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In this paper a method is given for obtaining a mathematical model of a class of black
boxes having multiple inputs and multiple outputs in terms of Ito stochastic integral
equations. This method is applicable to the class of black boxes having ergodic
correlation functions when there is zero applied input. The point of view adopted in
this paper is phenomenological in that it is desired that calculations made using the
mathematical model should be ‘ close ’ to what is actually observed at the output of
the black box.

1. Statement of the problem
Given a black box, as shown in fig. 1 :

Fig. 1
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The black box has outputs 1 to py and deterministic inputs 1, to ¢;. I,
when the input V =0, the output ¥ has an ergodic correlation function matrix,
then it is desired to use a mathematical model of the form

X,=C+ } FX, du+(I) 3’ Gdp,+ j" MV (w) du, (1)
0 [ 0

Y,=HX,+m, (2)
E[C]=0, E[CCT]4P,
E[B,1=0Vu, E[B,BS]1=Q min (t,s), @>0,

as the model for the black box, where Y, represents the p-dimensional random
vector output of the black box, V() is the ¢g-dimensional deterministic input of
the black box, C is a Gaussian random vector initial condition, {8,},.x is a

13
vector Wiener process independent of C, and (I) | @ dB, is an Ito stochastic
0

integral. Equation (1) is a linear Ito stochastic integral equation. The
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Gaussian random vector initial condition C is completely characterized by its
mean, E[C]=0, and its variance, E[CCT]=P. The Wiener process {8,},cx is
completely characterized by its mean vector, E[B,]=0Vu, and its correlation
function matrix, E[B,8,5]1=0Q min (¢, s). Essentially, the problem is to find the
matrix parameter constants F, G, M, H, m, P, @ (in Appendix 4, it is shown
how to reduce the number of unknown matrices by one) so that the solution of
eqns. (1) and (2) satisfy the conditions that :

(i) the mathematical model has the same output mean vector as the black
box,

(il) the mathematical model has the same output correlation funection
matrix as the black box,

(iii) the output of the mathematical model has the same type of sample
functions (either continuous or piecewise continuous) as the output of
the black box. [When the black box has piecewise continuous sample
functions, the Wiener process {8,},.« should be replaced by a centred
Poisson process and the integral will still have meaning as a stochastic
integral with all its desired properties (Anderson 1966)].

The above conditions (i), (i), (iii) are the criteria of ‘ closeness’ that were
alluded to in the Abstract.

Overview of what s done »

A procedure is given for testing the actual black box under consideration to
determine whether the assumed form of the mathematical model, eqns. (1) and
(2), is acceptable. This test is based on manipulating the problem into a
hypothesis testing situation, where the hypothesis is: ‘Does the black box
behave in a manner corresponding to the mathematical model of the particular
form of eqns. (1) and (2) ¥ A test

T* T*

Y(T=H®(T", 0)C+ () § HO(T", )Gy dB,+ | HO(T", 1) M V(7) d,
0 i

which is, again, a Gaussian random p-vector.
Since M is an (n x ¢) constant matrix, let M =[m,, m,, ..., m,], where each
m; is a column vector. For an input

Vo(E)A[Syj, 8as -..r 83178~ T7/2),

where 8, is the Kronecker delta, let [Y?(7T")} represent the corresponding
p-vector output. An expression for [Y4(T")} using the sifting property of the

Dirac delta function is
T T+

[Y§TYY=HO(T", 0)C+(I) § HO(T", 7)GydB,+ § HO(T", 1) M V%(7) dr
0 0

) ar} m
) my

T

—HO(T", 0)C+(I) [ HO(T", 7)G, dB,
0

T*
+{ { HO(T", 7) <7—
0

7

MR

T*
=HO(T*, 0)C+(I) [ HO(T", 7)G, dB, + HD (T*,
0
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(The use of the ‘ impulse function’ in this analysis is just for convenience ;
later it will be replaced by any arbitrary, easily generated function, without
affecting the conclusions of this section.)

The mean of the impulse-excited output is

E[Y5(T" Y =H®(T", 0)E[C] .
+E {(1) Tj HO(T", 7)G, dﬁ,} +H® (T*, %) m;.
0

Since E[C]=0 (see Appendices 1 and 2) and the expectation of the Tto integral
is 0 (Varadhan 1968, p. 129), we have that

B[YTYY=H® <T*, %) m,.

The covariance matrix is

T

cov [YH(T" = | HO(T", u)GyGyTO (1", w)HT du
1]

+HO(T", 0)POT(T", 0)HT ;

this result is obtained by using the fact that C and B, are independent for ¢ >0,
and other properties of the expectation procedure is formulated and a method is
derived for determining, a priori, the number of trials, N, required for a certain
confidence, «, in the conclusion of whether to accept or reject the hypothesis.
If the hypothesis is accepted, that is, if it is found that eqn. (1) and (2) do
adequately describe the behaviour of the black box, then the methods of the
pseudo-inverse are employed to determine M. Prior to the determination of
M, the other matrix parameters are determined by the method of Bucy and
Joseph (see Appendices 4 and 5) with the input V(¢)=0.

2. Procedure and derivations

The solutions of a system of equations that are equivalent to (1) and (2),
which bear the same relationship that (1”) has to (1') in Appendix 4, are

X, =90, 0)C+() _5)' O(t, 7)Gy dB, + i o, VM V(7) dr,
0

Y,=Ho@, 0)C+ (1) ;' HO@, v)G,dB, + ;‘ HO@, 7) M V(7)dr,
0 0

where ®(t, r)=exp [F(t—7)] (see Appendix 1 for a pertinent discussion).
For ¢t =T", we have that

Y(T"y=H®(T", 0)C + (I) ? HO(T", )G, dB, + 1} HO(T", 2)M V(r) dr.
0 0

Since

t
{(I)(t: 0)0+ (I) g (I)(t’ T)GO dlgf} te
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' is a Gauss-Markov process (Jazwinski 1970, p. 111) because it is the solution of
the stochastic integral equation

t ‘
X,=C+ [ FX dr+(I) | G,dB,,
0 0
T*
we have that, for fixed t=T", ®(T", 0)C +(I) { ®(T", 7)&, dB, is a Gaussian
0

random n-vector (recall that a Gaussian process is completely characterized by

the first- and second-order distributions which are Gaussian and jointly

Gaussian, respectively). Since premultiplying the above by a constant H to
T

obtain HO(T", 0)C'+(I) § H(T", 7)G, dB, just represents a linear transforma-
0
tion from % into p, the result is still a Gaussian random p-vector. Adding the

T*
constant term | H®(T", 7)V(7) dr to the above, for a specific V(. ), to yield
0

* i

Y(I")=HO(T", 0)C+(I) § HO(T", 7)Gy dB,+ { HO(T", \M V(7) dr,
0 0
which is, again, a Gaussian random p-vector.

Since M is an (n x q) constant matrix, let M =[m,:...:m,], where each m;
is a column vector. For an input

Vo(t) &8y, 8y, ...r 851% St —1T7/2),
where 8, is the Kronecker delta, let [Y?(1™)}) represent the corresponding
p-vector output. An expression for [Y%(7T™)) using the sifting property of
the Dirac delta function is
T*
[F3(T") ) = HO(T", 0)C +(I) | HO(T", 7)Gy dp,
0

T*

+ [ HO(T", )MV A(7) dr
0

T*

=HO(T",0)C'+(I) §{ HO(T", 7)G, dB,
0
+{ CE*HQ(T*, )8 <7—§> d’T} m;
0
T* T*
=HO(T",0)C+(I) { HO(T", 7)G, dB,+HD <T*, —2—> m;.
0

(The use of the ‘ impulse function * in this analysis is just for convenience ;
later it will be replaced by any arbitrary, easily generated function, without
affecting the conclusions of this section.)

The mean of the impulse-excited output is

E[Y¥T" ) =HO(T", 0)E[C]+ E {(I) ?‘ HO(T", 76, dﬁ,}
0

. I"
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Since E[C]=0 (see Appendices 1 and 2) and the expectation of the Ito integral
is zero (Varadhan 1968, p. 129), we have that

) LI
E[Y‘%T*)]] =H® <T . -§'> m]'-
The covariance matrix is
T*

Cov [YH(T) = [ HO(T", w)GyGy @™ (T", w)HT du
[
+HO(T", 0)POT(T", 0)HT ;

this result is obtained by using the fact that C and B, are independent for
t>0 and other properties of the expectation of the Ito integral and of the
Tto integral squared (Varadhan 1968, p.129). Note that the covariance,
cov [Y(T™)V, is independent of j and is the same for any input.

With the aid of the above-established results and the material of the
Appendices, the procedure for modelling a black box having outputs and inputs
will now be given in detail.

First, clamp the inputs V(t)=0. If the output of the actual black box
behaves in such a manner that the correlation function is ergodic, evaluate the
unknown matrices H, F, G,, P, m as described in Appendix 5. Now every-
thing is known in the mathematical model, eqns. (1) and (2), except M. We

4

must first determine if the added term | M V(r)dr validly represents the
0

manner in which the input affects the actual black box under discussion (i.e.
is linearity valid ?). A test procedure will now be given and a criterion set to
determine if this added input term is valid for the specific black box. If the
criterion is satisfied, a method is given for determining M from the same data
used in the test.

The test is essentially a test to see if the actual black box behaves linearly
and in a time-invariant manner. If it does, then superposition should apply.
For fixed j, apply an input V4i(£)=[8,;, 8y, ..., 8,1Tu4(t), where u4(t) is an
arbitrary scalar function of time. Apply this input serveral times, say N times
(it is this &N, the number of trials, that will be determined a prior: as will be
shown below), and record the corresponding N outputs ijp4ny, ¢=1, ...,D;
the record should extend from ¢ =0 to ¢ =7" where 7" is chosen for convenience.
Divide the time interval [0, 7™] into equispaced points, so that A=T"/m. For
t =kA, for every fixed ke[l, ..., m], average the N outputs it 4, 4)? to yield

N
i[YA(kA)]j=l_V Y trdaant (6=1,2,..,p)
n=1
Still for fixed j, apply an input
VB](t)=[81], 82j, seey Sq]]TuB(t),

where %5B(t) is an arbitrary scalar function of time different from «4(f). Simi-
larly obtain

) 1 & )
P Geal = Y drpagans (E=1,2,..,p).
n=1
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Finally, for the same fixed j, apply an input VA+Bi(t)=[3;, 8y, ..., 8,1F
[44(¢) +uP()]. Then, again for every fixed k, average the outputs to obtain

N
U P gan = X r4tPeean,) (=L ..., p).
n=1
This same test procedure is followed for each of the ¢ components of the input.
If the black box were linear and the inputs entered in a time-invariant
manner, then {{Y4(kA)],7},_,~, for a fixed k, is a sample of size N from a
Gaussian population where the population has a known variance (eqn. (5)) of

®A
cov [Y4(kA)Y = § HOEA, u)GyGyOT(kA, u)HT du
0

+HOEA, 0)POT(EA, 0)HT ;
and unknown mean

B[Y4(kA)} = [ kf HOEA, w)ud(r) dTJ m;,
0

where m; is an unknown vector. _
For t=FkA, for any fixed k, the probability that the sample mean [Y4(kA))
of a sample size N is within e of the population mean u4/ is given by

r [% |(F4GA) Y — p9]? (cov [T4(eA) ) < ]

~p[ Sl |- Pz < v =

where use has been made of the transformation
Z={[Y4(kA)Y — p4i}{cov [T4(RA)]}1R
where Z is a p-dimensional Gaussian vector having

pz(B)=(1/(2m)? 2 exp {— (1/2)] 8] }

as a probability density function. Note that for =EkA, for any fixed &, the
problem transforms into the same problem in Z with the same sample size .
Since [Y4(kA)Y was Gaussian, Z is Gaussian since only the above linear
transformation was used.

Since the i,’s are independent and have a Gaussian distribution, their
squares have a y? distribution and are also independent. The sum of p indepen-
dent random variables having a x? distribution is also y? distributed with p
degrees of freedom, y,2 This distribution is well tabulated. From the y,2
table it is possible to calculate, a priori, the sample size N required so that we
have « confidence that the sample mean (a maximum likelihood, sufficient,
unbiased, ‘efficient ’ and ‘ consistent ’ statistic for the population mean (Hogg
and Craig 1970, p. 255)) is within ¢ of the true population mean, where « and ¢
are set in advance. The number of degrees of freedom p is the number of
outputs of the black box.
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Returning to test the linearity hypothesis, if the actual black box were
linear, then

[[T4EA)Y —pd] g2 = 1= | Z —pg| A< €%,
and we would have :
[T 4EA)Y +[TBEA)Y — [ Y4B EA) V| s
< [TARA)Y — 4] gy + | [ BRA)Y — pBl| gy + | [TABRA)Y

— p B o | B i B
x [Y4(kA)Y —udi| g1 <N ;  ete,
X [|pd + Bl — pA+BY|| p_2=0
x |[[TAEAYY + [T B(*A)Y — [Y4BEA) V| *5-1 < 92N,

(R was used in the above to represent the appropriate covariance). Define
v= k; LY 4(kA)Y + [T EEA)Y [ Y4 5EA) V|22

Therefore, to accept the hypothesis that the actual black box is linear and time-
invariant it must be that

y<9me?N for j=1,2,..,4.

If y> 9me2N, the conclusion is that the black box under consideration cannot
be modelled by the methods presented.

The criterion can be interpreted pictorially in (p+ 1)—dimensional
Euclidean space in fig. 2. Let the solid line represent [Y4EA)Y + [ YBEA)Y
in p-dimensional Euclidean space. When ¢, «, and consequently N, have been
specified, an e-sheath is defined around the solid line in p-dimensional
Euclidean space as represented by the dashed lines in fig. 2. If [YA+B(EA)Y
is within the e-sheath to a degree that, at the m-time points at which it is
checked, the sum of the excursions outside the e-sheath are compensated for
by its proximity to [T4(kA)} + [YB(kA)J’ at other times such that y <9me*V,
the hypothesis that the actual black box is linear is accepted.

Fig. 2

A + [\_/B(kA)]j
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Now returning to the problem of identifying M, we have that

- ... 1 X o
[Y4T)P =% Y [Y4T)1I
n=1
T*
#E[YA(T*)]f=|: § HO(T", 7)u(r) d'r:| m;.
0
Now, [Y4(T")} is a known p-vector, H is a known (pxn) matrix, and
O(T", T°/2)=exp (FT"/2) is a known (nxn) matrix, and u4(f) is a known
deterministic scalar control ; therefore,

[?A(T*)]f=[ ? HO(T", 7)u() dT] m;
0

is of the form of the algebraic equation ¥ = Az, where 4 is a known (p x n)
matrix, # is an unknown g-vector, and Y is a known p-vector. We wish to
solve the above equation of m,, which corresponds to solving Y = Ax for z.
If A were square and non-singular, the solution would be x=4-1Y. Even
when 4~ does not exist, it is desirable to solve ¥ = Ax in some approximate
sense ; the theory of the pseudo-inverse and how to find it is given in Appendix
IT of Aoki (1967, p. 318-324). Let A4+ represent the pseudo-inverse of the
(p xn) matrix A ; then the solution z is x=4+Y. The above analysis can be
applied for each j (j=1,...,q) so that each m; (j=1, ..., ¢q) is determined.
The (nx q) matrix M =[my, m,, ..., m,] has been identified. The problem of
modelling a black box by a linear, constant coefficient, stochastic integral
equation has now been solved.

Appendix 1

The argument for the zero-mean restriction follows. The equations of the
mathematical model :

t t
X,=C+ | FX,du+(I) | GdB,
0 0

Yl = HX )
have the solutions

X,=0¢ 000+I) | O, w)GdB,,

Oty

Y,=HOo(, 0)C+ (1) f Ho¢, w)aq dg,,
i

where ®(t, u)=exp F(t —u), as can be verified by applying Ito’s lemma to each
scalar component of the vector solution for X to obtain the original stochastic
integral equations (Bucy and Joseph 1968, p. 24). To satisfy the condition that
the output of the black box have the same mean as the output of the model
requires that

m=E[Y()]=E[Y()]=H®(, 0)E[C], t.

Since m is a constant and ®(¢, 0) is varying with time, in general, this equation
is satisfied if and only if m=0= E[C].
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Appendix 2

The zero-mean restriction can be removed by assuming a mathematical
model of the same form except that Y,=HX,+d. Now m=E[Y()]= "
E[Y@t)]=H®(t, 0)E[C]+d, V't is satisfied if and only if m=d and E[C]=0.
This causes no added difficulty since the covariance can be transformed,
factored and manipulated in the same way that the correlation function is
transformed, factored and manipulated in Bucy and Joseph (1968, pp. 25-26,
29-42). Using this approach with ¥ ,=HX ,+d, we have that the mathematical
model and the black box have the same mean vector and covariance function
matrix ; therefore, they have the same correlation function.

Appendix 3

From the solution of the stochastic integral equation mentioned in Appendix
1, from the unique properties of the Ito integral (Varadhan 1968, p. 129, or
Jazwinski 1970, p. 99), and the fact that the black box is wide-sense stationary,
the following equations are derived which hold true for the problem of modelling
the black box with no inputs (Bucy and Joseph 1968, p. 39) :

S;5(p)=H(pl — F)1GyGy*(—pl — FT)7HT,
E[0CT]=E[X(t)XT(t)]2 P, where FP+ PFT+G,G,T=0,
W?T(p)=H(pl — F)'G,, where S;;T(p) factors
into Sy;T(p)=WT(—p)W(p). (Please see Appendix 5 (d).)

Appendix 4

If GQGT=G,G,T, then the system of equations used as a mathematical
model in this paper,

(1) Xt=0§ FX, du+(I) f G dB,,
0 V]

(2,) Yt=HXt’
E[0]=0; E[CCT]=P; E[B]=0, t,
E[BtlgsT] = Q min (t: 8)’ Q = 0;

where F, G, H, P, Q are the five unknown maftrices, can be replaced by the
equivalent system of equations

t 4
1" X,=C+ | FX,du+(I) | GydB,,
0 0

(2") X,=HX,
E[C]=0; E[CCT]=P; E[B;]=0,V¢,
E[B,B,T]=1 min (t, s),

where F, G,, H, P are only four unknown matrices. This replacement can
be done since the solution of the two X, stochastic integral equations in both
(1) and (1”) are Gauss—Markov processes (Jazwinski 1970, p. 79) and as Markov
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processes do not require specification of the entire family of all finite dimen-
sional distributions for a complete characterization ; knowledge of the transi-
tion probability densities of the form p(X, tly, s) suffices. The solutions of
the X, stochastic integral equations in (1') and (1”) have transition probability
density functions which satisfy the forward Kolmogorov or Fokker-Planck

equations

X t| X o \"
a?;(_%i_ﬂt_o).— — <_a__) [FXp(X, tIXO, to)]
vie (2N 2 (60emp(x, 11X, ¢
1 2 3 Cr 10( ’ | 0 0)]
and

(X, 1] Xy, ¢ o \"
_10(___|_o_o_)=_<_ > [FX (X, t| Xy, t)]

ot 0.X
1 0 o \* To(X. t1 X
tatrilsx \ax [GoGo™p(X, t] X, 7))

respectively (Jazwinski 1970, p. 130). If GG,T = GQG, these two Kolmogorov
equations are the same, so their solutions are the same ; therefore, the X,
processes in (1’) and (1) are the same process.

Appendix 5

The procedure for identifying the unknown matrices of (17), (2”) from
measurements made at the output of a black box follows below.

(@) Obtain an extensive time record of §(t), the actual output of the black
box.

(b) Process this date by time averaging to obtain the correlation function
matrix, Ry;(r), and the mean, E[y(t)]. The only assumption on the whole
procedure is that the correlation function matrix is ergodic. (However, this
one assumption implies ergodicity of the mean and wide-sense stationarity
[Papoulis, 1965, p. 329].)

(c-i) Approximate this correlation function matrix in the 7-domain by
an exponential series (Laning and Battin, 1956, p. 381). Then take the bilateral
Laplace transform of the approximating correlation function to obtain the
power spectral density matrix, S;;(p). Since the approximating correlation
function consists of exponential terms, the power spectral density matrix has
elements that are rational functions (i.e. ratios of polynomials).

(c-ii) An alternate procedure to (c-i). Instead of approximating in the
+-domain, first obtain the power spectral density matrix by taking the bilateral
Laplace transform of the correlation function matrix, then obtain an approxima-
tion for the elements of the matrix in terms of rational functions by any one of
the four methods mentioned in Solodovnikov (1960, Chap. V).

(d) Since every power spectral density matrix which has elements that are
ratios of polynomials satisfies the sufficient conditions for applying the matrix
factorization procedure (Kerr 1971, p. 330-333), factor S--T(p) into S--T(p)=
WT(—p)W(p), where W(p) is analytic in p in Re (p)>0. This factorization
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can be accomplished by either of the two methods presented by Youla (1961,
method I is theorem 2, method IT is theorem 3) or by the method of Davis
(1963, p. 296-305). Since S;;T(p) is known, WT(p) is known. Let WT(p)=
H(pl — F)1G,, where the triple (H, F, G,) is to be determined.

(e) A triple (H, F, G,) (not necessarily unique) can be found which satisfies
W7T(p)=H(pl — F)1G,, and such that (H, F) is observable, (¥, &) is control-
lable, and F is stable, either by the methods of obtaining a realization from a
¢ transfer function ’ as mentioned in Kalman (1963, p. 152) or by an original
method in Kerr (1971, p. 255).

(f) Once (H, F, G,) is known, the solution of 0= FP+ PFT + G,G,*, where
(F, G,) is completely controllable, is known :

P= { exp (Ft) GyG," exp (FTt) dt
0

(Anderson 1967, p. 173).

(9) From Appendix 2, we have that E[§(f)]=m ; therefore the matrices
H, F, Gy, P, m in the mathematical model of the black box have all been
determined. The modelling problem for the black box without inputs is solved.

Appendix 6

From the method of Appendix 5 and from the main method of this paper,
mathematical models in terms of Ito stochastic integrals were obtained.
Eventually, these mathematical models will be used to make computations
which represent what actually occurs at the outputs of the black box. Digital
computers do not normally perform Ito integrations, but this can be resolved by
using methods of Wong and Zakai which relate Ito integrals to ordinary
integrals (1965 a, p. 1560, and 1965 b, p. 213).
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