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I. Introduction

MISSTATEMENT of the principal minor test for sym-

metric matrices (as first identified in Ref. 1, rediscovered
11 years later in Ref. 2, and further clarified in Ref. 3) has
been propagated in at least seven significant modern control
textbooks since 1968. A recent control theory textbook* also
makes this same mistake along two different lines by first
stating (p. 468, Note 11.2) that ‘‘a well-known criterion for a
matrix to be positive semidefinite is that its determinant and
the determinants of all its principal minors be nonnegative.”’
Along the almost trivial first line (as already addressed in Ref.
5), such a test can only be applied to symmetric matrices or to
the symmetric representation of the original matrix as it ap-
pears in arbitrary vector inner products, rather than to general
square matrices. Along the more important second line, there
are transparent counterexamples that demonstrate that just
considering principal minors to confirm positive semidefinite-
ness does not suffice.l?

The analytic pitfall that all of these textbooks have stum-
bled into is in interpreting the test for positive semidefiniteness
in too strong an analogy with the valid principal minor test for
positive definiteness (also referred to as Sylvester’s criterion),
which requires only that all leading principal minors be posi-
tive in order to conclude that the n X #» symmetric matrix is in
fact positive definite. From Ref. 2 (p. 122, Eq. 3), for positive
semidefiniteness, all 2" — 1 possible subminors and not just
the leading principal minors need to be considered in order to
have a valid test. In Ref. 3, for balance, several textbooks are
identified that have a correct statement of the test for positive
semidefiniteness. However, as discussed in Ref. 3, for practi-
cal problems of realistically higher dimensions, the evaluation
of multiple minors or determinants as offered in these correct
textbooks is not a computationally efficient approach for
determining whether a matrix is positive definite, negative
definite, semidefinite, or indefinite. A preferred approach is
to make use of the singular value decomposition (SVD) in
making such a determination, as explained in Ref. 3. SVD was
first observed in Ref. 6 to be the only computationally reliable
method for establishing the rank of a matrix. There is a
refinement of SVD, known as Aasen’s method, that exploits
underlying symmetry of the matrices (and only requires on the
order of n3/6 operations, where n is the dimension of the
square matrix under test), and it is already available for these
types of problems, as discussed in Ref. 7 (pp. 101-106).
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II. Counterexample to the Stated Partitioned Criterion

In Ref. 4 (p. 468, Note 11.2), a mistake is now made along
yet a third line by going on to say that the partitioned matrix

v X]|
z= [XT w M

is positive semidefinite if and only if each of the following
determinants is nonnegative as

IVi=o0, iWl=zo0,

v x
det =0 2
e | x7 W] #))
Unfortunately, the preceding claim is violated even for the
case of W being a (1 x 1) matrix or scalar, as can be demon-
strated by considering the 3 X 3 counterexample (offered in
Ref. 1 in another context) as

1 11
Zi={1 11 &)}
110
when partitioned as
W =101, XT=[1 1], V= [i :j| “)

satisfying all the conditions of Eq. (2), yet the matrix Z, in Eq.
(3) has eigenvalues of 0, 1 +V3, 1—V3 (the last eigenvalue
being clearly negative) so that Z, cannot be positive semidefi-
nite despite its successfully passing all of the tests of Ref. 4 (p.
468, Note 11.2).

A better partitioned determinantal criterion to use, which
does not involve any nontenable assumptions on W ~! existing
{as invoked in the “‘proof”’ offered in Ref. 4 (p. 468, Note
11.2)] is as stated in Ref. 8 (p. 745, Property 1) where if a
symmetric matrix P is partitioned as

po [ PIT Pz] )
Py Py
then
P=0 ©)
if and only if
Py=0; P~ P,P}Pf =0 Q)
and
NP1 C AN[P;] ®
where
Pj = Moore-Penrose pseudoinverse of P;
and

NR[P;] = null space of P; (see Ref. 9)
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Proof of the necessity and sufficiency between the condition
of Eq. (6) and that of Egs. (7) and (8) is provided in Appendix
I of Ref. 8. Notice that the condition of Eqgs. (7) and (8) differs
from the implicit assumption invoked in Ref. 4 (Note 11.2)
(that W is nonsingular) in three respects. First, P;"! is not
assumed to exist; use of the pseudoinverse P} will properly
handle any situation regarding P3, whether or not zero eigen-
values are present. Second, the condition of Eq. (7) is such
that the submatrices are established to be positive semidefinite
rather than just a condition on the associated determinants, as
in Eq. 2. Third, there is an additional criterion present on the
nesting of null spaces® of P, and P,; the condition of Eq. (8)
must also be satisfied before the conclusion can be made that
the P of Eq. (5) is positive semidefinite.

The condition of Eq. (8) fails to be satisfied for the numer-
ical example of Eq. (4) since it reduces to

RZANP)=¢ » ®

thus enabling the correct conclusion to be drawn that the
matrix of Eq. (3) is not positive semidefinite. When the condi-
tion of Eq. (8) is applied to the second example of Ref. 2 (Eq.
2) [identical to Eq. (3) here except that the parameter value a
appears in the place of the zero in the third row and column],
then the resulting

dCN[P] 10

satisfies the required nested subspace property (for all nonzero
values of @) and enables the correct conclusions to be drawn
that the corresponding full matrix P is indeed positive
semidefinite for @ = 1, while failing to be so if 1 >a >0 [where
the second condition of Eq. (7) correctly comes into play to
reveal this lack of positive semidefiniteness in the latter case of
1>a].

IIT. Conclusion
Some prevalent misconceptions on how to test matrices for
positive semidefiniteness (both theoretically and computation-
ally) were reviewed. A simple counterexample revealed that a
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recently offered partitioned test for demonstrating the positive
semidefiniteness of a matrix (with the potential of being ap-
plied stagewise to the higher dimensional matrices encoun-
tered in industrial applications) is flawed. A proper version of
such a test was discovered, as historically developed by others
in preparing to perform matrix spectral factorization (which
involves matrices whose entries are polynomials or rational
functions of a complex variable), but which is also valid in the
simpler case here where the matrices of interest have constant
numerical entries. The key difference between the incorrect
and correct version of the partitioned test is that a condition
involving the nesting of associated null spaces corresponding
to two of the critical partitions must also be satisfied in order
to properly conclude that the matrix is positive semidefinite.
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