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ABSTRACT: Elucidating the nature of a familiar closed-form solution arising in the optimization of [1].

THE UNDERLYING OPTIMIZATION PROBLEM

Based on prior experience with quadratic forms as
cost functions arising in optimization problems
whose solutions are useful in navigation applications
([2-5] (endorsed in [6]), [7-9]) and practice in having
also provided two timely, critical counterexamples
[10] to the methodology used in establishing a
recent gravity model, we recognized the underlying
problem posed in [1] to be a familiar minimization
of a convex paraboloidal function, y = fx), going
from Euclidean n-space x to a scalar y (ie., f: E* —
R, where the linear weighting coefficients of [1, Eq.
11: [e,,9] € E®), with symmetric positive definite
n X n inner product matrix, P (with units being
the square of those of x), in seeking to minimize:

y =xTP1x (corresponding to [1, Eq. 16], notice
that y is sans units as an amplification factor), (1)

subject to the single constraint of lying on an inter-
secting plane of specified orientation in 3D-space:

glx=d (corresponding to [1, Eq. 14], notice that
all units can divide out), (2)

where, in the above, g is an n-vector corresponding
to the direction numbers perpendicular to the plane,
d is a scalar with the same units as x (representing
the y-intercept for x* = (0,0,0)), and superscript T
denotes the transpose. More insight is availed here
from Figure 1 into the true nature of the underlying
optimization than is offered by the planar views of
[1, Figures 1, 2], which merely rehash orthogonal
properties in [1] exhibited by all Lagrange multi-
plier applications with equality constraints [11].
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This constrained optimization problem can be posed
using a single scalar Lagrange multiplier; A (with re-
ciprocal units), within an associated scalar Lagran-
gian cost function [11, pp. 242-247, 12]:

L(x,2) =x"P1x + A[—gTx + d] (3)

to be extremized below to obtain the solution to the
original minimization problem of Egs. (1) and (2).

CLOSED-FORM SOLUTION

Taking the requisite partial derivatives of the
above Lagrangian cost function in order to estab-
lish the associated stationary saddle point of Eq.
(3), the two intermediate results are:

1
0= oL = 2P lx + j[-g|=>x = Z APg, (4)
Ox 2
oL T .
0= 5 —g" x+d=>returns planar constraint back.

(5)

By substituting the result of Eq. (4) into Eq. (5), yields
a closed-form solution for the scalar multiplier:

- %gTPg +d=0=i=
2d

g'Pg

which is substituted back into Eq. (4) yielding the

final closed-form solution that minimizes Eq. (1) and
satisfies Eq. (2):

(in reciprocal units of x), (6)

d . . .
Xmin = gT—Png (in units of x) and the associated
. . d? . .
minimum i8 ypi = 2Pz (also without units), (7)

where, for the application of {1, Eq. (14)],d = 1.
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Fig. 1-A 3-D perspective view of the underlying optimization
posed in [1], withn = 2 or n = 3.

CORRECTING A FEW MINOR OVERSIGHTS IN [1]

A rather obvious typo in [1, Eq. (1)] is that the
subscript for the third component of the three vec-
tor on the right should be corrected to be ¢4
rather than ¢p3. We compliment the excellent dis-
cussion of units, amplification factors, and physical
motivation, justification, and insights provided in
[11, and, in particular, the correct delineation of
when such an optimization is appropriate: “for
short baselines where the ionospheric and tropo-
spheric transmission errors are negligible” and
“thermal noise and multipath are the primary
sources of error that can be lessened™ through
choice selection of the “linear combinations of the”
available “carrier phase measurements” by the
optimization addressed herein. While only two vec-
tors and three vectors are addressed in [1, Table 1]
as completed optimizations for x € E* and x e E?,
respectively, we hasten to remind that a possible
situation for further improvement that was over-
looked in [1] was for x € E* (corresponding to opti-
mizing selection of weightings: x7 = [a, B, v, 8
that would arise in considering the available GPS
frequencies L1, L2, L3, and L5, which are all inte-
ger multiples of a single common onboard oscillator
(at least L1, L2, and L3 are [13, p. 594]). The only
computation needed to solve the optimization of
Eqgs. (1) and (2), as discussed herein and provided
as Xmin in Eq. (7), is obtained by merely a symmet-
ric positive definite matrix inversion (n® opera-
tions) and no more than the two indicated matrix-
vector multiplications and a scalar division and
scalar-vector multiplication (32> + n + 1), as (3n® +
n + 1) additions and (3n® + n + 1) multiplications
for an upper bound of 2(3n® + n + 1) total flop
count per computed output time step.
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