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1 3 Cases for Sensitivity Analysis

1.1 Definition of Terms:

Assumption: There are no x; (i.e., time-varying states) present within this
analysis so they are not considered any further here below. Evidently, the
nomenclature that has evolved to denote time-varying states within “sensitivity
analyses” within this Trident group is x;.
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where, in the above, the states being investigated to determine their effect, by
convention, are denoted with a ¢ appearing in front of them, as:
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and their corresponding noise covariances (for these White Gaussian Noise terms
being present and to be accounted for) are:
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and the general matrix E appearing on the Left Hand Side (LHS) of what is
the so-called “Observation Matrix”, H, appearing in Eq. 2 above, is identical,



in some sense, to the role of the actual observation matrix arising in the state
variable representation of the underlying system, as will be invoked for use in
several different situations, as indicated, where, F is given to start with and
the interpretation throughout the above is that E,, corresponds to the 3 velocity
states (the top left 3 x n block) and E,, corresponds to the 3 position states (the
middle 3 x n block) [and so-far unidentified or suppressed at the corresponding
place in the earlier presentation, perhaps because it is of less direct interest
in what follows, the 3 x n block in the lower right corner corresponds to the 3
“gyro tilts” or attitude states]. The symbol E in Eq. 2 represents the Sensitivity
Matrix, which is a “given” within the three exercises focused upon as Cases A,
B, and C, as our primary goal here, as pursued, respectively, in Secs. 2, 3, and
4, with computational results reported in the concluding table at the very end.

1.2 Computational Evaluation Algorithms:

The following sequence of 8 familiar equations (Egs. 7 to 13, below, constituting
the calculations performed within a Kalman filter implementation) are to be
repeatedly iterated to convergence:
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The above items in red can be omitted entirely to leave only those involved in
computing covariances remaining. However, to merely perform a covariance
analysis, the actual measurement realization, z, and the state estimation equa-
tions involving X are superfluous, unnecessary, and need not be present; so skip
or delete Egs. 7, 10, 11, and 13 from the above iteration equation but store the
associated computed Kalman gains, K, sequentially ordered according to their
respective time-stamps (since the time sequence of K’s are saved to be used
later).



These same 8 equations (but reduced by 1 now by merely incrementing the
time index k instead) will now be viewed in more detail below using the nomen-
clature of another prevalent standard convention for a Kalman filter. (There
is yet another convention that only looks somewhat similar to this but is, in
fact, also correct but is not addressed at all in the 1974 TASC textbook but
is addressed in R. Grover Brown’s Book, 4th edition, 2012. When I hear of
competent people or organizations noticing or complaining about discrepan-
cies between two different filter implementations, I usually suspect apparent
contradictions between standard TASC formulation and that alternate version
reported on by R. Grover Brown! Both formulations give identical outputs
from identical inputs.) For reassurance that Eqgs. 7 to 14 are, in fact, correct
and consistent with the standard TASC convention below:

x(k+1k) = o(k+1,k)x(k|k)
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k= k+1 (increment the time index so that 2 earlier equations are now omitted)

Again, to merely perform a covariance analysis, the actual measurement re-
alization, z(k), and the state estimation equations involving X(k + 1|k), X(k|k),
and z(k) are superfluous, unnecessary, and need not be present; so skip or delete
all equations depicted above in red from the above iteration equation but store
the associated computed Kalman gains, K (k) (that still correspond to when a
sensor measurement was taken without needing the actual measurement itself),
sequentially ordered according to their respective time-stamps or time index k
(since the sequence of K (k)’s are saved to be used later). Deleting these three
lines above in calculating these covariances is really not so strange when one
recalls that for these Gaussians present throughout linear systems, the mean is
independent of the variance and, likewise, the conditional mean [i.e., the optimal
estimate] is independent of the conditional variance of estimation error.

2 Case A: “TRUTH!”



Beginning with Eq. 7, the corresponding discrete-time representations of state
estimator, state evolution itself, and state error-in-estimation being, respec-
tively, Egs. 15, 16, and 17:
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from which we have the general discrete-time solution evolution described by:
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where, from the above, more structural insight can be gleaned by collecting the
following summarizing terms:
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where the above Eq. 22 final result is obtained by multiplying Eq. 18 term-by-
term by it’s transpose and then taking expectations throughout (on both sides)
and using the fact that uncorrelated Gaussian entities are independent of the
other terms and are of zero mean in order that several of the requisite interme-
diate terms drop out (i.e., go to zero when multiplied by a zero valued term)
and the concluding Eq. 22 result is valid for any linear discrete-time Kalman
filter with any gain. Within the above described derivation, we tacitly utilized
the property and relationship between total expectations and conditional ex-
pectations, since the optimal estimate is, in fact, the conditional estimate given
the measurements (i.e., £ = E[z|Z]) then E[2] = F[F[z|Z]] = F[z]. Since
above Eq. 22 is true for any set of gains K;, proceed by holding the K; fized,
then OP;;/ opP?; = ij. There is, in fact, a precedent for using partial derivatives
in this manner [with respect to (wrt) some states but not wrt other elements
of the same covariance matrix P], while investigating the general expression
for the solution to the covariance evolution (i.e., “Variations of the Sensitiv-
ity Matrix” due to scalar parameters on pages 21 to 26 for a discrete Kalman



filter, and also in Appendix A for EKF’s in Egs. A.6 and A.7) that arise, as re-
ported from SRI Information and Control Laboratory by B. L. Ho, Sensitivity
of Kalman Filter with Respect to Parameter Variations, SRI Project
5188-305, Memorandum 33, March 1968. Their list of cited references from both
the open and closed literature is also familiar (with very familiar authors such
as: R. E. Larson, David Luenberger, B. Friedland, T. Nishimura).

*Since P(P°) is linear in P° and the above result is exact for finite AP;; +
APJ?’J-! (Therefore use the above result and calculate Ar;, as r; = 0;/0¢ in
nonlinear manner.)

*Furthermore, AP;; = N%—AP{} is always an upper bound to the optimum
results obtained by letting K; — K; optimal-

*Similar arguments apply to evaluating the effect of changes to the R; + Q.

*These results are general and DO NOT assume that Z = 0. For that case,
N = PP, ! if you start with the optimum K.

Another fresh authoritative discussion of sensitivity analysis that is different
yet consistent with the TASC approach is found in Sec. 7.8 Error Budgets
and Sensitivity Analysis (pp. 313-317) by Mohinder S. Grewal and Angus P.
Andrews, Kalman Filtering: Theory and Practice, Prentice-Hall Informa-
tion and System Sciences Series, Simon & Schuster/A Viacom Company, Upper
Saddle River, NJ, 1993.

Ralph Williams obtained computed tabular evaluation results “using only
ARW and the 2"¢ run used gains obtained via the iteration of Sec. 1.2 first but
then with other noises zeroed out and using proper initial conditions as being
also totally zeroed out (i.e., p® = 0)”. While it is true that the initial condition
for the error in estimation, Z, (being the mean) should be the zero vector 0;
however, the error vector  is Gaussian and, as such, is a two parameter family

with both a mean vector and a covariance matrix. Theoretically, the initial con-
(nxn)
dition covariance matrix should never be the zero matrix, 0 . Theoretically,

the initial condition covariance of estimation error matrix must be positive def-
inite (unlike the situation for the covariance of plant or process noise, which can
be positive semi-definite without incurring any problem). No element along the
principal diagonal of P, can be zero let alone the entire covariance matrix.

From information pertaining to numerical properties of the solution to the
Ricatti equation that I obtained in the mid- to late 1970’s, I know that when
the system is Observable and Controllable, then the Riccati equation can have
n? possible solutions but can have only one unique solution when P, is posi-
tive definite (within this context, bad behavior of attempted Riccati equation
computed solutions is more understandable when accumulated computational
roundoff error or truncation error intefere and set things off in a wrong direc-
tion). Just what value should be used for P,? I don’t know. Perhaps, if one
used the Information Matriz formulation instead for these Kalman filter covari-
ance calculations, one could use it with very large yet finite initial values on the
main diagonal and zeros elsewhere (to correspond to very small values indicated
to be desired for P,) yet still have the computed results be positive definite for
both!



3 Case B: CSDL and JHU/APL
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where, in the above, the states being investigated to determine their effect, by
convention, are denoted with a & appearing in front of them. However, here
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since each constituent component is called out and identified separately in Eq. 23
and, likewise, their corresponding associated noise covariances (for these White
Gaussian Noise terms being present) are already properly accounted for sepa-
rately in Eq. 24. However, the appropriate general E still appears on the LHS
of the Observation Matrix, H, in Eq. 24, as it should.

The corresponding computed tabular evaluation results for Case B: CSDL
JHU/APL were obtained, according to Ralph Williams, “using the same ap-
proach with indicated changes in H and indicated changes in state definitions
corresponding to Eq. 1 and 3 and, lastly, changes in Q matrix corresponding to
the indicated changes in Eq. 4”.

4 Case C: CSDL (with ARW iteration contribu-
tions)

To evaluate for Angle Random Walk (ARW) associated with the gyro attitude,
again assume that there are no x; states present and also assume that the effect



on the system is only due to the presence of process noise, as represented by:
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where, in the above, the states being investigated to determine their effect, by
convention, are denoted with a & appearing in front of them, as:
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and their corresponding noise covariances (for these White Gaussian Noise terms
being present and to be accounted for) since the constituent components are
uncorrelated Gaussians (and so independent) and of zero-mean (therefore cross-
terms drop out when Eq. 32 is multiplied by its transpose and expectations
taken throughout) to yield:
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and the general E appears on the left hand side (LHS) of the Observation
Matrix, H, in Eq. 29.

To properly account for inherent cross-correlations present in the system
formulation of Egs. 28 to 33, now forming the appropriate matrix and taking



expectations (also denoted by an upper case E)throughout yields:
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The corresponding computed tabular evaluation results for Case C: CSDL
(with ARW iterations) were obtained by Ralph Williams using the same ap-
proach as for the Case B JHU/APL evaluation approach, with indicated changes
in H and indicated changes in state definitions corresponding to Eq. 1 and 3 and,
lastly, changes in Q matrix corresponding to the indicated changes in Eq. 47,
which confirms the correctness of Eq. 31 (just as Ralph Williams had originally
presented) but now also displays slightly more internal structural detail here to
allow easier, more direct reader confirmation.

Ralph William’s computational evaluation results are found in the following
table, corresponding, respectively, to Cases A, B, and C above.



