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We seek to:

1. DEMONSTRATE that the so designated Joseph’s form of the discrete-time covariance update
equation (that arises within a proper Kalman filter implementation):

P(k|k) = [I — Ky Hy) P(k|k — 1) [I — Ky Hy]" + Ky Rp KT 1)

is mathematically equivalent to the historically older (yet still prevalent but less numerically
well-behaved) covariance update equation:

P(klk) = [I — KyHy) P(klk - 1) , (2)

where the expresion for the discrete-time Kalman gain Kj appearing throughout the above
two expressions Is:

Ky, = P(klk — 1)) HT (H, P(k|k — 1)HT + R,) ™ . (3)

2. DEMONSTRATE that the original continuous-time (7 x n) matrix differential equation (known
as a Riccati equation) of the form:

P(t) = F(O)P(t) + P(OFT (1) + GOQ)GT (t) — P()H()R™ (W) H () P(?) , (4)

(nonlinear because of the presence of the last term, where P(t) occurs twice) with initial
condition:

P(t,) = P, (5)

is actually satisfied by (n x n) components within the solution of an associated (2n x n) linear
matrix differential equation, when the candidate Ricatti equation solution is defined as follows:

P(t) =113 (1) (6)

as constructed in terms of the constituent components I'y (¢) and T'5(t), being partitions of the
following associated (2n X n) linear matrix differential equation of the form:
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with initial condition:



Since Eq. 7 is linear and of the form:

2(t) = Fy(t) z(t) (9)
it, in turn, is known to have a solution of the form:
z(t) = ®a(t, o)z , (10)
where ®,(¢, T) satisfies:
%ﬂ)— = F5(t) ®o(t, 7) with ®o(s,s) = I, xn for all s (11
where here
F(t) L GHQMGT(t)
Fy(t) = (12)
HORYOHT () —FT(t)
where in the above the state 2(t) is:
I1(t)
z(t)=| - ; (13)
()
and the initial condition is:
Ty (t,) P,
z(t))=| -+ =1 .. . (14)
Fz(to) Inxn

Hint: Recall as lemma 1 here the technique for and result of obtaining the derivative of the
inverse of a matrix as, say, ‘—%A‘l(t) proceeds after first forming the identity:

AB)AT () = Inxn (15)
then differentiating the above product throughout using the chain-rule to yield
A4+ AD S AT B =0, (16)
which can then be rearranged to yield the final result:

%A—l(t) = —A"H () AR)AT(2) . (17)

ANSWERS: 1. Substituting the result of Eq. 3 for the Kalman gain K} in Eq. 1, then expanding



out terms on the right hand side yields:
T
P(klk) = [1 - Kka] P(klk — 1) [1 - xkyk] + Kp Ry KT
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[I - Kka] P(klk = 1)
(18)
2.Expanding out the individual partitions of Eq. 7 yields:

Fi(t) = F(t) T1(t) + G()Q()GT () T (1) (19)

and

Po() = HT (R (OHO T1(t) - FT($)Ta(t) (20)
Now for a candidate solution P(t) constructed to be of the form:
P(t) = T1(H)T; (1), (21)

it can now be differentiated with respect to time via the chain rule (and lemma 1 for handling the
derivative of an inverse) to yield:

P(t) L (OF (1) + T1(8) T3 ()

(22)

i

L1615 (1) = L1 (T3 ()D2()T5 1 (2) |



then substituting Eqgs. 19 and 20 for fl(t) and f‘g(t), respectively, in the above yields

P@lt) =

[F(H)T1(t) + G()QE)GT )T ()] T3 ()
~T1(6)T5 ()2 (1)T3(2)

FT1(H)05 (1) + G)Q()GT (1) Ta()T5 (1)
I
=T ()15 (1) [HT ()R (1) H()T1(t) — FT(H)2(1)] T3 (2)
F()T1(t)T5 (1) +G()Q()GT (1)
P(1)

(23)

=D)P3 (1) |HT (R (@) H () T ()T; () —F (1) P2(1)T5 1 (1)
e e A N ——

P(t) P(t) T
F()P(t) + Gt)Q(H)G (1)
—P(t) [HT ()R- (O H(t)P(t) — FT(1)]
F()P(t) + GOQE)GT () — POHT ()R () H(t)P(t) — P()FT(t)

F@$)P(t) - POFT () + GHQMGT(t) = PO HT ()R () H(t)P(t) .

The above final expression is recognized to be identically Eq. 4 thus demonstrating that the con-
struction of Eq. 6 does suffice to create a solution as long as its constituent components satisfy Eq. 7
and initial condition of Eq. 8 so that

P(t,) = T1(to)T5 () = P, I = P, . (24)

In passingyit is mentioned that for time-varying parameters in Eq. 12, Eq. 9 (and Eq. 7) can, in
general, only be solved by numerical integration to solve the associated Egs. 10 and 11. However,
if the parameters in Eq. 12 (and Eq. 7) are time-invariant constant matrices, then the transition
matrix of Eqs. 10 and 11 may be obtained directly from the matrix exponential as a considerable

simplification.



