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Automated Tuning of an Extended Kalman Filter
Using the Downhill Simplex Algorithm

Thomas D. Powell
The Aerospace Corporation, Los Angeles, California 90009-2957

A method of tuning a Kalman � lter by means of the downhill simplex numerical optimization algorithm is
presented. The problem is de� ned by a brief description of the Kalman � lter and the extended Kalman � lter and
the sensitivity of � lter performance to process noise and measurement noise covariance matrices Q and R. The � lter
tuning problem for a system processing simulated data is then formulated as a numerical optimization problem by
de� ning a performance index based on state estimate errors. The resulting performance index is then minimized
using the downhill simplex algorithm. The technique is then applied to three numerical examples of increasing
complexity to demonstrate its practical utility.

Introduction

S ELECTION of process and measurement noise statistics, com-
monly referred to as “� lter tuning,” is a major implementation

issue for theKalman � lter.This processcanhavea signi� cant impact
on the � lter performance. Gelb1 (Sec. 7.3) describes the sensitivity
of the steady-state covariance of a scalar Kalman � lter to Kalman
gainselection,which illustratestheeffectof � lter tuning.In practice,
Kalman � lter tuning is often an ad hoc process involving a consid-
erable amount of trial-and-error to obtain a � lter with desirable—
qualitative or quantitative—performance characteristics.

Maybeck2 and others have suggested that a Kalman � lter can
be tuned with a numerical minimization technique. The concept of
tuningbymeansofnumericaloptimizationallowsa digitalcomputer
to replace the designer in this tedious, repetitive task, the type of
task at which digital computers excel.

The numerical minimization technique applied here is the down-
hill simplex method, which is a function optimization algorithm
available in several programming languages in the Numerical
Recipes3 series and which uses only function evaluations—no
derivatives—to locate a local minimum of the objective function.
Here, the objectivefunctionis the rootmeansquare (rms)of the state
estimationerrors(estimateminus truth),whichassumes“true”states
are available. This is the case when the � lter is applied to simulated
data.

The goal of this paper is to provide the interested reader suf� -
cient information to apply the technique to a particular estimation
problem. Therefore, emphasis is placed upon a series of illustrative
examples of the technique, in addition to its general description.

The paper is organizedas follows: Some backgroundinformation
on the Kalman � lter, the mathematical assumptionsupon which it is
based, and the problem of � lter tuning are presented � rst. The fol-
lowing sections describe � lter tuning as a numerical optimization
problem, followed by a description of the downhill simplex algo-
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rithmand some of the implementationissues involvedwith applying
it to � lter tuning. The simplex tuning method is then demonstrated
using three examples of increasing complexity. The � nal section
discusses the strengths and weaknesses of the technique,with some
suggestions on how it can be improved.

Kalman Filter
Before describing the Kalman � lter tuning problem, it is helpful

to provide an overview of the algorithm to see where the tuning
variables arise. There are many references on estimation Kalman
� lter theory. Maybeck2 and Gelb1 are good introductory texts on
the subject.

The Kalman � lter is the optimal solution to a speci� c class of
state estimationproblems. The goal is to estimate a state variable x ,
usually a vector of multiple states, at some discrete time ti , given a
sequence of measurements yi . The value of x at time ti is denoted
xi . For a linear discrete-timesystem the state variable dynamics are
given by

xi C 1 D Axi C wi

and the measurement yi is a linear function of xi de� ned by

yi D H xi C vi

The linearsystemis subjectto disturbancesin thedynamicsequation
wi and the measurement equation vi . These disturbances are often
referredto as processand measurementnoise, respectively.They are
commonly assumed to be zero mean, white, Gaussian random vari-
ables with covariances given by E [wi w

T
i ] D Q and E [vi v

T
i ] D R,

respectively.
The Kalman � lter is a solution to this state estimation problem,

which can be mathematically proven to be the optimal (minimum
variance) estimator under certain assumptions. The two basic as-
sumptions upon which its optimality rests are the linearity of the
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dynamic system in question and that the disturbances corrupting
the dynamic and measurement models can be described by white,
Gaussian random variables. These assumptions combine to ensure
that all variables of interest retain Gaussian distributions because
linear combinationsof Gaussian randomvariablesremain Gaussian.

The Kalman � lter processes each measurement and propagates
the state and covariance estimates to the next measurement time
using the following time and measurement updates.

Time update:

Nxi C 1 D A Oxi ; NPi C 1 D APi AT C Q

Measurement update:

Oxi D Nxi C K i .yi ¡ H Nxi /; Ki D NPi H
T
£
H NPi H T C R

¤¡1

Pi D .I ¡ K i H / NPi

The Kalman gain K i in the state measurementupdateequationre-
lates the relative weight given to the � lter’s internal dynamic model
and the measurement information. A larger K i places more weight
on the measurements, hence “de-weighting” the � lter’s internal
dynamic model. A smaller value of Ki places less weight on the
measurement information and more weight on the � lter’s internally
predicted state. As such, the Kalman gain K i controls how new
measurement information is combined with the internal dynamic
model and so determines the performance of the � lter. Examining
the precedingequationsfor the � lter time and measurement update,
the Kalman gain K i clearly depends on the state and measurement
noise covariancematrices Q and R. Therefore, the choicesof Q and
R directly affect the performance of the Kalman � lter.

Nonlinear Systems and the Extended Kalman Filter
Real-world dynamic systems obey physical laws that are gen-

erally much more complex than the simple linear models used to
derive the optimal Kalman � lter. The complexity, or nonlinearity,
of these real-world systems invalidates the assumptions of linear-
ity and Gaussian random variables upon which the optimal Kalman
� lter is based.

If the dynamic system of interest is nonlinear, the standard ap-
proach is to linearize the system by reformulating the problem in
terms of a perturbation from some reference nonlinear trajectory. If
this perturbationvariable is close enough to the referencetrajectory,
then it can be assumed to obey a linear dynamicmodel. The Kalman
� lter is then applied to this perturbationstate, although the optimal-
ity of the estimates can no longer be guaranteed because the dis-
turbances can no longer be assumed to be Gaussian. Although the
Kalman � lter cannot be proven to be optimal for nonlinearsystems,
the Kalman � lter is applied to the linearized system. This extension
of the Kalman � lter to the linearizednonlinearproblemis commonly
referred to as the extended Kalman � lter (EKF).

Modeling a physical system requires making assumptions about
the type and order of mathematical model to be used. When a non-
lineardynamic system is linearizedabout some referencetrajectory,
higher-ordernonlinear terms in the dynamics are discarded.The re-
sulting model is always imperfectand so introducesmodelingerrors
into the estimation problem.

The only way the � lter can account for unmodeled dynamic or
measurement effects is to somehow account for them in the process
and measurement “noise” covariance,whether they are truly noise-
like or not. The internal modeling of these terms as Gaussian noise
is often grossly inaccurate,but the tuningprocesscan mitigate some
of the shortcomingsof this model.

Kalman Filter Tuning
Kalman � lter tuningrefers to the processof selectingthe elements

of the process noise covariance Q and measurement noise covari-
ance R matrices to improve the � lter’s state estimates with respect
to some performance measure. If the statistics of the process and
measurement noise process models in the � lter do not “match” the
actual statistics of these noise processes, the � lter estimates will be
degraded.

The choices of Q and R are the primary factors that determine
the Kalman gain Ki , which in turn determines the operation of the
Kalman � lter. Most real applicationsare concernedwith the steady-
state behaviorof the � lter,when theKalman gains are relativelycon-
stant. A � lter designer could therefore tune the Kalman � lter by se-
lecting the elements of the steady-stateKalman gain directly.This is
often done in practice, although this approach is not examined here.

How the Kalman � lter is tuned will depend on how it is used.
The � lter can operate on real data or simulated data. It can process
this data in real time, or it can postprocess some historical data. If
simulated data are used, the true states that were used to generate
the data are known and can be used to tune the � lter by minimizing
the errors between the estimates and the known truth. This is the
method described here.

However, the true states are never known in a real application. In
this case the � lter measurement residuals can be used to tune the
� lter, either by minimizing the rms of the residuals over time or
by computing an autocorrelationfunction of the residuals. Kalman
� lter theory states that for a linear system the � lter residuals will
be uncorrelatedwith time (that is, “white”) if all useful information
has been extractedfrom the measurements.The � lter couldbe tuned
using this idea by constructing a performance index based on the
statistical whiteness of the residuals.

Tuninga � lter fora real time, realdata applicationis themost chal-
lengingproblem.The conventionalapproachis to designand test the
� lter using some simulation of the operational environment, which
is as accurate as possible. A � lter tuned with this approach should
yield acceptable performance if the actual operating environment
can be suf� ciently modeled, although unpredictable disturbances
often arise that invalidatethe underlyingassumptions.In the end the
designer tunes the � lter based on the best available knowledge of
the operatingenvironment.Continuousimprovementsto the models
and tuning can also be made as real-world operational experience
and data are accumulated.

The measurementnoisestatisticscan oftenbedeterminedthrough
sensor testing and calibration. It is also possible to extract measure-
ment noise statistics from the measurement residuals.4 For these
reasons the measurementnoise covariance R is often assumed to be
known and can be removed from the tuning process.

In general terms, a “larger” value of the Q matrix will have the
same effect as a “smaller” value of R, and vice versa. Keeping in
mind that Q and R are matrices and that in general one cannot
“divide” Q by R, it is the notion of the ratio Q=R that determines
the � lter gains. This idea is often used to simplify the tuningprocess
by � xing R and selecting elements of Q only.

In general,it is dif� cult to determinethe effectofmultiplechanges
to the tuning parameters, so that an analyst will often tune each pa-
rameter individually, holding the others constant. This parameter-
by-parameter tuning can require a very large number of manual tri-
als. When the dynamics are nonlinearand the numberof parameters
begin to grow to more than two or three, the trial-and-error tech-
nique can become quite tedious and time consuming. Furthermore,
a grid search technique can require an unreasonably large number
of simulation runs to suf� ciently cover the tuning parameter space.

Filter Tuning as a Numerical Optimization Problem
Given the dif� culty of tuning a Kalman � lter through trial and er-

ror, it is desirable to convert the tuning problem to a more tractable
numerical optimization problem. This would allow the application
of a hands-off numerical optimization technique, which would ex-
ploit the primary bene� t of digital computers in performing repeti-
tive, tedious computations.

The primary bene� t of the method described here is that it is a
hands-off approach, designed to save time and effort for the � lter
designer. No claims can be made about the speed of the method.
However, as long as this method may take to select a set of tuning
parameters, the fact is that the computer, not the � lter designer, is
tuning the � lter, freeing the analyst from this tedium.

Performance Index De� nition
To apply a numerical optimization algorithm to tuning the

Kalman � lter, the tuning problem must be expressed as a numerical



POWELL 903

optimization or function minimization problem. This means con-
structing a scalar objective function J , which is to be minimized as
a function of some set of N independent variables. Assuming that
the parameters to be selected in the tuning process are the elements
of the � lter’s process noise covariance matrix Q , the � lter perfor-
mance index could be written as J D J .q1; q2; : : : ; qNQ /, where NQ

is the number of elements of the matrix Q to be selected.
The performanceindex could be based on a number of � lter vari-

ables and their values, which are available during computer sim-
ulation. The performance index used in the examples presented
here, as described later, is based on the rms of the state estimation
errors:

Jk .q11; q22/ D

"
1
N

t fX

ti D t0

¡
NeT
i W Nei

¢
# 1

2

where NeT
i D [. Ox1i ¡ x1i /, . Ox2i ¡ x2i /]

T is thevectorof stateestimation
errors, W is a state weightingmatrix, t0 is the initial discrete time of
the tuning interval, t f is the � nal discrete time of the tuning interval,
and N is the number of data points in the tuning interval.

For linear systems the measurement residuals should be white,
and a performance index that tests this property of the residuals
could be implemented. However, this type of performance index
would not be suited for nonlinear systems, where whiteness of the
residuals is not guaranteed. A performance index based on the rms
of the measurementresidualcouldalsobe used,althoughsmallmea-
surement residuals do not guarantee small state estimation errors,
particularly for systems where bias parameters are to be estimated.

A state weighting matrix W can be chosen to weight individ-
ual states differently in a performance index based upon the least
squares of the state estimation errors. In general, different weight-
ing matrices should lead to different tuning solutions for nonlinear
problems. For truly linear problems the weighting matrix W will
alter the shape of the performance index function, but the location
of the minimum should be constant.

Evaluatingthis performanceindex J entailsprocessingsomedata
set, either real or simulated, to produce a set of state estimates
and � lter residuals. Depending on the complexity of the simula-
tion, this function evaluation could be computationally expensive.
Monte Carlo simulationcan be used to compute J , although it is not
necessary for the simplex tuning method and might be impractical
for computationallyexpensive problems.

Some Candidate Optimization Algorithms
The most simple tuning optimization technique next to trial and

error is to evaluate each tuning parameter over a range of values,
thereby performing a grid search of the tuning parameter space.
This method is very inef� cient and might not yield acceptable � lter
performance if the grid is not locatednear the best tuning parameter
solution.

Gradient methods of optimization require the knowledge of the
partial derivatives of the function to be minimized with respect to
the independent variables. The derivatives can be computed ana-
lytically if the mathematical expression for the function is known,
or by numerical differentiation if it is not. These methods also of-
fer the potential for proof of optimality through conditions on the
second-order derivatives of the function. However, gradient meth-
ods are not well suited for functions that are discontinuous and
“noisy” in nature, as numerical differentiation usually fails under
these conditions.

Simulated annealing(SA), also describedin NumericalRecipes,3

is a numerical minimization technique similar to the downhill sim-
plex algorithm, but which emulates the slow cooling—annealing—
of a liquid material in its movements through the parameter space.
However, Press et al.3 describe the application of SA to problems
with large numbers of discretely valued independent variables, as
arise in circuit element placement problems, or the classic travel-
ing salesman problem. Because the � lter tuning problem involves
continuouslyvalued independent variables and because the perfor-
mance index for a � lter tuning problem can be computationally
expensive,SA is not examined here.

Genetic algorithms (GA) are shown to have utility for tuning a
Kalman � lter in Ref. 5. This work also proposes a performance
index that includes a consistency check between the Kalman � lter
state error estimates and the � lter covariance.

Downhill Simplex Algorithm
The downhill simplex method, as discussedin Ref. 3, is a numeri-

cal optimizationalgorithmthatminimizesa scalarobjectivefunction
of N independentvariables,using functionevaluationsonly. It does
not require derivatives of the function being minimized.

A simplex, as de� ned in Ref. 6, is a collectionof N C 1 points in
an N -dimensionalspace and all their interconnectingline segments.
In two dimensions a simplex is a triangle. In three dimensions it is
a tetrahedron. The function to be minimized is evaluated at each of
the N C 1 simplex vertices.

The downhill simplex algorithm is sometimes referred to as the
“Amoeba” routine, its motion likened to a � ctitious blob “oozing”
into the valleys of the performance index in search of the minimum
value. The simplex algorithm attempts to locate a minimum of the
function by a series of movements in the N -dimensional space.
These movementsconsistof threebasic types: re� ection,expansion,
and contraction. The details of these basic movements are fully
described in Ref. 6, but a brief overview is given here.

The algorithm takes the point in the simplex with the highest
function value and “re� ects” it along a line formed by the point
and the centroid of the remaining points to some point on the “far”
side of the centroid. If a decrease in the function is encountered at
this new point, the simplex will “expand” further in that direction.
If an increase in the function is found, the simplex will “contract”
away from it. The distance the point is moved in these expansions
and contractions is determined by a set of constant expansion and
contractioncoef� cients. In this way the simplex moves through the
N -dimensional topology of the function’s range space. If it reaches
a point where one of its points falls into a “hole,” the entire simplex
contracts onto the point with the lowest value and is drawn “down”
towards the point with the minimum value. Convergence is de� ned
in terms of the relative values of the functionat each of the vertices.
A tolerance is set and convergence is achieved when the function
values for all pointson the simplex fall within an intervalof that size.

Implementation Issues
There are number of implementationissues that must be resolved

in order to apply the automated simplex tuning approach. All of
these issues are problem-speci�c and will depend to a large degree
on the subjective judgment of the � lter designer.

Automated Tuning Software Architecture
To apply the simplexmethodto � lter tuning,it is necessaryto con-

vert the Kalman � lter simulation to an equivalent function, which
returns a scalar value of a � lter performance index. The implemen-
tation of this method requires the Kalman � lter function to be a
stand-alone software module that can be passed the values of the
independent variables—the tuning parameters—by the simplex al-
gorithmand will returnthe scalarperformanceindex.The exactcode
implementationwill be language-dependent. Figure1 illustratesthis
simplex tuning algorithm.

Parameterization of the Tuning Problem
The � lter to be tuned must be parameterized for the numerical

optimization problem. This entails choosing which parameters are
to be used as independent variables for the tuning algorithm, keep-
ing in mind that an .N £ N / matrix Q has .N C 1/ ¢ N=2 unique
elements. In the third example presented here, N D 7, and so Q
contains .7 C 1/ ¢ 7

2
D 28 unique elements. Selecting all 28 unique

elements of this Q matrix would be impractical numerically, as the
parameter space is very large. Faced with this fact, and the fact that
the off-diagonalelements of Q represent cross correlations that are
dif� cult to interpret, the � lter designer typically selects only the di-
agonal elements of Q in tuning the � lter. This reduces NQ from 28
to 7 for this .7 £ 7/ example.
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Fig. 1 Simplex tuning outline.

Performance Index Weighting Matrix
The choice of weightings for the � lter performance index is also

unique to every tuning problem. Although this weighting matrix
could be added to the state vector and estimated as another system
parameter, this increases the dimension and computational burden
of the estimationand tuning problemand is probablybest left to the
engineering judgment of the � lter designer.

Tuning Exclusion of Filter Transient Response
from Performance Index

The transient response of the Kalman � lter can produce large
state estimation errors and depends upon the initial state estimates
and state error covariance assumptions. As most applications are
concerned with the steady-state behavior of the Kalman � lter, the
� lter state errors during the transient response can be omitted from
the � lter performance index computationby the choice of t0 and t f .
The boundsof the tuningintervalwill dependon theproblemat hand
and the judgment of the � lter designer. This also allows the tuning
to emphasize some other phase of the � lter operation.By adjusting
the endpoints of the tuning interval, emphasis can be placed upon
any particularphase of operation, such as the steady-stateoperation
of the � lter. This is illustrated in example 3, where the transient
response of the � lter is excluded from the cost function.

Kalman Filter Stability During Automated Tuning
There are certain numerical conditions required for the Kalman

� lter to maintain numerical stability. The open-loop stability of
the dynamic system, is determined by the eigenvalues of the A
matrix. Because the noise covariance matrices Q D E[wi w

T
i ] and

R D E[vi v
T
i ] are modeled as expected values of quadratic forms,

they are required to be positive de� nite matrices to guarantee
stability—boundedness—of theunderlyingmatrixRiccatiequation.
The closed-loop stability of the Kalman � lter is also dependent on
the choiceof Q and R and is more importantthan open-loopstability
for state estimationbecauseone can constructa stable Kalman � lter
for an unstable dynamic system. However, the simplex algorithm
is unaware of these stability conditions, and in general there are no
constraints to prevent it from selecting tuning parameters that yield
an unstable � lter.

If a stable � lter is the desired outcome of the tuning process, an
automated tuning algorithm must eventually achieve this goal to
be useful for � lter design. Fortunately, a � lter tuning performance
index based on simulated state estimation errors (estimate minus
truth) serves as an effective constraint against divergent � lters. A
divergent � lter will yield arbitrarily large simulated state estimation
errors thatwill in turn be re� ectedin the tuningperformanceindex J .
Experience with this tuning method shows that it does occasionally
select divergent tunings, but these occur early in the tuning process
and are quickly weeded out.

However, there are some simple ways to preserve the positive
de� niteness of the Q and R matrices. A penalty function, which as-
signs the cost function an extremely large value when a nonpositive
de� nite Q or R matrix is evaluated, can keep the parameters in the
positivede� nite region. Selecting the elements of the matrix square
roots of Q and R will also maintain positive de� niteness.

The method employed here is to perform a change in variables
from q11 and q22 to `11 D log.q11/ and `22 D log.q22/. The logs of
the tuning parameters `11 and `22 are then passed to the simplex

algorithm, which searches in the `11; `22 parameter space for the
minimum performance index. The logs are passed to the Kalman
� lter routine,which reverses the change of variablesq11 D 10`11 and
q22 D 10`22 before processing the data.

Number of Monte Carlo Samples
The performance indices for the � rst two examples shown here

are computed over 100 Monte Carlo samples. Although this yields
acceptable performance of the tuning algorithm for these simple
examples, the minimum number of Monte Carlo samples required
for acceptabletuning results is problem-speci�c. This is true for any
type of Monte Carlo simulation analysis in general, and ultimately
comesdown to engineeringjudgment.Some factorsto be considered
are the orderof the system, transientresponsepropertiesof the � lter,
and computationalburdenof the simulation.The designermight also
wish to obtain a quick “coarse” tuning of the � lter with a smaller
number of Monte Carlo samples for initial analysis and increase the
number of samples for the � nal “� ne” tuning.

If the system has a long, computationally expensive transient
response, fewer Monte Carlo samples of greater duration might
prove more computationally ef� cient than more shorter samples.
This is the case in example 3 presented later, where a single Monte
Carlo sample is used with acceptable results.

The ergodicityof the system in question is also an important con-
siderationthat might be dif� cult to determinefor a highlycorrelated,
nonlinear system. Does the average over many samples match the
averageover long times? Ergodicityis also a problem-speci�c issue.

Avoiding Nonoptimal Local Minima
Given that the simplex tuning technique employs a numerical

optimization technique that uses no derivative information of the
performance index, no global optimality statements can be made
once the algorithm has converged to a minimum. So the result of
the tuning process is not “optimal” in the strict mathematical sense,
and a true global minimum cannot be assured.However, con� dence
in the tuning result can be increased. To avoid converging to local
minima, the algorithm can be initialized from several sets of initial
conditions to verify that it converges to the same solution. A � lter
designermight � nd the convergedtuningparametersacceptableand
place more value on the time saved by this tuning technique than on
the assurance of global optimality.

Tuning Example 1: Simplex Tuning
of the Linear Case

The simplex tuning algorithmis now applied to a simple discrete-
time linear system. Denoting discrete time ti with the subscript .¢/i ,
the example discrete-time linear system dynamics and measure-
ments are de� ned by the following state-space model:

µ
x1i C 1

x2i C 1

¶
D

µ
0:9 1

0 0:8

¶µ
x1i

x2i

¶
C

µ
w1i

w2i

¶

yi D [1 0]

µ
x1i

x2i

¶
C vi

for which the A and H matrices are de� ned as

A D
µ

0:9 1

0 0:8

¶
; H D [1 0]

Simulated data are generatedusing a Gaussian pseudorandomnum-
ber algorithm and the following statistics:

Q D
µ

1 0

0 1

¶
; R D 1

The measurement sequence yi generated by this true model is
processedwith a Kalman � lter for which the value of Q used in the
� lter algorithm is varied. Let the value of Q used in the Kalman
� lter be denoted by

OQ D
µ

q11 0

0 q22

¶
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Fig. 2 Monte Carlo cost function for linear 2 state system.

and assume that the � lter uses the correct value of OR D R D 1. The
� lter also uses the correct value of the dynamic matrix A, which has
both eigenvalues within the unit circle. Therefore, if OQ chosen by
the tuning algorithm and R are both positive de� nite the dynamic
system and Kalman � lter will be asymptotically stable.

In the linear case, where the process and measurement noise
processes are actually Gaussian—a hypothetical case—tuning the
Kalman � lter consists of matching the � lter’s Q and R to the ac-
tual noise statistics. The effect of incorrect tuning is demonstrated
by varying the values of q11 and q22 away from their true values
used to generate the data. The combination of q11 and q22 can be
treated as a point in a two-dimensional parameter space, and the
� lter performanceindex can be plotted as a surface J D J .q11; q22/.

The Monte Carlo performanceindex Jk for the � rst two examples
is computedfor each of 100 Monte Carlo samples (NMC D 100), and
then the overall performanceindex J is the averagevalue of Jk over
the NMC samples. The value of Jk for each Monte Carlo sample is
the sum of the rms state estimation errors for each state:

J D 1
NMC

NMCX

k D 1

Jk .q11; q22/

D 1
NMC

NMCX

k D 1

8
<

:

"
1
N

t fX

ti D t0

¡
NeT
i W Nei

¢
# 1

2

k

9
=

;

where the state weighting matrix W D I . State errors outside of the
tuning interval are not included in the performance index.

Figure 2 plots the surface of the performanceindex J .q11; q22/ vs
its two independent variables q11 and q22 . The surface was con-
structed by evaluating the � lter performance index over a grid
of points evenly spaced over the intervals [0:7 · q11 · 1:3] and
[0:7 · q22 · 1:3]. Contours of constantperformance index value, or
level curves, are drawn on the function surface and projected onto
the .q11; q22/ plane below the surface. The projected contours form
concentriccurves around the “valley” centeredat .q11 D 1; q22 D 1/.
The minimum of the performance index can be seen from the dia-
gram to occur at .q11 D 1; q22 D 1/, which is exactly where it would
be expected to be if the data were generated with true process noise
statistics given by Q D I .

Because there are two independentvariables, q11 and q22, N D 2,
and the simplex for this case will consist of N C 1 D 3 points in the
two-dimensionalparameter space.

In general, it is best to distribute the initial points of the simplex
widely within the range of the independent variables. In this case
the true Q is known, but this is ignored, and the three initial points
of the simplex are chosen to be the following:

1) Point 1 is q11 D 30; q22 D 30.
2) Point 2 is q11 D 30; q22 D 1.
3) Point 3 is q11 D 1; q22 D 30.
The � lter performance index for the linear example shown in

Fig. 1 can also be represented by the topographic projection of its
level curves onto the q11; q22 plane.

If the q11; q22 pairs evaluated by the simplex algorithmare super-
imposed on this topographic plot, the tuning trajectory of the sim-
plex algorithmcan be observed.This tuning trajectory for the linear

Fig. 3 Tuning parameter trajectory for example 1: Linear two-
dimensional system.

Fig. 4 Two-state nonlinear dynamic system.

case is shown in Fig. 3. Because the true process noise statistics
are known to be Q D I , convergence of the simplex tuning algo-
rithm to the point .q11 D 1; q22 D 1/ is the desiredoutcome. Figure 3
plots the successive positions of the “low” vertex—the vertex with
the lowest function value of the three—as the simplex algorithm
tunes the Kalman � lter for this case. Although it is dif� cult to rep-
resent the time history of the points in a static chart, the arrows
describe the general motion of the low point toward the function
minimum.

Keeping in mind that the simplex for this example is a set of three
.q11; q22/ pairs, the � nal tuning parameters must be selected from
the � nal set of three simplex points:

1) Point 1 is q11 D 0:989606; q22 D 1:005817; J D 2:354177.
2) Point 2 is q11 D 1:010932; q22 D 1:004144; J D 2:354171.
3) Point 3 is q11 D 0:994039; q22 D 0:990321; J D 2:354170.

Here, the � nal simplex point 3 yields the lowest � lter performance
index.

The simplex tuning algorithm was also applied to the following
neutrally stable discrete-time linear system:

A D
µ

1 1

0 0:9

¶
; H D [1 0]

Thesystemis neutrallystablebecauseoneof theeigenvaluesof the A
matrix lieson theunit circle.When the simplex tuningalgorithmwas
applied to this system with the same pseudorandomnoise processes
as before, the result was the same. The simplex tuning algorithm
successfullyselected the true process noise covariance matrix Q as
before.

Tuning Example 2: EKF Applied
to a Two-Dimensional Nonlinear System

The second example is chosen to illustrate some of the real-world
issues that complicateKalman � lter design and tuning: nonlinearity
and non-Gaussian disturbances. The two-dimensional state-space
system chosen is basedon the one-dimensionalcentral force motion
of a particle, as illustrated in Fig. 4. The second-order nonlinear
differential equation of motion for the system is

Rx D ¡¹x=r 3
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and the nonlinear measurement is given by

y D r D
p

x2 C d2 D h.x1; x2/

The two state variables are de� ned as x1 D x and x2 D Px , and the
correspondingnonlinear state-space equations are

Px1 D f1.x1; x2/ D x2; Px2 D f2.x1; x2/ D
¡¹x1

¡
x2

1 C d2
¢ 3

2

These nonlinear dynamic and measurement equations must be
linearized in order to apply the EKF to this problem. The lineariza-
tions are de� ned by

A D @ f

@x

­­­­
x¤
i

; H D @h

@x

­­­­
x ¤

i

These partial derivatives are evaluated at the point x¤
i along a

nonlinearreferencetrajectory.This referencetrajectoryis integrated
numerically and is reinitialized after each measurement update to
the most recent a priori state estimate Oxi .

The discrete-time EKF is then formulated using the state transi-
tionmatrix8.t j ; ti /, which is the solutionto thedifferentialequation

P8.t j ; ti / D A8.t j ; ti /

with the boundary condition 8.ti ; ti / D I . The elements of the ma-
trix A are de� ned by fai j g D @ Pxi=@x j . Therefore, for this example,

A D

"
0 1

¹
¡
2x2

1 ¡ d2
¢¯¡

x2
1 C d2

¢ 5
2 0

#

and the state transition matrix is computed at each time step using
fourth-order Runge–Kutta numerical integration.

To demonstrate the process of tuning an extended Kalman � lter
under more unfavorable conditions, the system is corrupted by a
multiplicativedisturbancewith a Â 2 probabilitydistributionas well
as an unmodeled bias produced by a second-orderMarkov process.

The second example was constructed in this way so that the true
noise statistics are unknown. Clearly, the system is not only non-
linear, but subject to non-Gaussian disturbances. What tuning pa-
rameters will yield the best extendedKalman � lter performance are
unknown prior to the tuning process.

Becausethe true tuningparametersfor thisproblemare unknown,
the neighborhood of the minimum cost in the q11; q22 parameter
spaceis locatedusinga coarsegrid search for thepurposeof plotting.
The surface plot of the cost functionvs q11 and q22 for this nonlinear
example is shown in Fig. 5. The topographyof this function reveals
a minimum near the point q11 D q22 D 1:5. The test of the simplex
tuning algorithmhere is if it converges to this apparentminimum of
the cost function.

The trajectory of the low vertices of the three vertex simplex for
the second example is shown in Fig. 6. Once again, the simplex

Fig. 5 Monte Carlo cost function for nonlinear two-state system.

Fig. 6 Tuning parameter trajectory for example 2: Nonlinear two-
dimensional system.

Fig. 7 Sampleof � lter state estimationerrors and covariance for linear
example 1.

tuning algorithmhas located the minimum of the � lter performance
index for this nonlinear, non-Gaussian estimation problem.

The � nal converged set of three .q11; q22/ pairs for the two-
dimensional nonlinear example are as follows:

1) Point 1 is q11 D 1:386538, q22 D 1:556232, J D 0:47820887.
2) Point 2 is q11 D 1:377049, q22 D 1:544843, J D 0:47820885.
3) Point 3 is q11 D 1:375649, q22 D 1:545644, J D 0:47820905.

The minimum performance index occurs at simplex point 2 for this
case.

In Kalman � lter theory the state error covariance is de� ned as the
expected value of squared state estimation errors

P D E[.x ¡ Ox/.x ¡ Ox/T ]

For linear systems driven by Gaussian noise, the � lter covariance
will indeed represent the expected value of the squared state esti-
mation errors.

However, for nonlinearsystems no statements can be made about
the relationshipof the � lter covarianceand the statistics of the state
estimation errors. The � lter covariance P may indeed accurately
model the state estimation errors for a given nonlinear problem.
However, there might be � lters applied to nonlinear systems for
which this is not the case, although these � lters can give acceptable
performance for their applications.

This can be illustrated by plotting the estimation error (estimate
minus truth) for the � rst (position) state and associated � lter co-
variance for the two-dimensionallinear and nonlinearexamples just
presented.The stateerror and covariancefor the linearexample1 are
shown in Fig. 7, and the same variables for the nonlinearexample 2
are shown in Fig. 8.

Examining the plots for the linear case shows that the errors are
well describedby the � lter covariance.However, this is not the case
for the nonlinear case, despite the fact that the errors shown were
produced with the best tuning from the simplex tuning algorithm,
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Fig. 8 Sample of � lter state estimation errors and covariance for
nonlinear example 2.

based on the state error performance index J . This illustrates that
the tuning which results in minimum state errors for the nonlinear
problem did not result in a � lter covariance that accurately repre-
sented the expectedvalueof the squarederrors.But this is consistent
with the theory, which makes no assurancesthat the covariancewill
represent the errors for nonlinear problems.

A performance index based upon the statistical consistency of
the � lter covariance with the state estimation errors is developed in
Ref. 5. The consistencycheck is used to constrain the tuning search
to � lters for which the covariancematches the statistics of the state
estimation errors. Although this is a desirable property for a � lter
and should be expected for linear systems, a � lter covariance that
matches the statistics of the state estimation errors does not guar-
antee the minimum state estimation errors for nonlinear systems, as
illustrated by these results.

Tuning Example 3: Autonomous Geosynchronous
Satellite Navigation Using Global Positioning System
The � nal example is the tuningof an EKF processingglobal posi-

tioning system (GPS) pseudorange measurements to perform orbit
determination for a spacecraft in a geosynchronous (GEO) orbit.
The GEO navigation problem imposes some unique constraints on
the GPS navigation problem.

The primary problem for navigation of GEO spacecraft using
GPS is that the visibility of the GPS spacecraft from GEO is very
limited because the GPS spacecraft are below the GEO spacecraft
and the GPS broadcastantenna is pointed at the surfaceof the Earth,
away from the GEO spacecraft above. As a result, the only signals
that arrive at GEO are those which spill past the limb of the Earth.7

The orbit of the spacecraft is perturbed by higher-order Earth
geopotential terms, solar radiation pressure, and lunar and solar
gravity. The result is clearly a nonlinear dynamic system. The mea-
surementsare corruptedby whitenoise in additionto GPS ephemeris
and clock errors.

The vehicle state vector includes six stabilized Keplerian orbital
elements f®; ¯; ° ; a; Ä; ig, and two elements for the GPS receiver’s
clock phase and frequency error estimates fÁ; !g. Although clock
phase is normally expressed in units of seconds, it is often repre-
sented in the � lter in distance units by multiplying by the speed of
light.Similarly,clockfrequencycan be representedin unitsof veloc-
ity. In addition,the statevectoris appendedwith a passbiasb for each
of n GPS spacecraft in view fb1; : : : ; bng, which are intended to ac-
count for the unmodeledGPS broadcastephemeris and clockerrors.

The general form of the state dynamics, including the appended
clock and pass bias states, is given by

PNX D [ P®; P̄; P° ; Pa; PÄ; Pi ; PÁ; P!; Pb1; : : : ; Pbn]T

D [ f® . NX /; f¯. NX /; f° . NX/; fa. NX /; fÄ. NX/; fi . NX/;!;0;0; : : : ;0]T

where each function f.¢/. NX/ is some nonlinear function of the state
vector NX .

The scalar pseudorangemeasurement equation for GPS satellite
j is modeled in the � lter as

y j D
®® NRGPS j ¡ NR. NX /

®® C Á C b j

where NRGPS j is the Cartesian position vector for GPS satellite j ,
which is assumed to be known; NR. NX/ is the Cartesian position of
the GEO satellite, which is a function of the state vector NX ; Á is the
GPS receiver clock phase offset to be estimated; and b j is the pass
bias for GPS satellite j , which accounts for other unmodeledbiases.
Both of these biases are expressed in distance units for consistency
within the pseudorangemeasurement.

The seven process noise covariance parameters to be selected by
the simplexalgorithmfor thisproblemare the six associatedwith the
stabilized Keplerian elements fq®; q¯ ; q° ; qa ; qÄ; qi g and the pro-
cess noise to be applied to the pass bias state for each GPS satellite
in view qb . It is assumed that the receiver clock noise statisticshave
been determined through calibration, and so the clock state process
noise parameters fqÁ ; q¿ g are not tuned by the simplex algorithm.

The EKF for this problem therefore has a minimum of eight state
vectorelements,with as manyas 12 or 13 dependingon the visibility
to the 24 GPS satellites. The additional pass bias states are added
and removed to the state vector as GPS satellites come into and
out of view. If the process noise covariance matrix Q is chosen
to be diagonal, tuning the EKF could require choosing up to 13
separatediagonal elements when GPS visibility is high. To simplify
the tuning somewhat, a single q value is used for all of the GPS pass
biases, which reduces the q parameter space to only nine variables.
The GPS receiver clock error statistics can be assumed, which � xes
the q values for these two states. This leaves seven q values to select
in order to tune the EKF: fq®; q¯ ; q° ; qa ; qÄ; qi ; qbg.

This is a typical tuning problem faced by a � lter designer or
analyst.How to selectsevenq valuesto achievethebestperformance
from this EKF? There may be some intuition from the dynamics to
guide the � lter tuning, but the tuning of this EKF will often involve
some amount of trial and error.

The Monte Carlo performance index Jk for the GEO GPS navi-
gation problem is simply the rms three-dimensional position error
of the magnitude of the difference between true Cartesian position
and the � lter estimate:

Jk .Q/ D

(
1
N

t fX

ti D t0

[ NR. ONX i / ¡ NR. NX i /]
T [ NR. ONX i / ¡ NR. NX i /]

) 1
2

where ONRi is the � lter estimateof the GEO satellitecartesianposition;
NRi is the true Cartesian position; and t0, t f , and N are de� ned as

before. For the GEO problem t0 D 2 days to exclude the transient
response of the � lter from the performance index and t f D 5 days.
The � lter was run with a 15-min measurement interval.

Unlike the precedingtwo-dimensionalexamples, the EKF for the
GEO application was not tuned using a Monte Carlo based perfor-
mance index.The simplex tuningalgorithmused a single simulation
run. This is primarily becauseof the increasedcomplexityand com-
putational burden of this problem. The resulting tuning parameters,
when used with different simulation samples, give consistent per-
formance, so that the effect of not using a Monte Carlo based cost
function was small in this case.

Obviously, with seven independent variables a plot of the cost
function vs Q matrix elements cannot be illustrated in two-
dimensional picture. What can be plotted, though, is the value of
the � lter performance index for each set of Q elements selected by
the simplex tuning algorithm. This plot, shown in Fig. 9, shows the
progress of the simplex tuning and the eventual convergenceof the
algorithm as successive iterations improve the performance index
from several hundreds of meters to approximately17 m rss position
accuracy.

The simplex tuning algorithm proved to be invaluable for eval-
uating the navigation performance of a GEO satellite in Ref. 7. A
total of 15 different GPS antenna con� guration and GEO user GPS
receiver clock quality combinations were evaluated. To assess the
navigation accuracy for each case, each case needed to be tuned
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Fig. 9 Filter cost function vs simplex iteration number for GEO space-
craft navigation example.

independently.Problems of this type best demonstrate the utility of
this method of � lter tuning.

Conclusions
The results demonstrate that the Downhill simplex techniquehas

great utility for tuning the Kalman � lter for linear and nonlinear
applications.It can be applied to simulateddata, or to real data when
a highly accurate “truth” reference is available, as is often the case
in postprocessing. The technique is applied here to three example
tuningproblems,and it should extendwell to other similarly de� ned
� ltering applications.

Tuning is accomplished by constructing a � lter performance in-
dex based on state estimation errors and coding the Kalman � lter
simulation of interest as a stand-alone function that can be passed
as tuning parameters of independent variables. This function then
returns the value of the scalar � lter performance index as a function
of these tuning parameters. The technique exhibits rapid conver-
gence to the minimum performance index from a variety of initial
conditions. This repeatable convergence is a useful trait for an au-
tomated tuning technique.

The technique is demonstratedhere on simulated data, for which
the true states are known. This is a situation that often arises when a

� lteringalgorithmis beingdesignedand testedin a controlledsetting
prior to actual� eld testingwith real-worlddata.The techniquecould
also be applied to real data if an independent truth reference is
available.

Although the downhill simplex method was used here, other nu-
merical optimization techniques might be suitable for � lter tuning.
Given the noisy nature of the data, a method that employs function
evaluationsonly is desirableover techniqueswhich require analytic
or numerical gradient information.

The cost function used here was a simple rms of the state estima-
tion errors taken over time for a number of Monte Carlo simulation
samples. Other � lter performance indices based on the magnitude
or autocorrelation of the measurement residuals could also be ex-
amined.

Although this method has shown great utility for tuning an EKF,
the output of the � lter should be closely examined to verify that
it is performing as expected. When simulated truth data are avail-
able, the state estimationerrors should be compared with � lter error
covariance for consistency.

Furthermore,byallowingthe rapidevaluationof differentKalman
� lter con� gurations this techniqueallows the � lter designer to eval-
uate different models and inputs to the � lter in order to answer
more general questionsabout model order and parameterizationfor
a particular problem.
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