additive noise into standard Kalman filter form (which expects only un-
correlated white additive noises) via "state augmentation" [11, pp. 133-135].

VII. APPENDIX A: THEORETICAL BASIS FOR
THE PSEUDOINVERSE OF A
CONTINUOUS LINEAR TRANSFORMATION

The significance of working with Hilbert spaces as done here is simply
explained in Ref. [12, Chapter 3] as being motivated by the capability to carry
over geometric intuition and experience honed in two- and three-dimensional Eu-
clidean space to other situations [133], such as in achieving a better understanding
of the underlying geometric structure of spaces of functions given that the domain
space G is a Hilbert space (i.e., it is a linear vector space that has an inner product
and is "complete" in the sense that all Cauchy sequences converge to a point
within the space without "gaps”").

H, the range space, is a Hilbert space.

0, and 0, are the null elements or additive identities in the linear vector
spaces G and H, respectively.

B(G, H) is notation for the class of bounded (continuous) linear functions
from domain G into range H (notation: f:G - H or the function f maps G into H
and f is continuous on G).

f is a function from B(G, H).

The main idea associated with the above preliminary definitions is portrayed geo-
metrically in Fig. 2.
In Fig. 2, 9X(f) is the notation for the range of f. The fact that f is merely

into H means that there may exist y in H such that there is no x in G with
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f INTO H

G, A HILBERT SPACE
(But Not Necessarily
onto H)

f IS LINEAR,
CONTINUOUS

H, A HILBERT SPACE

(Symbolic Axes, Space
Can Be Infinite
Dimensional)

f e B(G.H) AND 4(f) IS THE RANGE OF FUNCTION f

Fig. 2. Function f maps the domain space G into the range space H.

G f, LINEAR, CONTINUOUS

THE ORTHOGONAL PROJECTION OF y IN Z2(f)

Fig. 3. Projecting y into S(f) by the Hilbert space projection theorem.

Z(f)

LINEAR MANIFOLD (= Linear Subspace,
Translated So That It Doesn’t Contain Gx)

Fig. 4. Obtaining the manifold of x values such that f(x) = §.
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fx)=y. 63)

If f were onto H, then for every y in H, there would exist an X in G such that (63)

holds. If, in addition, f were one-to-one (notation: 1-1) then, for every g' in H
there would exist only one x in G, such that (63) holds (i.e., two or more points
in G could not map into the same y value in H). If f were 1-1 and onto, then an
ordinary inverse function would exist and there would be no need to consider a
pseudoinverse since it would reduce to this unique ordinary inverse. The situations
of interest for potential use of the pseudoinverse occur when f is not 1-1 and onto.
(For finite-dimensional matrices, these cases of interest correspond to either the
situation of a square matrix being singular or the situation of having a nonsquare
matrix where the finite-dimensional Euclidean domain space has a dimension dif-
ferent from that of the Euclidean range space.

The range of f, % (f) is a linear subspace (in analogy to a plane through
the origin in Euclidean 3-space, E?). If G or H is finite dimensional (or if it can
be otherwise shown), then % (f) is closed [125]. Consequently, % (f) is a ¢losed
linear subspace. This is just what is needed in the hypothesis to apply the Hilbert
space projection theorem [126, p. 76, Theorem 4.11] in specifying what rigor-
ously constitutes a pseudoinverse of the transformation f.

A. CONSTRUCTION OF THE GENERAL PSEUDOINVERSE

Given a particular arbitrary y in H (notation: y € H), consider all the x,
in G (notation: x; € G) such that

IIf(xl) — yll = min lIf(x) — yll. (64)
xeG

The norm llell here is defined naturally in terms of the existing inner product asso-
ciated with the Hilbert space as llsll = V(s | +).
Approximation of y in H. As seen in Fig. 3,

min lIf(x) - yll
xeG

exists since, by the Hilbert space projection theorem, any arbitrary y in H may be
approximated in the closed linear subspace .% (f) by its orthogonal projection, 9.
Since 4 (f) is the range space of f, there exists an x; in G [not necessarily unique,
as shown in Fig. 4 (since there may be more than one x; value in G)], such that
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G, A HILBERT SPACE H, A HILBERT SPACE

A UNIQUE
SOLUTION

Fig. 5. xg' is the unique point of Wy which has minimum norm.

f(x)=9 ' (65)

[this occurs since f is onto 5% (f)].
Therefore, the following equalities hold:

IGx,) -yl = mi 1)~y = min lIp - yll = 1§ — yll. (66)

The following device is used to obtain a unique x, that satisfies (65).
Uniqueness by Minimizing Norm in G. Represent the linear
manifold of Fig. 4 by

W9 = {x, such that f(x ) = §). 67

That (67) describes a linear manifold (also known as a linear variety or linear flat)
can be demonstrated by showing that Wy, satisfies the requirements to be classified
as a linear manifold as presented in Ref. [12, Chapter 3]. Now

W, = {x, such that f(x,) = ey] 2 space of f=n(f) (68)
y

so Wy is just a translation of the null space of (68). While Wy is not a subspace,
since it does not contain 6y, it is a complete convex subset of Hilbert space;
hence, by Ref. [126, p. 78, Theorem 4.10], there is a unique point x;' which is
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closest to the origin (the null element) 6, of G. Figure 5 amply portrarys this
situation.

The point of tangency of the smallest ball, centered at the origin of 0,
which interesects Wy, is x;". The point x,', defined in this way, is now unique.
The above-described mechanism of associating a unique x;’ with an arbitrary fixed
y such that x,’ satisfies (66) defines a function from H into G which is the pseu-
doinverse, ft. A nice analytic proof of the minimum norm property of the pseu-
doinverse is in Ref. [124, pp. 89-90, Theorem 3.7].

By an alternative approach, since & (f) is a closed linear subspace in a
Hilbert space H, and n(f) is a closed linear subspace in a Hilbert space G, invoca-
tion of the Hilbert space decomposition theorem [126, p. 79, Theorem 4.11]
yields that

G=n(f)e O (69)

H=%(f) o (RO (70)

where (69) and (70) have the following interpretation: for arbitrary fixed x in G,
there exists a unique x and X with

X inn(f) 7n

Xin 01+ (72)
(i.e., each element of [n(f)]* results in zero when an inner product is formed with
it and every element of (f)}, such that

(73)

X=X+X

(i.e., this is an orthogonal decomposition, with one element in the linear subspace
and the other element orthogonal to it!). Similarly, for arbitrary fixed y in H,
there exists a unique § and y with

§ in R(f) @
and
¥ in R D)

i.e., each element of [R(f)]1 results in zero when an inner product is formed with it
and every element of R(f), such that
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¢ 1y

{6} {6}

) ) Fig. 6.. 'I"he pseudoinverse as an extension of the ordinary inverse function asso-
ciated with an original function that is 1-1 and onto {12, p. 164; 113, p. 578, Fig. C.17.1].

-

y=9+y @

As discussed in Ref. [12, Chapter 3], the continuous function, when restricted to
have only domain [n(f)]4, can be regarded as a function from the Hilbert space

(H)]* onto the Hilbert space 2 (f). This closed linear subset of a Hilbert space is
itself again a Hilbert space [125].

Between [n(f)1+ and . (f), f is one-to-one and onto, and it has an inverse
that is continuous and linear. The inverse of f defines ft on % (f). Its domain is
extended to all of H by defining the function's extension as

f'(y)=6_forally in [R(DT 7

This alternate but equivalent interpretation of the pseudoinverse afforded by (69)-
(77) is summarized in Fig. 6.
B. PROPERTIES OF THE GENERAL PSEUDOINVERSE

. For a continuous linear function f, having its range R(f) closed and pseu-
doinverse being ft, then [12, p. 165]:

(a) f1L is linear;

®) fT is continuous;
t.f

) ) =f

@ @' ="
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(e) fTOfOfT=f1;
@ fo fT of=f;
@ ( on*=fof;
M) £ =@ o) o
@) fT =f*o(fo t*)T; 78)

where, in the above,fo g £ flg(*)] is the composite function, and * is the adjoint
operator, and represents the adjoint of f, which is defined using the following
definitions of inner product on the domain (° | *)g and on the range (¢ | *)y. The
adjoint operator f* is defined so that (x | £*(y))g = (f(x) | y)u for each fixed y in H
and all x in G. Therefore, f* is unique, linear, continuous, and identical in norm
to f as lIfll = 1If*{l.

In certain limiting cases it is possible to give a simple explicit formula
for ft as follows: If f o f* is invertible, then

£ o] o, (79)

If f o £* is invertible, then

-'-

¢ (80)

=f*o[fof*]'1.

In general, however, a simple explicit closed-form formula for ff does not exist
[12, Chapter 3].

C. MANIPULATING IDENTITIES

As an example of how the identities of Section VII,B can be manipulated
to analytically establish certain desired relationships, consider the following
exercise of secking to establish that

A+ 2a-f e e qet)ylef @1)

where I is the identity transformation.

To establish the above identity as the goal, proceed by performing a se-
quence of completely reversible operations that eventually reduce to an identity
that is obvious; then by retracing the steps in reverse order, the desired identity is

| - |
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obtained. To this end, first perform a composite "postmultiplication" by (I + f) to
yield

T=Q-f ofo@+n+T+fy et e+ (822)
ST o f+ [ —f ofofl+ @+ ) Lof 4@ty oflof (82b)
SI-f ofalf-fof off+@+f) Lot 4@+t ofot (820)
ST+ @+ ) o+ hofof 4t +fofl] 824)
cla @) o[fofl 4t ofof +f4fof] (82¢)
0 S L PP L 820)
=1, (82g)

where in going from (82a) to (82b) the indicated expansions were performed. In
going from (82b) to (82c), the expressions within brackets in both are equivalent,
In going from (82c) to (82d), the expression within brackets is zero via the iden-
tity of (78f). In going from (82d) to (82e), the expression (I + f*) within the
brackets is expanded out with its composite "postmultipliers." In going from
(82e) to (82f), the expression within the brackets is zero via the identity of (78e).
In going from (82f) to (82g), the expression within the brackets is the zero trans-
formation which, when composed with (I + f7), is also zero. Thus, retracing steps
in reverse order, and finally using a composite function "postmultiplication” by (I
+ f)1, yields the desired identity of (81). Thus, this exercise demonstrates standard
manipulations that can be performed with pseudoinverse transformations in accor-
dance with the established "rules” or identities of (78). The exercise of Eq. (82), as
used to verify Eq. (81), was actually solicited from the author within an applica-
tion by James Taylor in seeking a more general result as an extension of those in
[145], as evident from his acknowledgment of me.
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VIII. APPENDIX B: LONGHAND CALCULATION
OF A MATRIX PSEUDOINVERSE

A. MATRIX PSEUDOINVERSE AS A SPECIAL CASE
OF THE GENERAL PSEUDOINVERSE OF PENROSE

Please consider the diagram of Fig. 5 with the Hilbert domain space G =
En and the range space H = E™, where E represents Euclidean space (i.e., E! is the
real line). All linear continuous functions f from E® to E™ can be represented as

X(m><1) = f(x) = C(m><n)l(nx1) (83)

where C is an (m x n) matrix. .
For matrices, properties of (78d)—(78g) completely specify a unique Ct
and are sometimes used as the definition of C. Alternatively,

T
CTCy=1for allyin 2 (C ) (84)
T
CTZ =0forallzinn(C) (85)
T T t . . T %6
C(+z)=Cy+Czforalyin % (C)andallzinn(C ) (86)

and (84)-(86) may be used as definitions of C*, where in the above the adjoint of
C is merely the matrix transpose.
By Ref. [51, Theorem 4.22], if any solution to

Cx=y &7

exists, it can be expressed as

x=Cly+a-coz (88)

where z is any arbitrary conformable vector.

{As an aside, the expression within parentheses in the second term in (88)
is idempotent in that it is its own square [123, p. 41]. Hence, the pseudoinverse
can be routinely used to create examples of idempotent matrices.}

B. EXPLICIT PROCEDURE FOR
CALCULATING THE PSEUDOINVERSE

The following procedure is from Ref. [51].
Situation 1. Given a diagonal matrix
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A =diag(A,, A, ..., A

8 Ay e b)) (89)
where some ; may be zero, then the corresponding pseudoinverse is
AT 4 diag (7»_1 At =

1ok s dg), (90)

where

)

— ifA 20

A A A

xlo{ ™ o1

0, if )“i =0
[cf. (22), 23)).

Situation 2. Given a Hermitian matrix, i.e.,

=T
H=H, 92)
where the vinculum represents the complex conjugate, let
T

H=UAU , 93)
where U is a unitary matrix
=T -1
U =U. 04)

(U is simply the no.rr'nalized eigenvector matrix associated with H, and the eigen-
vectors of an H_ermltlan matrix are always distinct and H can always be diagonal-
ized [127, Sections 7.12 and 7.13].) The corresponding pseudoinverse is

T
Hf =UATU, 95)

where At can be found from the procedure of Situation 1 above. Naturally,

=T T
U =U 96)
for H and U real.

Situation 3. Given an arbitrary m x n matrix C, let

MVRO FILTERING AND CONTROL 93
T
HicC'C; )
then
CJr £ HTCT, 98)

where H' can be computed by the procedure of Situations 1 and 2 above.

The above procedure can be put in perspective by considering the follow-
ing direct quote from Ref. [19, p. 136]: "Several proposals for computing C' have
been made in the literature. These algorithms are often very inefficient from the
point of view of numerical computation (although they may be useful for getting
exact answers in simple cases).” For instance, in establishing the existence of the
Penrose inverse for a symmetric matrix A, we used the existence of a diagonalizing
transformation, but this involved finding all the eigenvalues of C, which is a more
difficult mathematical problem than the computation of AY. Moreover, other
algorithms proposed thus far do not simplify when the actual inverse C exists,
since then it should be that

c'=ct. ©9)

C. A NUMERICAL EXAMPLE OF
PSEUDOINVERSE CALCULATION

The following direct quote from Ref. [19, p. 145] shows what order of
difficulty to anticipate by way of computational burden incurred in this calcula-
tion: "The exact computation of the generalized inverse involves a very large
amount of work." This may be an understatement. In seeking to find the pseu-
doinverse of the matrix C; in (11) of Section ILD, first form

H cic, = CC, (100)
as

11 1lfr 21 341
H=(2 1 1|1 1 0]|=|4 6 2| (101)

1001 10 1 21

As observed in Section IID, both C;TC, and C; C, T are singular; so there can be
no recourse to the simple expressions of (9) or (10) [cf. (80) and (79), respectively,
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for specifying the pseudoinverse]. The pseudoinverse must instead be determined
from the general expression of (98); therefore, as an intermediate step H' must be

determined via the procedure of Situation 2 of Section VIII,B.
Finding the Eigenvalues of H.

3-2 4 1

0=det[H—7»13] =det|] 4 6-1 2

= AM(=6 + 10 —22). (102)

Therefore, the eigenvalues of H correspond to‘the solutions of

=0 (103)
A2 _ 100+ 6 =0, (104)

where further use of the quadratic formula for (104) yields the following three
eigenvalues of H:

A=0,5%19. (105)
The corresponding eigenvectors are now calculated. For A =
0:
341
H-(O),=|4 6 2| (106)
1 21

It may be verified that an unnormalized eigenvector of H may be obtained by find-
ing the cofactors associated with the first row of (106) as

¢ =222 107)
Normalizing (107) so that

2 2 2

elj + er + e3j =1,forj=1 (108)
yields:
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T [1 -1 1 B
2 = _;'—_,_ A 109)
=1 [ﬁ 73 ﬁ] (
For A=5++v19:

—2-+19 4 1
H_(5+«/1'9')13= 4 1-\19 2 | (110)
1 2 —4-419

Similarly, an unnormalized eigenvector may be obtained by finding the cofactors
associated with the first row of (110) as

T
ey = [11+ 3T5, 18 + 4¥19, 7 + V19 . a11)

Normalizing (111) so that (108) holds with j = 2 yields

. 11+ 319 ‘ 18 + 4/19 : 74419 —
By~ (088 + 224/19 )1/2 (988 + 22419 )1/2 (988+244/79) | =
Similarly, for A =5 —19:
2 -+19 4 1
H-(5-VI9)L=| 4 1+419 2 | (113)
1 2 -4+419

An unnormalized eigenvector may be obtained by finding the cofactors associated
with the first row of (J10) as
iy

T T
e = [11-3VI3, 18 - 4VT5, 7 - V19 . (114)
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Similarly, normalizing (114) so that (108) holds with j = 3, yields

= 11-3J19 18-4419 7-419

At _ 7k 3
B (988_244JE)12 (988—224@)1/2 (988—244J1_9)1/2 NUD)

A check on these calculations occurs in noting that: &1, ’§2,’§3 are mutually or-

tl_logonal, as theoretically predicted and, consequently, for the normalized
eigenvector matrix

Alala la
U—{Ql |§2|§3] e (116)
it checks that
vul=1_ .
(3x3) (117)

Now_ the normalized eigenvector matrix U so obtained diagonalizes the symmetric
matrix H as

U'HU = diag{ 0, 5+Y19,5-19 . (118)

As d.iscussed in Situation 1 of Section VIIIL,B, the pseudoinverse of the diagonal
matrix is:

AT 2 diag{o, 1465 + 119, 1/(5 -¥19 } (119)
= diag{0, 0.1069, 1.560 }. (120)

By (95) of Situation 2 of Section VIILB, the pseudoinverse of the symmetrig,
matrix is:

T

0 0.1069 0 U

0 0 1.560

gt a| 05774 07995  0.1657
05774 02563  0.7752

0.5774 0.5432 —0.6096 ]{ 0 0 0 ]
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= 0 0.0854 0.2584 0.5432 0.7995  0.2563

0 0.0580 -0.9508 }[ 0.5774 -0.5774 0.5774
L 0 0.0274 1.209 —0.6096 0.1657 0.7752

=/ -0.111 0.111 0.222
L -0.722 0.222 0.944

0.61T -0.111 —0.722} (121)

By (96) of Situation 3 of Section VIIL,B, the pseudoinverse is:

0611 -01T -0722 771 1 1
cfal _onT ont o023 || 2 1 1
0 0

-0.722 0.222 0.944 1

-1 1 (122)
—0.333 0.5 05 i’ 22
= 0333 00 00 |= 3 0 o |
0.666 -0.5 —05 2 a4 4
3 2 2

which corresponds to (12) in Section II,D.

IX. APPENDIX C: AN APPLICATION OF THE
PSEUDOINVERSE IN MINIMUM ENERGY
OPTIMAL CONTROL

Given a linear dynamic system described by a set of differential equations
of the form

x(t) = Fx(t) + bu(p), (123)

where x is an n vector, F is an n x n matrix, b is an n vector, and u is a scalar
control function. Assume that initial condition x(0) = 8, (the null element of the
range space) and that the goal is to transfer the system to the final state x(T) = x;

by application of suitable control u(t). Of the class of controls which accomplish
the desired state transfer, our objective is to determine the one that minimizes the

energy:
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)
gu (t) dt. (124)

The explicit solution to the differential equation of state (123) is
T
x(T) = JeF(T - t)hu(t) dt.
0
Thus, defining the function f mapping L,[0, T] into Euclidean n space E® by
H F
—t
fw = [ "~ Obuo at (125)
0

yields the following associations in terms of the notation of Appendix A:

2
G=L"[0,T}; H=E",

and the corresponding appropriate inner products are

T
5y 1390 = (3 1%5) & [x Oy e (126)
0

and

>

0119 =0 1) S 4y @27

gnd the corresponding norm for the control (in terms of the specified inner product)
is

1/2

T
i ,2 [, ) - Juz(l)dl . (128)
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The problem of minimizing (124) is equivalent to that of determining the u of
minimum norm in (128) satisfying

f(w) = x,. (129)

Since the range of f, % (f), is finite dimensional, it is therefore closed. Thus, the

results of the following theorem apply.
Theorem 1 [12, p. 161]. Let G and H be Hilbert spaces and let arbi-
trary f € B(G, H) with range closed in H. The vector x of minimum norm

satisfying

f)=y (130)
is given by
x = *(z), (131)

where z is any solution of the composite function
fofz) =y. (132)

By virtue of the above Theorem 1, the optimal solution of (129) is

u = f*(z), (133)
where
fof*(z)=x]. (134)

It remains to compute the above functions f* and f o f* for this specific
application. ForanyueL,, y e E"

T T
@) =3[ty an= [ [yTeFT -9 Juy a
0 0

= (f*(y) Tu)Lz; (135)

hence, by the property of adjoint transformations
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T F(T-1)
f*(yxb e a2 (136)
It turns out that f o f* is the following n x n matrix
T T
Fo ph =JeFCT_t)hbTeF (T-t) dt. (137)
0

If the matrix [f o £¥}is invertible [i.e., if (F, b) is a controllable pair], then the
optimal control u(t) can be found directly to be of the form

u) = o [fo g, (138)
or, more explicitly, as
-1
T F(T-1) TF(T ), . T F(T—s)
u)=b'e (Tr- Je “Yphe VT s x;. (139)
0

Another unrelated pseudoinverse application in control and estimation
theory relates to computationally determining a basis for the null space of an arbi-
trary matrix [109].
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