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APPENDIX A

A DERIVATION OF THE DISCRETE-TIME "CENTRALIZED"
KATMAN FILTER VIA THE MATRIX MINIMUM PRINCIPLE

A.l1 1Introduction

An application of the Matrix Minimum Principle (Ref.
1), a well-known tool for the derivation of the
continucus-time Kalman filter (Ref. 2), is presented here
for an exclusively discrete-time ~ derivation of the
discrete-time Kalman filtering equations. This application
is demonstrated here for the following reasons:

* The approach of Refs. 3-9 to decentralized
filtering is via utilization of the continuous-time
version of the Matrix Minimum Principle, where the
decentralization requirement is essentially
included in the routine analysis as an additional
structural constraint, and the filter gains are
then optimized to provide the minimum variance
solutions for the prescribed filter structures.

* The results of Refs. 3-9 for decentralized
filtering are stated and derived only within a
continuous-time frame-work (discrepancies that can
arise between discretization of continuous-time
results and exclusively discrete-time results are
noted and explained on pp.136-139 of Ref. 18, on p.
297 of Ref. 38, and other difficulties discussed in
Ref. 11); however, a practical application for
JTIDS RelNav appears to be better suited to the
discrete-time formulation [fn. A-1] provided below.

* The ten (1@) alternative decentralized filter
structures considered in Ref. 9 are obtained by a
different (but repeated) application of the
continuous-~-time Matrix Minimum Principle to
estimation problems [fn. A-271, so a simple
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A=-2

exposition of the pertinent steps (as provided
below) should be useful as an instructive guide.

The approaches of Refs. 1 to 9 neither correctly
acknowledge nor properly accommodate the additional
slight analytlcal difficulties now known (since
1977) to arise (Refs. 15, 16) in taking gradients
with respect to symmetric matrices (occurring
naturally in these particular applications), and in
obtaining the canonical forward and backward
equations associated with applying the Matrix
Minimum Principle.

The milestone application of the Matrix Minimum
Principle to filtering problems (Ref. 2)
unfortunately provides no clarification for why the

particular cost function of Jjust a terminal.

accuracy constraint was chosen. Use of the same
terminal accuracy constraint persisted without
clarification throughout Refs. 2, 3-9, 17, but is
questioned and correctly modified [fn. A-3] both in
Refs. 18, 19, 21, 22, and here.

The canonical equations that arise 1in the
continuous-time application of the Matrix Minimum
Principle are two "coupled”™ [fn. A-4] matrix
differential equations that comprise a Two Point
Boundary Value Problem (TPBVP).  Once ~ the
appropriate “differential equations are specified, a
solution procedure has to also be supplied for the
continuous-time formulation. However, 1in the
discrete-time application of the Matrix Minimum
Principle, the canonical equations of the TPBVP are
matrix difference equations, which when iterated
provide a direct solution.

There (apparently) are few previous demonstrations
(to this author's knowledge, excepting Ref. 19) of
the discrete-time Matrix Minimum Principle being
applied to a discrete-time filter formulation,
perhaps being due to the four case ambiguity that
gan arise ketween use of P(k|k-1) or P(klk) and
x(klk -1) or x(klk) in attempting to formulate a

meaningful Problem statement [fn. A-5]. This void
in discrete-time formulations points out the need
for a clear, updated exposition for this

application.
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A.2 Problem Statement

The following notation 1is used throughout this
derivation.

sttem:
f(k+1) = @(k+l,k)§(k) + z(k) (A.2-1)

Measurements:

z(k) = H(k)x(k) + v (k) (A.2-2)

The process and measurement noises w(k) and v(k) are
assumed to be independent, zero mean, white Gaussian noises
having associated covariance matrices Q(k) and R(k),
respectively, and uncorrelated with the Gaussian initial
condition

i=3

x(8) ~ N(@,P) (A.2-3)

It is also assumed that R(k) is non-singular

R(k) = RV (k) > 0 for all 0 < k (A.2-4)
!
Assume a filter for estimating the state x (k) (via E(k/k-l)
to be of the following linear form 5
N K
5(k+1|k) = T(k+1,k) i(klk—l) + K(k) z(k) (A.2-5)

Objectives:

1. Specify conditions for an unbiased estimator to
reveal the structure of {T (k+1,k)} and appropriate
initial conditions for Eg. A.2-5 to ensure that
the estimator that evolves is both conditionally
and unconditionally unbiased as, respectively,
indicated by [fn. A-6]

E

E

Efx (k+11k) 12(k))] = E(x(k+1)1Z(K)] (A.2-6)
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(c.f.e,p. 159 of Ref. 23) and
E{x(k+1)] = E[x(K)] (A.2-7)
where E[.] is the expectation operator.

2. Use the discrete~time version of the Matrix Minimum
Principle to specify the optimal filter gains

[K(k)] in Eq. A.2-5 by considering the
consequential effect on the variance of estimation
error.,

A.3 Filter Structure Due to Allowing Only Unbiased
Estimates

Let the error of estimation of interest 1in this
discrete-time formulation be

e(k+llk) 2 x(k+l) - X (k+11k) (A.3-1)

Substituting for x(k+1l) and g(klk) in Eq. A.3-1 using A.2-1
and A.2-5, respectively, yields

e (k+1]k)=0 (k+1,k) x (k) +w (k) =T (k+1,k) x (k | k-1 =K (K)Z (k)  (a.3-2a)

=8 (1, X) x (k) +w (K) =T (k+1,%k) X (k |[k=1) =K (k) [8 (1) x (k) +v (%)

+[¥P(k+l,k)§(k) +T(k+l,k)§(k)](=0, but %ntroduced for
convenience (a.3-2b)
=r(k+l,k)g(k]k-l)+[@(k+l,k)-T(k+l,k)-K(k)H(kﬂ 5(k)+[g(k)-K(k)g(kﬂ
(A.3-2c)
/l";‘

¥
where Eq. A.2~2 was used to substitute for Z(k) in Eq.
A.3-2b and the definition of e(klk-1) was used from Eg.
A.3-1 in Egq. A.3-2c.

The condition of the estimator 2(k+1|k) being
conditionally unbiased requires that

E[x(k+1)-x (k+1]1k)1Z(k)] = Ofor all k > 0 (A.3-3a)
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‘which is equivalent to

¢ )
Efe(k+11k) 1Z(k)] = @ for all k > 0 (A.3-3b)

Taking expectations conditioned [fn. A-7] on E(kf throughout
Eq. A.3-2c yields

£[e ko1 ik |2 (k)] =7 Oce1, X0 B[g(klk-l)|§(k)]+[o(k+l,k)-r(k+l,k)-K(k)H(kﬂ’E[i(k)|£(k)]* Elw(k"x‘k)V‘k"E(kﬂ/
e
»
0

(A.3-4)

where the last term on the right side of Eq. A.3-4 is zero
since the noises are of zero mean.

Conditions (obtained by examining the time evolution of
Eq. A.3-4) to guarantee that the estimator of Eg. A.2-5
satisfies a conditional and unconditional [fn. A-8]
unbiasedness requirement (the conditional unbiasedness
requirement being the more stringent) of Egs. A.3-3 and
A.2-7, respectively, are:

1. For the driving term in Eg. A.3-4 to Dbe
identically zero

5. For the expected value of Eq. A.3-4 as [(fn. A-9]

o

Efe(k+1§1K)) =T (k+1,k) Ele(k|k-1)1+19 (k+1,k) =T (k+1,%) -K(K)H(K)I EIX (K]

{(A.3-5)
to have zerc initial condition {consistent with Eq.
A.2-7 at k=0), hence

E[g(k+1|k)] =.£ for all k > C (A.3-6)
;
/ﬂ
as obtained by repeated iteration of Eqa. A.3-5.
The above two conditions can be represented explicitly as
[ (k+1,k)- F(k+1,k)-K(k)H(k)]E[§(k)lz(k)] =0 (A.3-7)

and

A
0 = Efe(0l-1) = E[x(0)]-E(x(0I-1)] (A.3-8)
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respectively. Since E[z(k)lg(k)] cannot realistically be
assumed to always be zero, Eg. A.3-7 is satisfied only when

F'(k+1,k) = &(k+1,k)=-K(k)H(k) (A.3-9)
The condition of Eq. A.3-8 is satisfied when
x{0l=1) = E[x(0)] =0 (A.3-19)

Thus, providing both conditional and unconditional unbiased
estimates restricts Eq. A.2-5 to have the following
structure

f\\ ~
§(k+llk) = [¢(k+l,k)-K(k)H(k)]5(k|k—l)+K(k)E(k) (A.3-11)
A
with x(01-1) as specified in Eq. A.3-10.

A.4 Specifying the Optimal Gain Via the Discrete-Time
Matrix Minimum Principle

Now that the structure of T (k+1l,k) appearing in Eq.
A.2-5 has been specified in Eq. A.3-9 to yield an unbiased
estimator of the form of Egq. A.3-11, it still remains to
specify the gain {K(k)}. This time-varying filter gain
{R(k)} is specified via the following three steps.

Step 1:

Obtaining the difference equation for the time
evolution of the covariance of the estimation error

P(k+11k) = E[(e(k+1lk)~-E[e(k+11k)] (e (k+1lk)
—Efe(k+11k) 1) 7] (A.4-1a)
= Efe(k+1lk)eT (k+11k)] (A.4-1b)

Step 2:

Specifying the appropriate scalar performance measure
or cost function to be the weighted-mean-squared error in
estimation consisting of

L(k) = E{e” (klk-1) M(k)e(klk-1)] (A.4-2a)
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eriM(k) Efe(kik-1)e’ (klk=1)1] (A.4-2b)

triM(k) P(klk-1)1 (A.4-2cC)

for any fixed [£fn. A-1@] arbitrary {M(k)} such that
M(k) = MT(k) >0  for k > 0 (A.4-3)
(i.e., M(k) is positive definite.)

Step 3:

Minimizing a cost function J consisting of terms of the
form of L(k) in Eg. A.4-2¢ [fn. A-11] (according to the
ample historical precedents of Refs. 2-9) with respect to
the filter gain matrices K(k) via a convenient approach
using the Matrix Minimum Principle.

According to Step 1, from Eq. A.3-2c (with the

condition of Eq. A.3-8 in force) yields the following
covariance equation

p(k+1]k) = Ele(k+llk)e" (k+11k)] (A.4-4a)

= [®(k+1,k)—K(k)H(k)]P(klk—l)[Q(k+l,k)—K(k)H(kﬂT+Q(k)
+ K(K)R(K)K" (k) (A.4-4b)

with

p(g]-1) = Ele(Bl-1)e  (81-1)1 = Et(5(%)—3(8l-l»(g(a)-g(al-l))Tl =P
(A.4-5)

Using the results of Step 2, proceed to form the cost
function (using the results of Eq. A.4-2c) as

[0, o0 1L, (P k1) }ﬁgo]%m[mm RIS (NOINO-I)]-+

(A.4~6a)

N =T

¢ 1, M), POk |k-1)

k=0

=tI[M(No)93}NolNo—l)]+ (A.4-6b)
N -1 |

3 tr[M(k)P(klk-lﬂ
| k=0 |
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(Throughout this analysis, the 1impact of 1including the
additional new [fn. A-12] terms in Eq. A.4-6b on subsequent
equations will be 1identified by enclosure within a box.
Therefore, results consistent with previous formulations are
available at a glance by discarding the boxed terms.) From
the cost function of Eq. A.4-6b and the dynamical evolution
constraint of Eq. A.4-4b, application of the discrete-time
Matrix Minimum Principle (p. 597 of Ref. 1 1in complete
analogy to the discrete-time vector formulation on pp.
132-133 of Ref. 1@) regquires formation of a scalar
Hamiltonian function as

T
s 2 (ke 2 0 o2 (e 0o 00) 20c b [e-xom 0] B

0 (k) +K (K) R () KT (M” (k+l)} + EEOPk[k=10  (A.4-7)

where
A (k+1) is the nxn costate matrix.

According to the discrete-time formulation of the
Matrix Minimum Principle (p. 597 of Ref. 1), the canonical
equations that describe the necessary conditions for a
minimum are:

0 = 5 (K,P(k[k-1),20+1), 1) Ly (A.4-8)

(where the * denotes evaluation at the minimum).
I
3_/_'{_ | £ b - \ . - T - T
p’{k.,.l{k) = (K{k),P(klk=-1),4,k) = fb-K(k)H(k)J? (kf k=1 &K* (k) H k) ) "+Q (k) +K* (k)R(k)K* ~ (k}
*h )
(A.4-9)

If P(klk-1) were not a symmetric matrix, the costate would
evolve according to [fn. A-13]

A* (k)=+_g_PH (K &) ,P,A(k+1) k)ls (A.4-10a)

m Ld Ll
=6T2T (k+1) 6 BT (R)K (k) A* (k+1)¢ =0T A% (k+1)K* (k) H (k) +HT (k) K ~ (¥ "7 (k+ 1t K* (R E (k) =[37%

, s
‘ALA-30z

=[@ (k+1,k)-K* (k)H(k)] Tp* (k+1) [e(k+1,k)—K*(k)H(k)]+M('k)

(A.4-10c)
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[

with transversality (i.e., boundary) condition

A (NI =3 e fmng) P

T o 5ee _
Y L=ME(Ngi= M(NG)>0 (A.4-11)

Because P(klk-1) 1is symmetric, the following form is
indicated in Refs. 15, 16 for the evolution of the costate

matrix
ax () +0%T (1) —diag (A% ey =+2L  (K(K) Psymmetric, Alk+d), Wix (a.4-122)
3Pgymmetric

=[& (k+1,k)-K* (k)H (k)] TA*(k+1) (o (k+1,k)=-K* (k)H(k)] M (k)

+10 (k+1,k) =K* (X)H (k)3 TA™T (k41) [0 (k+1,k) =K* (k) H(k) 14M" (k)

-diaé[@(k+1,k)-x*(k)H(kﬁTA*(k)[¢(k+1,k)—x*(k)H(k)]#dia%&(kﬁ
(A.4-12b)

with boundary condition

A* (N *T -di ]
( o)t A (Ny ) diag (A* (Nj) ap(NO),symmetric{tr[M(NO}P(NG),symmetridw
(A.4-13a)
=M(N;) +MT (N )-diag M(x,)) (A.4-13b)

It has also been noted on p. 996 of Ref. 16 (as can easily
be substantiated by substitution) that the solution of Eq.
A.4-19c with final condition as Eq. A.4-11 is one solution
to Eq. A.4-12b with final condition as Eg. A.4-13b.
Therefore, attention here will be focused on Egs. A.4-18c
and A.4-11 for describing the backwards evolution of the
costate matrix.

Upon performing the indicated matrix gradients in Eq.
A.4-8 (Refs. 31,32,33), the result is

0 = A*T(k41){—¢(k+1,k)P*(klk-l)HT(k)+K*(k)[H(k)P*(k!k-l)HT(k)+R(kﬂ}

+A*(k+1){-@(k+1,k)p*(klk-l)HT(k)+K*(k)[H(k)p*(kik-l)HT(k)+R(kﬂ}
(A.4-14)
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denoted as the "coupling equation” in Ref. 2.

The following arguments proceed as in Refs. 2, 9 (but
with more justification as will be indicated parenthetically
now that the boxed terms are included in Egqs. A.4-6 to
A.4-12). Note from the assumption of Eq. A.4-3 and the
form of Egs. A.4-18c and A.4-11 that theaA(k) that evolves
backward; in time from k=Ng to k=9 is symmetric and positive

definite. Without the boxed terms present in this analysis,
it 1s more difficult (if not impossible) to rigorously
establish that A(k) is positive definite since it is not
known for sure that the matrix quantity

[ o(k+1,Kk) =K (k)H(K)] (A.4-15)

that pre-and postmultiplies the first term on the right side
of Eq. A.4-1Pfc is guaranteed to be of full rank. While the
form of the matrix quantity in Eq. A.4-15 is reminiscent of
the feedback matrix of the Kalman filter (which 1s known to
be nonsingular and thus of full rank), it 1is yet to be
established that the quantity K*(k) appearing in Egq. A.4-15
is in fact the Kalman gain [fn. A~14]. Because of the
presence of the boxed,K term in Eq. A.4-10c, it can be
concluded that the f&(k) evolving from Egs. A.4-16c and
A.4~11 is symmetric and positive definite (independent of
the matrix quantity of Eq. A.4-15 being of full rank).

Since A(k) is positive definite, a consequence is that:

" A-l(k) exists for 0 < k < Ny and is symmetric”

Thus (as done in Refs. 2, 3-9), Eq. A.4-14 can be
premultiplied throughout by A~ (k) to result in

* T * * T
0 =2 o(k+1,k)P (kIk-1)H" (k) + 2K (k) (H(k)P (kik-1)H" (k) +R (k) )

(A.4-16a)
or
* * T T -1
K* (k) = (k+1,k)P (klk=1)H (k) (H(k)P(klk-1)H" (k)+R(k))
(A.4-16b)
There is no worry about
H(K)P(klk=1)HT (k) +R (k) (A.4-17)
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not being invertible since R(k) alone is invertible via the
assumption of Egq. A.2-4.

Substituting the optimal gain of Eq. A.4-16b back into
Egq. A.4-9 yields

o (k+1] k) =[¢-0P*HT (gp*ET+R) ~1H] ¥ [o-0p*HT (HP*HT+R) ~1H] T

(A *~18a)
+o+op*uT (HP*HT+R) ~1R (HP*HT+R) ~lHP*oT A, 2-18b)
=®EI—P*HT(HP*HT+R)-;H]P*[I-P*HT(HP*HT+R)—lH]TQT
+o+op*uT (ap*aT+R) " IR (HP*HT+R) ~1HP* T
~op*oT—0p*HT (HP*HET+R) ~1HP 0T
vop s (o *eTary-Lap T (R HT4R) "Lup” o ugor BT (e HT+R) TTHE 0
+op*uT (2p*HT+R) ~IR (P HT+R) ~1HP"OT (A.4-18c)
=¢P*¢T-¢P*QT(HP*HT+R)‘1HP*¢T-¢P*HT(HP*HT+R)'1HP*¢T
| vt .
+¢p*HT(HP*HT+R)‘1(ﬁ;*HT+R){HP*HTQk)?lHP*¢T+Q _ (A. 4-18d)
eop* sT—op*aT (Hp*AT+R) ~Lup* e T-an ul o uT oy lus et T T HE T (2 41386
_po*oT-0p*HT (5p*HT+R) ~1EP 0T +Q . 4-185)

=¢(k+l,k)P'(k’k-l)¢T(k+l,k)-Q(k+l,k)P'(klk-l)HT(k)[g(k)P‘(klk—l)HT(k)+§(kﬂ°lﬁ(k)P'(klk-l)¢T(k;1,k}+Q£k
(A.4-189g)
T
R o= =
o (1,3 [T () RO E () +2 "L (k[k-1)1 e (ke 1, k) +Q (k) (A.4-18h)
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The structure of Egs. A.4-18g,h is recognized to be the
standard Ricecati Equation that arises in optimal
"centralized™ Kalman filtering.

As a consequence of Theorem 5.4 on p. 171 of Ref. 23,
the optimal filtered estimate x(klk) and corresponding
covariance matrix P(kik) are related to the predicted
estimate and covariance, respectively, by the following

equations

R(k+11k) = o(k+1,k)x(kIk) (A.4-19)
and

P(k+11k) = O(k+1,k)P(klk) o (k+1,k)+Q (k) (A.4-28)

Therefore, rearranging Eq. A.4-19 and subsituting the
result of Eq. A.3-11 yields

1

i(klk) = [o(k+1,k)] ;(k+llk) (A.4-21a)

5‘1

(k41 ,K) [ o(k+1,k) =K " (K)H(Kk)Tx (k1k=1)+ & L (k+1, k)K" (k) z (k)
(A.4-21b)

Pt * ~ *
[I-9 1(k+l,k)K (k)H(k)]i(klk-l)K (k)g(k) (A.4-21c)
Factoring Eq. A.4-4b yields the following form
P (k+1!ki = (ke L, kNII-0"2 (ke 1, K)K(K)H () 1P (% [k=1) [I=0" L (ke 1, ) KO HOX) [P o0~ e LIV KO RO K- (k)¢5 0wl ks = T kei,n -nis
(A.4-22)

which by similarity to the form of Eq. A.4-20 vyields the
following association

P(kIk) = TI-K(k)H(K)]P(klk-1) [I-K(K)H (k)] +K(K)R(K)K (k) (A.4-23)

where T

"

: 1 S NN -1
R8s (ke 1, 0K () =0T (1, k) @ (ke 1, K) P (] k= 18T () [ 300 2 (o =10 BT 00 +R 05)
(B.4-24)
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Using the notation of EQ. A.4-24, EQ. A.4-21c becomes

% (k0= (1-R (0 8 00 18 (e Tk=1) +R (k)2 (6 (n.4-252)

—x (k|k-1)+K (k) [z (k) -H () £k TR-1) ]
(A.4-25b)

Thus the approach of Appendix A, utilizing the Matrix
Minimum Principle, yields Egs. A.3-1¢, A.3-11, A.4-16Db,
A.4-5, A.4-184g, A.4-23, A.4-24, and A.4-25b to completely
specify the filter structure, both before and after a
measurement update.

A.S5 Perspectives on Use of Matrix Minimum Principle to

t—

Generalize for Decentralized riltering

As also noted in Refs. 2, 3-9, +rhe costate equation of
Eqg. A.4-10c completely decouples from the filtering
equations for this specific "optimal centralized filtering”
application, so that an exact explicit solution for A(k) 1is
not necessary here. All that is necessary here is to

guarantee [fn. A-15] that the costate A(K) is symmetric and
¢

that A.—l(k) exists for & < k < Né; however, such is not

always the case in othege filtering applications since
explicit solution or approximation of the costate is
required in some of the generalizations to decentralized and
reduced-order filtering (e.g.» Refs. 9,18). In both of
these generalizations, the Matrix Minimum Principle is the
primary exploratory tool for specification of the

appropriate constrained filtering algorithms (i.e.,
jteration equations) .

Effort was expended here to obtain the correct
formulation, correct canonical equations, and correct
intermediate arguments to serve as a rigorous uide, as the
same techniques are applied (2s done 1N Chapter 2) in
obtaining discrete-time decentralized results.

Remark l:

Note that the previous formulation of Refs. 2, 3, 9 as
a simple linear control problem with specified initial
value, free terminal value, and fixed terminal time (known
as a Mayer-type variational problem as discussed for the
filtering application on P. 293 of Refs. 17, 34) is retained
if the cost function of EQ. A.4-6 is forced to degenerate
to Jjust a terminal accuracy constraint. This degeneration
is accomplished by weakening the conditions of EQ. i.4=3 on
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{

M(k) to be just positive semi-definite for @ < k < Na—l (but
still positive definite at k=No), then making the specific

assignment that

M(k) = 0for 0< k < N,-1 (A.5-1)

0

Notice that this is equivalent to ignoring or removing the
boxed terms appearing in Egs. A.4-6 to A.4-12. However, as
discussed in the paragraph following Eq.A.4-14, the strong
(i.e., valid) justification for concluding that A(k) is
nonsingular for 0 < k < No-l (without invoking "that which

is yet to be demonstrated") is consequently removed along
with the boxed terms.

Remark 2:

Five alternate derivations of the discrete-time Kalman
filter via such routes as: :

* orthogonal projections
Co* recursive least squares

* maximum iikelihood

* minimum variance

b conditional expectations

are provided on pp. 281-289 and pp. 168, 342, 343 of Ref.
35. Yet another approach to the derivation of the optimal
filter, described as "perhaps the sleekest one to date”
(preface of Ref. 36), proceeds via arguments pertaining to
three martingales (Ref. 36) that arise in the filtering
context.

Remark 3:

As mentioned on p. 696 of Ref. 2, it is well-known that
the minimum principle provides only necessary conditions for
optimality. Ref. 2 indicates that sufficient conditions for
optimality can be obtained for the continuous-time
formulation by investigating the associated
Hamilton-Jacobi (-Bellman) equation (p. 15 of Ref. 37)

3T (P, t) ik (P (t) ’%g(P,t))'P(t) ,g_g(P,t) t] (A.5-2)

o
-

Q
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with boundary condition

J(P,t) = 0 (A.5-3)

for all P(t) that satisfy the terminal accuracy constraint.
Ref. 2 states that sufficiency is provided by demonstrating
that Egs. A.5-2 and A.5-3 are satisfied for all P,
independent of how the filter gain K(t) is specified. As
summarized in Eg. 59 of Ref. 1, the Hamilton~Jacobi-Bellman
theory requires that the costate A(t) be interpreted as

A(t) = J(P,t) (A.5-4)

l Q2

Ref. 2 asserts that this demonstrative proof of sufficiency
has been carried out (for the continuous-time case of only a
terminal accuracy constraint) and that it is
"straightforward but lengthy" and so relegated to Ref. 37.
(Since explicit demonstration in Ref. 37 has not yet been
found, this may still be an open question.. However,
resolution of this 1issue does not affect the JTIDS
application.) -
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Footnotes to Appendix A

An area of further research suggested on PpD.
93-94 of Ref. 9 is to derive the
discrete-time formulations of the
decentralized filters, as needed before
clear-cut operation counts can be provided
(as done in Refs. 12, 13, 14 for other filter
structures) for further comparisons of
computational efficiency/computer burdens.

The Matrix Minimum Principle is the only tool
that has been used for generalization to
different areas such as in obtaining
decentralized filtering results (i.e.,
deriving the approriate recursive equations
describing the mechanization). The Matrix
Minimum Principle has also been utilized as
an approach to specify recursive equations
for reduced-order filtering (Refs. 18, 19)
and for optimal measurement sensor
utilization in Kalman filtering (Refs. 28,
21, 22).

The cost function modification is such that
it can be easily reverted to the previous
cost function as a special case.

In certain special cases, these equations
decouple and explicit solution of the
"hackward® equation becomes unnecessary.

An analytically inconvenient problem
statement here can give rise to analytical
problems that do not become apparent until
near the end of a fairly lengthy and involved
derivation, thus causing the analyst to have

. A
to backtrack and alter the conventilon of X

and P usage 1in the original structura
assumptions until a tractable form is found.

Standard notation is
_z_(k) = {E(Q)IE(I)I_Z_(Z)I'.OIE('()}’ The
conditional expectation E[ . | Z(k)] has a

rigorous measure-theoretic interpretation as
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the Radon-Nikodym derivative of the overall
probability measure with respect to its
restriction on the sub-sigma algebra
generated by Z(k) (i.e., the smallest sigma
algebra with respect to which each of the
random variables 2(B),2(1),...,2(Kk) is
measurable) as discussed in Refs. 24, 25, 26:
This detailed measure-theoretic or axiomatic
probability perspective 1s unnecessary for
the present discussion and so 1is avoided
here.

(En. A-7] Recently, <certain technical questions have
been raised (Ref. 27) pertaining to the
information <contained 1in the measurements

versus the information extracted during
filtering in obtaining white residuals.
These guestions have been successfully

resolved in Refs. 28, 29, and 79.

[fn. A-8] Special explicit 'consideration of both the
conditional and unconditional unbiasedness
requirement and its consequences for the
filtering application as demonstrated here
are provided on pp. 291-292 of Ref. 17 (for
continuous-time) but the distinction is
absent in Refs. 2, 3-9, 18, 19.

[fn. A-9] Use has been made of the well-known identity
E{E{.12(k)1} = E[.]

(pathological cases cautioned against in Ref.
3¢ are absent in the above application).

{fn, A-10] A particular sequence {M(k)} is not singled
out here since the resulting optimal filter
gains for the "centralized” Kalman filter
are independent of the particular weightings
(pp. 44, 45 of Ref. 25).

[fn. A-11] The gains {K(k)} are optimized to minimize a
function of P(klk-1l) rather than a function
of P(klk) since P(klk=1l) 1is a worst case
envelope that always dominates the
corresponding P(klk) and minimizing the worst
case accomplishes the minimization of both.

[fn. A-12] The entire cost function used in the

continuous—-time formulation of Ref. 2
consisted of only
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[fn. A-14]

{fn. A-15]

J, = L_[M(z),P(t)]= tr(M({z)P(1)]

which was indicated on p. 694 of Ref. 2 to be
only a terminal-time accuracy condition
(where the terminal time is equivalent to

Ng in the above discrete-time analysis).

Alternatively, Ref. 9 indicated that their
problem formulation focused interest on
minimizing (the more appropriate)

J, = Ltl[(M(tl),P(tl)f= tr(M(t))P(t))] for o <

but they state that this is equivalent to
only a terminal-time penalty and Ref. 9
treats the accuracy term to be minimized in
the same manner as Ref. 2. However, the cost
function of Eq. A.4-6b is wused 1in this
analysis because 1t 1S perceived to be more
appropriate: otherwise filter gains could
conceivably be specified to minimize the
terminal accuracy while allowing prior loose
unacceptable accuracy in estimation during an
earlier time segment.

A marked difference between the discrete—time
and continuous-time formulations 1s the
presence of a plus sign in Eq. A.4-10a
instead of a minus sign as occurs in the
continuous-time case (cf., p. 694 of Ref. 2,
p. 596 of Ref. 1, and p. 15 of Ref. 9 [where
an error in signs occurs]).

Otherwise circular reasoning would occur in
using what is to be established as an
intermediate step is establishing the desired
result,

Recall that Refs. 2, 9 utilized simpler (but
less physically motivated) cost functions J2

and J4 (as discussed in the footnote A-lzxyet

obtained the <correct £final answers via
theoretical arguments that were less than
fully justified for the discrete-time
formulation (as discussed 1in the paragraph
following Eq. A.4-14). 1In Refs. 2, 9, the
approach was motivated by the conclusion that
the well-known correct results were obtained.
Here the correct results are obtained by a
correct approach which therefore should be
more amenable to the further generalizations
to be encountered.
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