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LTHOUGH Alfano and Greer! have an elegant solution for

assessing whether two three-dimensional ellipsoids overlap,
which is both easy to understand and apparently straightforward to
test for numerically, this Comment offers some clarification regard-
ing the anticipated computational load and numerical sensitivity of
the test, which is claimed in Ref. 1 to be light enough for it to consti-
tute areal-time test. The implied eigenvalue—eigenvector calculation
usually involves an iterative solution algorithm that, while almost
instantaneous on general-purpose machines such as personal com-
puters, may not be so readily available on embedded processors.
Reference 1 advocates using explicit closed-form solutions for the
quadratic surface (which arises from quadrics in four dimensions for
three-dimensional ellipsoids) and for the conic curve (arising from
quadrics in three dimensions for two-dimensional ellipses), but this
path can be challenging when we seek to elucidate all possible sit-
uations for the polynomial coefficients to be encountered for the
general case (as derived from the underlying matrices) and, we em-
phasize here, even for obtaining merely the defining characteristic
equation that is to be solved for A. Obtaining the characteristic equa-
tion involves expanding by minors and (Ref. 2, Sec. 2.4.3) identifies
such operations as situations where we should “expect loss of cor-
rect significant digits when small numbers are additively computed
from larger numbers” because “when calculations are performed
on a computer, each arithmetic operation is generally affected by
round-off error” (Ref. 2, Sec. 2.4.1). An exception is when only ma-
trices with integer entries are present throughout all computations,
but such examples are difficult to construct for the purpose of pro-
viding illustrative examples for eigenvalue-eigenvalue problems?
(unless the matrices involved are merely diagonal and correspond-
ing matrix inverses are obtained by merely taking the reciprocal of
the diagonal terms, which yields proper fractions unless all original
diagonal terms are 1),

Closed-form solutions of polynomial equations, such as are cur-
rently advocated in Ref. 1, where coefficients are derived from
the determinants of more general (although positive definite) ma-
trices, still involve the differences of large numbers and typically
exhibit numerical sensitivities as a consequence. Only very simple
special-case numerical examples with diagonal entries are treated
in Ref. 1 to illustrate the behavioral trends and associated classifi-
cations, although the method is general [but messier for general
three-dimensional covariance matrices exhibiting more arbitrary
orientations and for machine-imposed floating point representations
of the numbers (expected to be encountered within the applica-
tion scenario as the more likely category of common formatting for
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matrix entries)]. According to Ref. 2, Sec. 7.2, “The act of com-
puting eigenvalues is the act of computing the zeros of the char-
acteristic polynomial. Galois theory tells us that such a process
has to be iterative if n >4 and so error will arise because of fi-
nite termination” [of such iterative algorithms and the computed
answers].

Before we proceed, a distinction is made here between what is
offered in Ref. 1 and what is offered in Ref. 4 as a test for ellipsoid
containment before other historical connections and observations
are made. Reference 2 provides a test for full containment of one
ellipsoid within another only when they share a common center, ¥,
as between
@-0"(3)P'@c-H<1 ad  -BDT(HP'@-H<1

M

and the second is fully contained within the first if and only if
P 1 < P 2 (2)

as a strict positive definiteness condition on matrices that themselves
are each positive definite (as are all well-behaved, nondegenerate co-
variance matrices.>®) A similar requirement on the two covariances
participating in an earlier test for ellipsoid overlap (not containment)
was encountered in Ref. 7 before test could be specified for ellip-
soid overlap (in n dimensions) where the centers of the respective
ellipsoids could differ, and where the particular covariance matrix,
Py (in the case of Ref. 7, this was the solution of the Riccati equa-
tion) is so related to the other covariance matrix, P, (in the case of
Ref. 7, this was the solution of the Lyapunov equation). The proof
of Eq. (2) was easily obtained in Lemma 5.1 of Ref. 7 by just taking
the synchronous difference of the two respective matrix difference
equations that describe their evolution (in discrete time) by demon-
strating that the difference is always positive definite (as it evolves
for all time steps k > 0) as the positive definite matrix within the
bracket below, as pre- and postmultiplied by a nonsingular matrix
(Recall that the computed transition matrix is always nonsingular)
and its transpose (yielding a positive semidefinite intermediary ma-
trix as the first term) and added to a strictly positive definite matrix
(the second term) to yield a strictly positive definite matrix result
as:

[Pol + 1) — Pitk + 11 0)] = ®k + 1, k)[Pa(k)
—PikOIDT(k +1,k) + Dk + 1, k) Pk |k — DHHT

x [HP\(k|k ~ DH" + RU0)] " HP(k |k~ DT (k + 1, k)
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The associated optimization problem in Ref. 7 had an intriguing
similarity to that in Ref. 1, as explained below. In the case of posing
the simpler problem of a one-dimensional test for the overlap of
scalar Gaussian confidence intervals in Ref. 8 to show how the
same test then generalizes to n dimensions, as a test for the overlap
of Gaussian ellipsoidal confidence regions, the version of the test
in Ref. 8 (simpler than that in Ref. 7) made possible a closed-form
answer to the optimization.

The overlap test of Ref. 1 needs matrix positive definiteness/
semidefiniteness tests along with an implied eigenvalue—eigenvector
calculation. The test is obtained by exploiting features of a three-
dimensional ellipsoid translation represented as a rotation in four-
dimensional space, a technique familiar in computer graphics
applications (Ref. 9, pp. 479-481), included for the two ellipsoids
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(without loss of generality, because coordinate origin can always be
moved to perform this numerical test at the location of the second
possible offset, thus causing it to be zeroed out). After Egs. (4) and
(5) are combined, the test consists of solving for A in

xTA[My 4 —A"'B]x=0 (6)
to determine whether or not the underlying two three-dimensional
ellipsoids of primary interest above either overlap or not. Corre-
sponding compatible eigenvectors also need to be found and tested
for consistency to complete the test of Ref. 1. [Observe that a
solution to the well-known generalized eigenproblem AAx = Bx
(Ref. 2, Sec. 7.7) is also a solution of the fundamental Eq. (12)
of Ref. 1 because Adx = Bx & [AM — Blx =0=x"[AM — Blx=0.
Use of Choleski factorization and the symmetric QR algorithm is
offered in Ref. 2, Sec. 8.7.2, as a stable solution for the case of A, B
being symmetric and A being positive definite, as is in fact the case
for the matrices encountered in Ref. 1 and herein. Observe thatRef. 1
deduces overlap by focusing on how pairs of eigenvalues of nonsym-
metric A~'B behave. Symmetric matrices have all real eigenvalues
but nonsymmetric matrices sometimes have complex eigenvalues.}
The clear result of Ref. 1 was obtained by embedding a test for the
overlap of n-dimensional ellipsoids into a test that is performed in
an associated (n + 1)-dimensional space (which, coincidentally, the
analysis of Refs. 7 and 8 also did). However, the resulting test in
Ref. 1 appears to be simpler to implement as a lesser computational
burden (than that of Ref. 7, obtained 30 years earlier) by Ref. 1
apparently avoiding any intermediate iterative techniques in solv-
ing for the implied cigenvalues and eigenvectors used in making
the determination. However, additional logic still needs to be pro-
grammed for scaling the last component of the eigenvector x to be
1, consistent with the methodology’s acknowledged constraint en-
countered after the n-dimensional problem has been embedded into
(n -+ 1) dimensions, and for other aspects of unwinding or interpret-
ing a final decision regarding the presence or absence of overlap).
Reference 1, not needing any condition of Eq. (2) to be satisfied,
is for a case more general than that treated in Refs. 7, 8, 10, and
11; however, the numerical calculations of Refs. 7 and 8 are tai-
lored for a stand-alone real-time decision (which was used aboard
U.S. submarines). If one were to attempt to generalize the results
of Ref. 1 beyond two- and three- to n dimensions (as already done
in Ref. 12 for just the theory and proofs®), a modified version of
the computational approach of Refs. 7 and 8 may be useful in this
endeavor (and perhaps even for two- and three dimensions as well)
because the iterative algorithm used is a contraction mapping with
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a geometric rate of convergence (but needs to use double precision
for all matrices and vectors involved).

[The solution offered in Ref. 13 is a precedent for what is spec-
ulated later in Ref. 12, Conclusions, as likely being possible in the
future: to be able to solve successfully for the simultaneous intersec-
tion of several quadratic surfaces. However, intersection of four (or
more) quadratic surfaces in 4-space (consisting of three coordinates
of position and receiver’s time clock offset) was obtained in closed
form in Ref. 13. However, despite a closed-form solution path now
being available, GPS receivers continue to use an earlier iterative
solution approach that also yields, as a by-product, an evaluation
of associated geometric dilution of precision, which assesses the
goodness of the satellite geometry.] The use of an iterative solu-
tion technique is not necessarily at odds with providing real-time
answers and may be the simplest path to follow. A navigation ap-
plication using an even easier criterion of ellipsoid containment in
dimensions higher than three is discussed in Ref. 14. Some missile-
chasing-interceptor tracking-sensor processing and also some mul-
tiplatform rendezvous control strategies may benefit by focusing
on use of six-dimensional ellipsoids that conjoin three-dimensional
position ellipsoids together with three-dimensional velocity ellip-
soids within a combined six-dimensional hypothesis test, because
both position- and velocity-tracking errors originate from a common
source, being computed outputs of the same on-line estimation al-
gorithm from which the target tracks were generated (i.e., spawned
from the same common sensor measurement data as fundamental
stimulis) and the associated cross covariances, as computed, can
be seen and verified to be nonzero, as further evidence that both
computed velocity errors and computed position errors are cross-
correlated and should be considered together jointly in a test (which
does not preclude also using them separately afterward in individual
three-dimensional tests).
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