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As investigators seek to verify various computer
implementations of Schweppe’s likelihood detector in a variety
of different applications from radar and sonar to general
statistical hypothesis testing on received signals, it is useful first
1o validate software performance by using a low-dimensional
test problem of known solution, as offered here. A closed-form
solution is provided here for a Schweppe likelihood detector
in terms of an intermediate Kalman filter, as utilized in its
implementation, for detecting the presence of a two-state signal
model in Gaussian white noise. The associated error probabilities
are also evaluated following a procedure, developed by Van
Trees, which utilizes optimized Chernoff-like bounds for a tight
approximation. A methodology is demonstrated for appropriately
sefting the decision threshold for this example as a tradeoff
against allowable observation time. By using this or similar
examples, certain qualitative and quantitative aspects of the
software implementation can be checked for conformance to
anticipated behavior as an intermediate benchmark, prior to
modular replacement of the various higher-order matrices
appropriate lo the particular application. This procedure is
less expensivé in central processing unit (CPU) time during the
software debug and checkout phase than using the gemrally
higher n-dimensional matrices of the intended application since
the computational burden is generally at least a cubic polynomial

in n during the required solution of a matrix Riccati equation.
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I. INTRODUCTION

Low-dimensional 1-, 2-, and 3-state test cases
such as those of [1, pp. 125-127, pp. 138-142, pp.
243-244, p. 246, pp. 255-257, pp. 319-320], [2, p. 184,
pp- 186-188], {3-12], [13, pp. 256-257, pp. 281-282),
[23], [25] have been extensively used to verify software
performance of newly coded implementations for
Kalman filter applications. The benefits of doing so
are the reduced computational expense incurred during
software debug by using these low-dimensional test
cases and the insight gained into software performance
as gauged against test problems of known solution. A
modular software design must be adopted in order to
accommodate this approach, so that upon completion
of successful verification of the objective computer
program implementation with these low-dimensional
test problems, the matrices corresponding to the
actual application can be conveniently inserted as
replacements without perturbing the basic software
structure and interactions between subroutines. (Only
certain time-critical, real-time applications would defy
handling in this manner by needing matrix dimensions
that are “hardwired” to the particular application.)
This paper similarly offers a simple transparent
and tractable two-dimensional example that can be
used to verify any software implementation of the
Schweppe likelihood-detector. Simultaneously, this
presentation constitutes a quick overview of all the
relevant aspects of a Schweppe likelihood detector
implementation along with conditions of applicability
that must be cliecked as a rationale for the correctness
of what is being presented. Without this accompanying
substantiation, it would be pointless to check software
performance against a target solution unless veracity
of this test case were assured. By establishing the
pedigree of the solution advertised here, subsequent
software verifiers, when faced with verifying and
validating newly coded Schweppe likelihood subroutine
software modules, can treat the entire exercise as
one of confirming the proper performance behavior
of the new module as a black box by just confirming
the outputs without having to understand the internal
intricacies. Thus their job is simplified by the results
presented here.

The landmark Schweppe likelihood detector [15]
is discussed extensively in both [17] and in [14], and a
methodology was first presented in [18] for evaluating
the associated receiver operating characteristics
(ROC) consisting of the probabilities of false alarm
and miss, also known as one minus the probability
of correct detection. In the parlance of statistical
hypothesis testing, these are the probabilities of error
of the first and second kind, respectively. Correctly
implementing a Schweppe likelihood ratio is, in
general, more challenging than simply implementing
a Kalman filter with its associated Riccati equation
for the time evolution of the covariance of the
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estimation error. In fact, the Schweppe likelihood
ratio fully incorporates a Kalman filter, but also
utilizes many more computations in evaluating the
requisite Chernoff-like bounds needed in ROC
tradeoff considerations in setting the operating point.
All these aspects are simply illustrated here with a
simple 2-state example so that qualitative insight can
be gleaned from this in ascertaining how various
parameters interact and influence the final tradeoff
decision associated with operating point selection and
fixed decision threshold specification/evaluation. This
example is offered here because comparable examples
for Schweppe’s likelihood implementation appear to
be lacking in the literature for anything other than the
scalar single channel case. This two channel example
is almost completely of closed form, but recourse is
made to some simple FORTRAN computer programs
for evaluating the two associated Chernoff-like bounds
needed in the fundamental parametric study of allotted
decision time interval versus associated false alarm and
correct detection probabilities to be incurred.

Il. 2-STATE SIGNAL MODEL FOR AN EXAMPLE
SCHWEPPE’S LIKELIHOOD DETECTOR

The objective here is to evaluate the probabilities
of correct detection and false alarm and to use these
evaluations to select an appropriate decision threshold
for a Schweppe likelihood-ratio implementation of
a Neyman-Pearson receiver. This objective is to be
carried out for a continuous-time second-order linear
system having the structure depicted in Fig. 1 as
representing the received signal content, corrupted
by additive independent zero-mean Gaussian white
noises in each of two measurement channels. The
corresponding state variable representation of the
system of Fig. 1 is as follows (consistent with the
requirements of [14, sect. 2.1.5]):

b 0 13[=x 0
alal =l o]l o
dt X2 0 0 X2 1 .
with statistics or associated expectations being

E[X(O)]=[:l;]; Po=cov[x(0)]={§ (2)];

Efui()ui(r)} = 6@ — 7).

The measurement structure or outputs of the
measurement sensors are correspondingly defined as

(210 2l1e)
<o ) @
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Fig. 1. Signal flow diagram depicting structure of particular signal
to be detected.

with associated statistics

vovon=[1 ]

0 N ’

where uy, v1, and v, are zero-mean independent,
white Gaussian noises that are all uncorrelated with
the Gaussian random vector initial condition x(0),
and N = Np/2, where Np/2 is used in [14, p. 8] to
represent the covariance intensity level of the white
Gaussian measurement noise. In terms of fairly
familiar standard notation for linear systems described
by state variables, such as the convention utilized in
[1], the following matrices suffice to summarize the
parameter values to be encountered in the system
depicted in Fig. 1:

)

10 2 0
IR R P
02 0 2

o=t r=[y 3] so=[]. @

0 N 7

Before proceeding too far, it is prudent first to test
for observability of the system using the well-known
Kalman rank test [1, p. 69] as

. : 00
rank[HT ! FTH”)] = rank 1o }=2=n
02 :1080

as a proper submatrix of the observability Grammian,
the system is observable. Similarly, since

0 : 1}=2=n
1:0

and, consequently, the system is also controllable (i.c.,
randomness affects every state). If both observability
and controllability conditions were not satisfied (or

if detectability and stability conditions [2, pp. 82-83},
which are somewhat weaker conditions more readily

rank[G: FG] = rank




satisfied by actual systems, were not satisfied) then

it would be pointless to continue because a positive
definite solution to the Riccati equation would no
longer be guaranteed to exist, nor would the associated
Kalman filter (to be utilized in mechanizing the
likelihood ratio) be guaranteed to be exponentially
asymptotically stable. However, for this example,
observability and controllability are in fact satisfied as
demonstrated above, so the solutions of the associated
Riccati equation and Kalman filter are well behaved.

. KALMAN FILTER-BASED VERSION OF
SCHWEPPE LIKELIHOOD DETECTOR

The Kalman-Bucy filter that can be used to
implement the Schweppe likelihood ratio [15, 16]
solves the following two differential equations for the
estimate and covariance, respectively:

—;;i(t) = F&(f) + PO)HT R [2(t) - H&(t)] (5)

with ) y
20 =71, 6
=" ©

where P(r) in the above is obtained as the solution of
the Riccati equation: .

%P(t) =FP(t)+ P()FT — P)HTR'HP(r)

T [2 O]
+GQG; P0) = . ™
0 2
A unique solution to this covariance equation is
guaranteed to exist and be positive definite since, as
established above, (F,G) is a controllable pair, (H,F)
is an observable pair, and additionally P(0) above is
obviously positive definite. For the parameters of this
example, these two fundamental Kalman-Bucy filter
equations become

#0=[y o] o+roly ][ ]
x{z(t)—[(l) g]ﬁ(t)} @®)
with
ﬂm=ﬁ] ©)
and /

%P(t):[g (1)] P(t) + P(2) [(1) 3]
-rofy S [ o 27
0
+ [1] (1[0 1] (10)
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with

P(0) = [2 O] . | (11)

0 2

Suppose that in the specific signal reception
problem, interest is in whether the signal x»(r) is
present in the received measurements or whether
there is only noise v, present. Then the underlying
hypothesis test is described by the following (cf., [14,
egs. (1), (2) on p. 8, eq. (88) on p. 26, eq. (112) on p.
31D

Hi:r(t)=1[0 1) [Z] =[0 1}[(1) g} [2]
oy 5[]
X1
=027 +ne @

versus

Hg : r(t) = vo(t), (13)

where the effective observation matrix for this
detection problem is, as seen from (12), to be

H = [0 2]. The Riccati equation for the covariance
of estimation error of the Kalman filter simplifies
to

%P(t):[g (1)] P(t)+P(t)'[(1) g]

—PQ) [(2)] [-11\7] [0 2JP(t) + [8 (1)]
with initial condition P(0) = [(2) g] (14)

This is a nonlinear matrix Riccati equation of
dimension n = 2, whose solution can be obtained by
the standard device of solving a related linear problem
of twice the dimension, 21, formed as

; F() GOQGT ()

ET(t) =
HT()R1H(r)

I()
~FT(z)
(15)
with initial condition T(0) = h,x2,. In order to relate

the solutions of (14) and (15), T is partitioned as

Tn @ Tn |
ToH=1{... (16)
Tn : Tz
from which a solution of the original covariance
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equation can be obtained as

P(t) = (T11P() + T]2)(T21P0 + Tzz)_l é I‘](t)r'z_l(t).
17)

For the parameters of the present example, the
differential equation of (15) for the time evolution of
the matrix T(f) becomes

(0 1 0 0]

. 0o 0 ! 0 1

B?T(t)= N V() (18)
0 0 0 0
[0 o2 : -1 0]

T(t) = e®T() = £~ {(sI - B)™'}

It is easily demonstrated by hand calculations for
the relatively sparse matrix B that

_ py-1 _ adj(sI - B)
(sT=B)" = G = B)
-1 1 -1 1 7
s s2—a? s3s2-a?) s(s?2-a?)
0 s -1 1
_ s2—a?2  s(s2—-a2) s2-a?
0 0 1 0
s
a? -1 s
0 T o2 2_o? |

(20)

Using partial fraction expansions and appropriately
inverse Laplace transforming (20) yields

[ 1 a~lsinhat a~ %t — a~3sinhat —e~2+a~2coshart |
0 coshat i o 2—a Zcoshat o~ lsinhat
= (21)
0 0 1 0
L 0 . asinhar —a~Tsinhat . coshat i

with T'(0) = I4»4, where for convenience in notation we
take
24 8 4
o= — = 19
NN (19)

and where the matrix on the right hand side of the
differential equation is denoted by B in what follows.
The solution to (18) can be obtained by first finding
L~Y(sI — B)~'}, where s is the Laplace transform
variable.

2+ a2 — a~3sinhat
() =

L a~?—a~Zcoshat

[ 1
D(e) =

[ —a~!sinhat

which also satisfies the initial condition T'(0) = Ijx4 as
a check. Now according to (17) and [14, eq. (184) on
p- 43]

Ti(t) = TuPo + Tz
(22)
Fz(t) = T21P0 + Ty
and therefore,
2a-1sinhat + o~ 2coshar — a2
(23)
2coshat + o~ sinhat
0
(24)

2asinhat + coshat
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from which we can reconstruct the final covariance of
estimation error as

P@)=nr7 25

Now, follqv)ing [14, p. 24, eq. (77)], denote the desired
signal as Hx. Then the covariance of estimation error
associated with this signal is [14, p. 24, eq. (85)]

£ 1S(),N)=HP()AT (26)

where the notation £(¢ | S(-), N), indicates that this is
the covariance of the error in estimating the signal
x2(2), where the intensity coefficient of the white noise
that is corrupting the measurement is known to be N,
and S() = x2(-) denotes the signal that is sought.

IV.  QUALITATIVE ASPECTS OF DETECTOR
PERFORMANCE

An intermediate parameter that is valuable in
obtaining the probabilities of false alarm and correct
detection, Pr and Pp, respectively, of the optimum
Neyman-Pearson receiver (to be implemented as a
Schweppe log-likelihood ratio [15]) is p(s). Now in

general:
1(5) = pr(s) + pn (s) @7)

where ;1p(s) = 0 when the signal has a zero expected
value. Here s is only an auxiliary parameter rather
than being the Laplace variable encountered in (20).
These two components of p(s) are

uR(s)é%g [(l—s)ln (1 + %)
—ln( (1 ;)/\ )] (28)

m)——zz

and
(29)

(1 =57
where the A; in the above are obtained as solutions of
the following integral equation:

T _ .
Xigi(t) = /T HE [x(t)x" (u)] H” ¢;(u) du,

for T,<t<Ts (30)

where T; and T are the initial time and final
completion times of signal reception. That is, the A;
are the eigenvalues and the ¢;(r) are the orthonormal
eigenfunctions! corresponding to the positive definite

matrix
HE [x(t)xT (u)] HT (31)

IEquations (28)-(30) pertain to an underlying Karhunen-Loeve series
representation corresponding to the correlation function kernel of
known structure.
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with T '
a / (B30 0RO) bi)dt (32)
T

where ®r(:,-) is the transition matrix associated with
the system matrix F in (3). As spelled out in [14,

p- 22, p. 36] and [17] for the appropriate evaluation
procedure, certain useful identities can be introduced
(as developed by Collins [18]) that relate the above
infinite series to the integral of the covariance of the
estimation error £, (¢), which is already available as
an adjunct to Kalman filter implementation and can
be precomputed off-line. By exploiting these useful
identities, no calculations are actually required from
the unwieldy defining expressions of (28) and (29). In
this vein, please consider the followmg representation
[14, p. 47, eq. (215)}: -

-9

Iy
/LR(S) = 2N {gp(t | S()’N)

=& (1150 5o ))}dt-

(33)

Even calculation with the less complicated expression
of (33) can be entirely avoided by making use of yet
another integral equality [17], [14, p. 44, eq. (195)]
(and credited in [14, p. 44] to A. Baggeroer [24]):

LY S()N)d
- t .
§ [ Geisoma
I
= In (det [[2(Ty)]) +/ tr[F(¢)]de.  (34)
By exploiting the identity of (34) within (33), we find

1 T
BR(s) = 2(1-5) {mmet[rz(Tf)]) + [ utF dt}
- %{ln(det[FZ(Tf )] |{replaoe a throughout with av/T—s}

+ /T K tr[F(t)]dt} (35)

which for the parameter values of this example (as
summarized in (3) and (4)) simplifies to

BRr(S) = a-s 5 ln[Zozsmh(osz) + cosh(aTy)]
- -;-ln [Za\/ 1— ssinh (ax/l - sTf)
~ +cosh (av1-sTy) } . (36)
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2+Ty) 5 @+7) 2,
G v + o B s (/1)
) =
fir(s) 4[2y/T=stanh (VI=sTy) +1)?
Tr(2+T,
I s i) “
4[2v/T=stanh (VI=sTy) +1)°

The term involving the integral in (35) has dropped
out since the trace of F for this example is zero. The
derivative of the expression of (36), with respect to the
auxiliary parameter s, needed for eventual probability
evaluation via a Chernoff-like bound, as in [14, sect.
2.2.2), is

Br() =~ % In[2asinh(aTy) + cosh(aTy )]

\/ia———.s; (1 + lzf-) sinh (a\/l - sTf)
[2av/T=ssinh {avT=5T} ) + cosh (a/T— 5T} )]

a®T; cosh (a\/__ I})
[Zm/_s sinh (a\/__ 1}) + cosh (a\/_—— Tf)]
@

1
4 =
2

NI"‘

For concreteness in the present example and to allow
a complete numerical evaluation, let the initial time
be T; =0 s (sec) and the measurement noise intensity
level be No = 8 squared units/s with the final time T
remaining open for specification, but with a desired
target false alarm of less than 0.1. Then the necessary
expressions for pgr(s), fir(s), and fir(s) are found via
differentiation with respect to s as, respectively,

pR(S) = Q-;-sl In[2sinh(T}) + cosh(T})]

I {2\/1_:—ssinh (Vi=sty)

+ cosh (\/I——sTf)] (38)

and

-_1 5 In[2sinh(Ty) + cosh(Ty)]

2+T,
(\/:;_f_)t h(\/ —-STf)+2Tf

1
4 [2v/1—stanh (Vi—sTy) +1]

BR(S)

+

(39)

and

The motivation for the reformulation of (39) in terms
of tanh(:) in place of the form of (37) is to simplify
the implementation of the computer program to be
used for explicit numerical evaluation, as presented in
Section V.

Recapitulating for this example, the solution of the
associated underlying state equation

x(f) = F(O)x(t) + G(t)u(t)

has the following form:

(41)

x(t') = &p(t,0)x(0) + /0 t &p(t, w)G(W)u(w)dw. (42)

Taking the expection throughout (42) yields a system
mean of

m,(1) £ E[x(®)] = €r(1,0)E[x(0)]

+E [./o’ Sr(t, w)G(w)u(w)dw] 43)

which simplifies to

m,(t) = ®r(t,00x(0) = ®£(,0) [:ﬂ
fortime >0 (#4)

since the contribution of the second term on the right
side of (43) is zero because the white noise has zero
mean. Now

S(@) = x2(t) = H(@)x(¢) 45)

so that
. ¥
mg(t) = E[S(t)] = H (OE[x(t)] = H{)®F(t,0) [ r)] .

(46)

For the parameters of this example, (46) is evaluated

to be
ms(t) = [0 2] {0 ;] [:'I;]

=10 2;{:‘;] =2 (47
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CALCROC 11:03EST

100¢ PROGRAM FINDS RECIEVER CHARACTERISTICS FOR THE TWO DIMENS IONAL EXAMPLE

101 po 31 17F=3,12,3
102 vF=17TF
110 prINT 27

120 27 FORMAT(" RECIEVER OPERATING CHARACTERISTICS™)

121 pRINT 26 -

122 26 FaRMAT(" TF=")
123 PRINT 20s7TF :
124 25 FoRMATCLHIFS.1)
130 FRINT 28

140 28 FormAT(" s EMU EMUD

150 esINHT=C(EXPUTF)~exp(~1eTE) )/ 2.
160 ecoswT=(EXP(TFI+eExP(-1eTF)) 2,
170 AUGL=2.*ESINHT+ECDSHT

180 paAnrTi=(ALOG{AUGL1>)/2.,

190 po 30 1=1:1%9

200 si=1

210 s=51720.

220 mal=1.-s

230 mA2=seRT(A1)

240 pd4=TreA2

250 HsIN=(EXP(AII—EXP(-1.eadd /2.
260 ncos=(exp(Add+exr(~1.sad4))/2.,
270 HMTANSHSINAHCOS

280 AUGE=2.¢R2+HSIN+HCOS

290 rART2=.5¢AaL06CAUG2)

300 snu=Al*PARTI-FARTE

201 NUMI=C((2 . +TF)SHTAN)/AR+2 . ¢TF
210 peENMI=R.*A2enTaN+].

320 emur=-FRRTIHNLUMLZ(4 . onErml )
330 Hsec=(1./ncDs)

340 cl1=(2.¢(2.+7F))/nl

350 c2=(2.+TF)/(2.+a1+a2)+(2 . 0TF) A2
360 C3=2.0TFeTF-(CR.+TFI*TEI/(2.onl)
370 HSEC2=HSECOHMSEC

380 HTAN2=HTANSHTAN

390 NuM2=CloHTANZ+C2eHTAN+CIoHSECS
400 peENnM2=DENMl*DENM]

410 emupp=(0.25eNn0UM2) /DENME

420 sFi=1.758RT(6 .283+s4s+emMuDD)
430 sF2=1./SRRT(6 .2B3¢a14Al *eMuDD)
440 FBEX=EMU~S*EMUD

450 empeEx=emMu+al*EMUD

460 FR=exP(Frex)

470 EmB=EXF(EMPEXD

480 pr=srFlern

490 pPm=sF2egmMp

500 pPo={.-pm

S10 peINT 29!5!ENU,ENUD!EMUDD)PF,PM’PD

EMUDD PF P PR}

S20 29 FORMATCIHF4.2,F10.4,F10.4,F10, 434X F6 .394XsF6.314XF6.3)

520 30 conTinue
531 31 conTinue
540 stopienn

Fig. 2. FORTRAN computer program used to evaluate Py and Pp for the particular detection example.

If 5 # 0 in the above, then the signal anticipated for

reception does not have a zero-mean function.

The component pp(s,t), required when the signal
is not of zero mean, can be calculated as the output
of the dynamic system depicted in Fig. 9 (see the
Appendix). However, to simplify this example, it is
assumed here that in fact 7 = 0. Then (47) simplifies to
my(t) =0, and (29) simplifies to pp(s) = 0. Therefore,
for this example, the general express1on of (27)
degenerates to

B(S) = pr(s)- (48)

V. EVALUATION OF PERFORMANCE TRADEOFFS.
USING CHERNOFF-LIKE BOUNDS

Motivated by the Chernoff bound (as derived by
[19, pp. 121-122] and demonstrated to be appropriate
and optimized to be tight by {14, pp. 38-41] for
problems of the form of this example), the approximate
expression for Pg, the probability of a false alarm

KERR: SCHWEPPE LIKELIHOOD-RATIO DETECTOR

within the time interval, is

1
~ mexplﬂ(s) —sp(s)], for 0<s<1
49

and, correspondingly, the approximate expression for
Py, the probability of a miss within the time interval,
is

Py=1-Pp=~ !
M VoG
xexplu(s) + (1= )is)],  for 0<s<1
(50)

with Pp, being the probability of correct detection.
These probabilities are evaluated here for a range
of values of the auxiliary parameter 5. The tabulated
results are depicted in Figs. 3 and 4 for the parameters
of this example using the simple FORTRAN computer
program depicted in Fig. 2. The dependence on s
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CALCROC

RECIEVER DPERATING CHARACTERISTICS
TF=

3.0
s EMU EMUD EMUDD PF PR PD
0.05 ~-0.0386 -0.7664 0.5502 10.754 0.263 0.737
0.10 -0.0757 -0.7490 0.6009 S.142 0.270 0.730
0.15 -0.1114 -0.7304 0.6558 3.278 0.279 g.721
0.20 . -0.1454 ~-0.7103 0.7157 2.350 0.289 0.711
0.5 -0.1775 -0.6887 0.7812 1.796 0.301 0.699
0.30 -0.2076 -0.6651 0.e891 1.399 0.308 0.692
0.35 -0.2355 -0.5427 1.6085 1.085 0.339 0.661
0.40 -0.2¢608 -0.5117 1.1419 0.882 0.353 0.647
0.45 -0.2832 -0.4773 1.2922 0.728 0.370 6.630
0.5¢ -0.3024 -0.39387 1.5080 0.59¢ 0.386 0.614
0.55 -0.3177 ~0.2859 1.7569 0.466 0.428 6.572
0.60 -0.3286 -0.2312 2.1000 0.379 0.452 0.548
.65 -0.3342 -0.1672 2.5657 0.306 ¢.480 0.520
0.76 -0.3333 0.0334 3.1971 0.223 0.538 0.462
0.75 -0.3244 0.2660 4.0638 0.156 0.612 0.388
0.80 -0.3051 0.4044 5.4444 0.114 0.683 0.317
0.8 -0.272¢0 0.7420 7.6550 0.069 0.819 0.161
0.96 -0.21%2 1.1938 11.7248 0.036 1.054 -0.054
0.5 -0.1361 2.0620 20.097% 0.012 1.722 -g.7e2
FECIEVER OFERATIMNG CHARSITERI=ZTICE
TF=
6.0
s EMU EMUD EMUDD FF FM PD
0.05 -0.0797 —-1.5074 0.94€4 £.191 0.095 0.905
0.1¢0 ~-0.1489 ~1.4770 1.0424 3.903 0.099 8.901
0.15 =-0.2196 -—1.4446 1.1128 2.514 0.105 0.89%
0.20 -0.2873 -1.4098 1.2537 1.778 0.10e 0.892
.25 -0.3520 -1.2810 1.3733 1.319 0.122 0.878
0.30 -0.4131 -1.23e8 1.5394 1,028 0.128 0.872
0.35 -0.4705 ~-1.1930 1.7219 0.824 0.135 0.865
0.40 -0.5235 -1.0449 1.9240 0.647 0.152 0.£848
0.45 -0.9716 -0.9875 2.2305 0.523 0.159% 0.841
0.50 -0.6141 -0.8204 2.5748 0.406 0.179 0.821
0.55 -0.6501 -0.7463 3.01132 0.329 0.191 0.809
.60 -0.6784 -0.5521 3.6104 0.247 0.214 0.786
0.65 -0.6977 -0.3374 4.4662 0.180 0.239 0.761
0.70 -1.7056 -0.0962 5.6582 0.127 0.268 0.732
6.75 -0.6993 G.1806 7.4116 0.085 0.305 0.695
¢.80 ~0.6741 0.6412 10.4008 0.047 0.358 g.642
0.85 -0.6223 1.3430 15.9014 0.020 0.438 0.562
/ 0.90 -0.5294 2.4060 27.9628 0.006 0.565 0.435
0.95 -0,3618 4.5311 £5.2140 0.000 0.863 0.137

While exact probabllities must lie between zero and one, the approximate expressions of Eqs. 49 and 50
are neither tight nor accurate near the extremes of s=0 or s=1. The result of eliminating = in the above
evaluations : probabilitles versus ¢ yields only probabilities of interest that are between zero and one
for P, ve Py

Fig. 3. P and Pp versus the auxiliary parameter s as output from the computer program (for final times of Ty =3 and 6 seconds).

was further mutually eliminated to obtain plots of Pp In summary, the dynamic system depicted in Fig.
versus Pr (depicted in Fig. 5 and uniquely summarized 8 illustrates how the optimum Schweppe likelihood
in the 3-dimensional view in Fig. 6 as the knee of the ratio detector can be implemented using only

ROC curve becomes more pronounced as a function simple squaring and averaging operations on the

of an increasing detection interval) to provide insight output of a Kalman filter. This example has been
into how the choice of T radically affects the ROCs. offered to illustrate what steps must be followed in
for the Schweppe likelihood ratio detector of this order to evaluate Pp and Pr using the approximate
example. : Chernoff-bound method. As mentioned at the bottom

From the family of ROCs considered, it is decided of Figs. 3 and 4, inaccuracies in Chernoff bound
to use Ty =9 s as a satisfactory decision interval since  approximation occur at the extremes of s = 0 and
the achievable detection probabilities are sufficiently s = 1. However, when the parametric dependence on
high (i.e., Py less than 0.1 and with a Pp greater than s is eliminated between Pp and Pr, as depicted in the
0.8, as sought and specified above). The ROC for this four plots of Fig. 5, there are no upsetting nonintuitive

now fixed decision interval is summarized in Fig. 7. anomalies observed in this same data within the region
The slope of the tangent to the ROC at the of interest from (Pp, Pr) = (0,0) to (1,1) when viewed
operating point that is decided upon (here Pr =0.075,  from this perspective. The author has demonstrated
Pp = 0.845) is 18/28. This is the threshold value that different Pp and Pp evaluation techniques for other
the likelihood ratio will be compared against (as y = algorithms in [20-22). The generally lower detection
18/28) in making a decision on whether the desired probabilities exibited in this example correspond
signal was in fact received or whether only noise was to expected levels of certain error signals typical of
received. navigation systems in seeking to detect soft failures, as
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TF=
S:0

s eMy EMuD EMUDD eF PM PD
0.05 ~0.1127 -2.2446 1.3508 6 .862 0.038 0.962
0.10 -0.2219 -2.2005 1.4592 3.296 0.041 0.959
0.1S -0.3275 -2.1534 1.6074 2.088 0.043 0.957
0.20 -0.4290 -2.0135 1.7679 1.461 0.049 0.951
0.25 -0.5260 -1.9575 1.9426 1.104 0.052 0.948
0.30 -0.6181 . -1.8037 = 2.1689 0.836 0.059 0.941
0.39 -0.7048 ~-1.7362 2.4176 0.665 0.063 0.937
0.40 -0.7854 -1.5645 2.7315 0.514 0.0a72 0.928
0.45 -0.8590 -1.4811 3.1217 0.414 0.077 0.923
0.50 -0.9247 -1.2855 3.6459 0.315 0.087 0.913
0.55 -0.9813 -1.0728 4.2402 0.238 0.100 0.900
0.60 -1.0272 -0.83%94 S5.1172 0.174 "0.113 0.887
0.65 -1.0601% -0.5803 6€.2419 0.124 0.129 0.871
0.70 -1.0772 -0.1688 7.9150 0.078 0.153 0.847
0.75 -1.0743 0.1729 10.4401 0.049 0.176 0.824
¢.80 -1.0448 0.8415 14,7071 0.023 0.217 0.783
0.85 -0.9777 1.7829 22.7414 0.008 0.274 0.726
0.90 -0.8516 3.2015 41.5873 8.002 0,367 0.633
0.95 -0.6127 6.6489 110.2850 0.000 0.574 0.426
RECIEVER DPERATING CHARACTERISTICS
TE=

12.0
s ' £MU EMUD €MUDD PF PM PD
0.05 -0.1497 -2.9817 1.7531 6.022 0.016 0.984
0.10 -0.2950 -2.9239%9 1.9060 2.882 0.017 0.983
0.15 ~0.4354 ~2.7744 2.0710 1.813 0.020 0.990
0.20 -0.5706 -2.7067 2.2822 1.282 0.021 0.979
0.25 -0.7001 -2.5425 2.5120 0.944 0.023 0.975
0.30 ~0.8231 -2.4621 2.7985 0.731 0.027 0.973
0.35 -0.9391 -2.2v92 3.1502 0.558 0.031 0.969
0.40 -1.0473 -2.0838 3.5393 0.428 0.0326 -0.9€4
0.45 -1.1464 -1.9744 4.0542 06.340 0.039 0.961
0.50 -1.2354 -1.7499 4.6754 0.2857 0.045 0.955
0.55 -1.3125 -1.5052 5.5168 0.190 0.052 0.948
0.60 -1.3758 -1.1253 6.5792 0.129 0.063 0.937
0.65 -1.4225 -0.8208 €.0773 a.089 0.072 0.927
0.70 -1.4488 -0.3567 10.1916 0.054 0.088 0.912
6.75 -1.4493 0.1723 13.4377 0.030 0.107 0.893
0.8¢ -1.4156 1.0555 12.8787 2,012 0.138 0.8€2
0.85 -1.333¢ 2.2506 29.2185 0.003 6.182 0.818
0.90 -1.1756 4.2151 $3.9840 6.000 0.2S5 0.745
0.95 ~0.8706 8.6962 150.0665 0.¢00 0.421 0.579

While exact probabilities must 1ie between zero and one, the approximate expressions of Fqs. 44 and 50

are neither tight nor accurste near the extremes of s=0 or s=l. The resuit of eliminating -

in the above

evaluszions of probabflities versus s yields only probabiliries of interest that sre betwsr zero and one

tor Py ve. P

Fig. 4. Pr and Pp versus the auxiliary parameter s as output from the computer program (for final times of Ty =9 and 12 seconds).

discussed in [27], when posed as a Schweppe likelihood
detection problem instead of as posed in [20, 21,

or 27]. This concludes this example by completely
discussing all its aspects.

Historical perspective is provided in [17] on how
the results of [15], as used here, were a fundamental
breakthrough in circumventing the previous barrier
consisting of the difficult task of having to solve an
intractable Fredholm integral equation in order to
specify the impulse response of the optimal receiver
structure by, instead, merely mathematically massaging
the outputs of an associated Kalman filter as just
squaring and averaging operations to more simply
realize the optimal receiver. Although the simple
closed-form example presented here is completely
stationary by having only constant matrix parameters
in (5), the techniques of [15] can handle detection
of certain nonstationary signal structures as well
(corresponding to having specified time-varying
matrices within (3), (4), (41)) within the stationary
white measurement noise by using this Kalman
filter-based approach.

Recent generalizations in the three directions of
mathematical derivation, physical interpreiation, and

KERR: SCHWEPPE LIKELIHOOD-RATIO I>ETECTOR

hardware implementation of optimal receiver structures
are provided in [26] in terms of newly developed
time-frequency plane techniques. The approach of
[26] allows a narrowing of attention to concentrated
regions of interest in the time-frequency plane
through recourse to an underlying cross-Wigner-Ville
distribution, use of an ancillary condition that the
two-dimensional Fourier transform of an associated
weighting function be of constant modulus, and use of
ambiguity function manipulations previously familiar
from radar and sonar applications.

APPENDIX A. DYNAMICAL SYSTEM FOR
GENERATING pp(S), IF SIGNAL HAS NONZERO
MEAN

Consider the problem of evaluating up(s) of (29)

({14, problem 2.2.1 on p. 53]), which is equivalently
ziven by [14, eq. (135) on p. 36]

s T
po(s) =3 [ mgpepar.
where f(s) = 2(1 - 5)/No.
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Fig. 5. Optimum ROC for Iy =3, 6, 9, 12 s.

Assuming that S(¢) has a finite dimensional state with
space representation, as utilized in (1), (41), and (45),

. . 3 T
further ficﬁnc #tp(-) more explicitly as a function of gu| B(s) 2 / m(w)Q1(w,u;s)dw,
two variables: 0

T for 0<t<T (55)
po(s,T) = —% /0 m(w)g(w | B(s))dw.  (52) | Q1(w,u; 5y = B(){8(w — u) — hi(w,u;5)},

for 0<w,u<T (56)
The objective here is to find a finite dimensional
dynamic system whose output is up(s,T), as associated ~ where hy(Z,u;s) denotes the impulse response of an

with detecting a signal of nonzero mean. associated Kalman-Bucy filter, specified by the solution
Solution: to the following differential equations:
From (52)," '

, 69 = [FO) - &G HT O HORES)
o) = =3 [ mong (v | pe)aw +&E)HTO{P)}r@) (57)

for 0<1ST. (3)  L,(55) = FO&(5:3) +EGIF ()

By Leibnitz’s rule for differentiating an integral, we — & GOHT{B)H ()E, (5 5) + GQGT
have that
8)
Edi pp(s,t) = ~.;_m(t)g(t | B(s)) with initial condition
for 0<t<T  (54) £p(0:5) = E[(x(0) —X(0)(x(0) ~x(O))"].  (59)
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(0,0)

PF____)

Fig. 6. ROCs as functions of 7y (decision interval).

C¢.045
Operating point is point of tangency

- P

Fig. 7. Decision threshold used is slope of tangent ROC curve at
operating point. Pp and P are fixed by this operating point.

Now, the expression for g(u | #(s)) in (55) can be
evaluated by substituting for Q1 (w,u; s) from (56) to
yield

g | () = /0 m(w)B(s){O(w — ) — by (w, 135)} dw

= f(s) {m(u) - /ot m(w)hy(w,u; ) dw} .
(60)

Equations (57), (58), (60), and (54) for 0<¢ < T,
and 0 < s < 1, completely specify a dynamic system
which can generate pp(s,t), which at time t =T

is pp(s,T). From (57), the requisite Kalman filter
impulse response is observed to be

ha(w,u;5) = H(w)®x (w,u3 5)E (3 $)HT () [ 5(s)]
(61)

where ®x(w,u; s) satisfies the following well-known
partial differential equation for the associated
transition matrix

2 ax(t,55) = [FO - &) BT SO
x ®k(t,u;5) (62)

with

Sk, t;5) =1 for all ¢ (63)

and £,(t;5) in (61) and (62) is the solution of (58).
A realization of this impulse response as a dynamic
system for generating pp(s,t) is as depicted in the
system block diagram of Fig. 9.

0 b O —I\%a

z

MEASUREMENTS

Hl

KALMAN FILTER

Fig. 8. Kalman filter-based implementation of Schweppe likelihood ratio for optimum detection of random signal of known statistics in
additive zero-mean Gaussian white noise.
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Fig. 9. Dynamic system for generating pup as needed for Séhweppe likelihood detector in general case for detecting signal not

of zero mean.
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