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Abstract

Tracking accuracy is compared using two alternative
approaches for handling the radar target tracking of
exo-atmospheric objects in ballistic flight (represen-
tative of satellites and reentry vehicles). The received
radar returns, measuring range and angle (in radar sine
space), are nonlinear observations of the target moving
along an expected elliptical path, as viewed from the
Cartesian Coordinates erected within the face plane of
the observing UHF phased array radar used for Early
Warning so that range-Doppler ambiguity can be
appropriately compensated.

The two practical nonlinear filtering algorithms being
investigated here are distinguished by the drastically
different way the associated sequence of noisy mea-
surements are processed. The first approach, using the
well-known Extended Kalman Filter (EKF), processes
measurements one-at-a-time as an in-place, sequential
recursive estimator of the target’s instantaneous posi-
tion and velocity states as a function of time. The
second approach processes the entire collection of mea-
surements available over the time epoch of interest en
masse using the Batch Least Squares (BLS) technique
to yield a time history estimate of the target’s entire
trajectory in one fell swoop.

The BLS algorithm generally exhibits dramatically
smaller estimation errors and more realistic truthful
covariances obtainable on-line than does the EKF. The
CPU loading of these alternative tracking approaches is
gauged and discussed here as well as the operational
benefits and drawbacks of each. Both are useful in
different roles within the UEWR mission. An update is
offered on the utility of Squareroot filters in this type of
application.

1. Introduction

The fundamental estimation accuracy that can be
achieved by an optimal, ideal sequential tracking
estimator, as gauged in terms of Cramer-Rao Lower
Bounds (CRLB) [1], was applied to the UEWR mission
and extensively quantified and catalogued for a
collection of 30+ trajectories of significance, as
representatively reported in [3]. An overview of the
multitudinous cross-considerations that arise for UEWR
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were presented in [4], including a summary of the status
of a number of tracking related initiatives pursued
during the earlier HAVE GOLD phase that ended in
1998 prior to the more up to date studies reported on
here, as now evaluated with a more refined more
evolved DoD sanctioned simulator.

A comparison is made here of radar target tracking
performance between two different approaches to
approximate nonlinear filtering of the noisy range and
angle measurements of exo-atmospheric objects in
ballistic motion. Elliptical motion is exhibited by
satellites and by reentry vehicles (rv’s). In both, object
position and velocity are governed by the nonlinear
dynamics of body motion in a central force inverse
squared gravity field (Sec. 2.2). Since we additionally
include considerations of the second harmonic J, for
realism to account for the oblateness of the earth (Sec.
2.3), its presence induces two more characteristic
motions known as the “regression of nodes’” and the
“rotation of Apsides’ [5]-[7]. The radar range mea-
surements are modeled as nonlinear observations of the
target motions, as viewed from Earth-fixed Cartesian
coordinates [6] erected in the face plane of the UEWR
in order to compensate the range-Doppler ambiguity
(Sec. 2.4). Afterwards, the motion is related back to the
Earth Centered Inertial (ECI) frame [8] to simplify
differencing the ground truth from the estimates in
tallying the estimation errors incurred (where simp-
lification is due to absence of Coriolis cross-product
terms in this frame).

Both algorithms use the same 1*-variation approxi-
mations of the nonlinear observations and error
dynamics of object motion in common (as the two
Jacobians explicitly defined, respectively, in Secs. 2.2
and 2.4). With these approximations in effect, the EKF
then implements the familiar linear-minimum variance
(Kalman) estimation formulas. The Raytheon BLS exa-
mined here, in contrast to other regression algorithms
previously formulated for exactly this same type of
early warning radar defense application (such as the
1981 Lincoln Laboratory whole value maximum
likelihood least squares batch formulation [further
pursued by Mission Research Corp. for HAVE GOLD
in 1997] and the more recent whole-value batch
formulation [9] which doesn’t directly model the
earth’s oblateness), is unique in that it is an incremental
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differential formulation and also optimizes its least-
squares search over a functional variation, where each
candidate function is indexed as a potential target state-
vector-path over the given tracking time interval. The
result of Raytheon having such a novel well-formulated
BLS algorithm is that it provides estimates of generally
superior accuracy than those availed by these other
whole-value least squares formulations and all are
generally better than using just an EKF (Sec. 5).

Results were obtained for both algorithms performing
in a comprehensive mission simulator developed by
XonTech Inc., where radar system errors are repre-
sented in detail. These representations include radar-

realism, evaluations on one platform (designated to be
the Test Driver/Software Algorithm Testbed [TD/
SAT]) also included a fluctuating target model and
realistic antenna nulls. The BLS algorithm was seen to
converge faster and predict more accurate statistical
bounds than the EKF in most situations. For the same
length of data record, the accuracy of the BLS estimates
is better (i.e., tighter and closer to true) than those
available from the EKF for the same track at the same
point in time but the drawback (Sec. 4) is that it
possesses a greater CPU burden that grows with the
length of target data of the same ID that BLS is
processing. The utility of both in different roles within
the UEWR mission is summarized in Sec. 6

cross-section and scan angle models, signal-to-noise
computations, and radar front-end noise models. For

2. Representation of the linearized target dynamics and measurement errors

2.1 Notation for UEWR target track estimation via EKF and/or via BLS:

Target tracking time epoch (or time interval of interest from initial to final):
Target position, target velocity, vector of target model dynamics:

Target state vector representation (3 position, 3 velocity components):
Earth’s rotation, gravity, its J, harmonic (effect due to earth’s oblateness):
Initial condition for target state estimate:

Initial condition for target state estimate, after correction, denoted by:

(at just an instant later after the corrective offset has been added) as:
Identification number provided within a multitarget tracking context:
Measurements of r, x/r, y/r (in face coordinates):

Collection of all radar measurements available for a unique target ID:
State estimate conditioned on prior measurements received up to ty:
Estimation error:

Error transition matrix (i.e., ox(t) = @(t, t,)0x(t,) ):

Earth Centered ECR-to-radar Face coordinate rotation:

Observation model (as arises in measurements z(t) = h(x(t)) + noise ):
Both Jacobians, as 1% derivatives of h(x(t)) and f(x(t)), respectively, wrt x:
[where Jacobian is evaluated about the currently available estimate X (V).
Reciprocal of 1- o (standard deviation) of measurement error:
Range-to-target magnitude, range-to-target unit vector:

Range/Doppler coupling coefficient:

(T is signal duration or pulse width, f, is LFM center frequency, (3 is LFM
pulse bandwidth)

Threshold of Least Square Error (LSE) residual variation:

[toa tf]

p, v, f(x)

x'(©=[p' IV'I=lxi,.. Xl
Q, g7 a

X (t)

[X(t)]"

[X (t)] =X (t;) +5x(t,)
ID or Target ID

z (O=[z(),2,().2()]"

Z" = {z(t,), Z(t1),- ., Z(tm)}
X (0 = B{x(OZ")

3x(t) = x(t) - X (t)

DL, t,)

[C/®] = [ ex(t) | e2(D) | es(®)]"
h(x(1))

H(x(t))=[Oh(x)/0x]| 2
F(x(0)= [0f(x)/0x]| 2
CAGIN

r(t), u(t) = r(t) /r(t)
(Tf/B)

€

T (j) =t (current time tag)

Important intermediate BLS arrays:

Xu(:,j) = X (current time BLS estimate)

D (4, 3, j) = ¢ (current transition matrix)

Parameter representing the maximum j index for the above three arrays
(i.e., number of points to be included within Runge-Kutta integration):
Parameter representing maximum number of iterations allowed (for each
call to the BLS algorithm)

Abbreviation of State Variables: S.V.
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2.2 S.V. Modeling of Target Error Dynamics

The dynamic model governing ballistic, exo-
atmospheric target motion, is:

dp/dt = v, (N
dv/dt = g-—Qx(Qxp)—2Qxv, 2
and dynamics of the whole value filter state,
x'(t)=[p" v'], and its associated estimation errors,
8x(t) = x(t) - X () 3)

are defined as follows: x"(t)= [p' | v'], X (t) = E{x|Z"},

8x(t) = x(t)- X(O= O t)dx(t,),  (4)

dX/dt = f(X .t t,), with initial condition X (t,) = X,
)

do/dt = [8f( X )/0x]D, with initial condition ®(t,)=I,,.
(6)

The time histories of X(t) and d(t, t,) are obtained by
simultaneous Runge-Kutta solution of their differential
equations (Eqs. 1 and 2) for some choice of integration
step-size over the tracking interval, [t,, t,]. Interpo-
lation approximations of those time histories are used in
the synthesis of the regression arrays defined in Sec. 3.
Initial state error, 0x(t,), is estimated by least-squares
(Sec. 3), and the prior estimate of initial state, X(t,), is
updated with a new estimate of initial state error after
each BLS iteration as:

[X(t)] = X(t) + 8x(t) (N
2.3 Introducing the effect of gravity harmonic J,
(due to earth’s oblateness)

Within these equations, the ECR acceleration a is to be
recomputed at each new time step as:

p = vector from earth geocenter to radar face center,

o (AT)
L, =pfrE v ——i,
P 2

W = gravitational constant = 3.986005 x10" m3/s2 ,

®

ag= —— I, (inverse square term), ©)]
Acen— Q X (Q X 1,) (centrifugal term), (10)
Aeor=— 2QAX v (Coriolis term), (1

J, = second harmonic of geo-potential (a constant)

= 1.08263x107,

r. = geocentric (equatorial) earth radius = 6378.135 km,

L = earth latitude,

N = unit vector from geo-center to North pole, ex-
pressed in radar face Cartesian coordinates with the
origin at the earth’s center = Q/ | Q|,

)
. 9. (ro N) 9 9 .
sinL = ———, (relationship between latitude and
I
parameters) (12)

a, = acceleration due to second spherical harmonic of
gravity [7]

o, (e Y[ 15(eINY 3 ) 3(nIN)

= e i
r, \r 2r] 2r; 48

(cf. [40, Eq. 7]) (13)

a=ag + Acent T Acor + A2, (14)

The 3-dimensional vector p is constant for a specific
radar face.

2.4 UEWR as a data measurement sensor (with
range-Doppler coupling compensation

The measurement model of the form:

2(t) = [z, 2., 2] = h(x), (15)
to be explicitly defined below, is used to first predict
measurements and then to form the measurement res-
idual. The appropriate expression to be used by the
radar to partially compensate the matched filter tuned to
the transmitted Linear Frequency Modulated radar
“chirp” (internal to the radar receiver) using the range/
Doppler cross-coupling coefficient term, (Tf,/B), is de-
fined from:

p; = radar site position relative to Earth's center in ECR,
r =p- p; (true range vector to object); (16)
u=r/r (unit vector), (17)
Tpp = range-rate from range-Doppler pre-distortion
compensation signal processor,

t.  =i" measurement time-tag,

z(t;) = measured range,

z,(t;) = horizontal projection of measured range in radar
face,

z,(t;) = vertical projection of measured range in radar
face,

Zw)=12,,2,,2,1' = h(X(®)

(predicted mea-surements); (18)
a = r/r (19)
Z.(t)=T + [TE/BI(VA - Typ) (20)

UNCLASSIFIED

o)



UNCLASSIFIED
Comparison of EKF and Batch Least Squares Approaches to UEWR Target Tracking

Z,@=[c,®]" 21
Z,=le(®]" 0 (22)
Sz(t) = z(t) -Z (t) = z(t) - (X () (residuals). (23)

In summary, the measurements, as functions of the
state, are modeled here according to [15] in terms of
radar location, p,, target range, r, rows, [c (t)]", of the
ECR-to-Face coordinate rotation, [C. f(t)], and the
range/Doppler cross-coupling quotient (Tfy/ B) to be:

z1 r + (Tf /B)v u 24)
[cl(tl)] (r/r) = [cl(tl)] (25)
Zv = [e(t)]"(r/r) = [eo(t)]'u (26)

which, in vector notation using z = [z, 7y, z]%
pletes the detailed specification of Eq. 15.

com-

Computing first variations piecewise with respect to
first the position p and then the velocity v, the mea-
surement residual sensitivities to both these components
of the state are found, respectively, to be of the fol-
lowing form:

02,/0p=0t/0p+(TE,/B)v du/dp=u" +(Tf/B)v'(Is —uu )/r

(27)
oz,/op=[c.]"ou/dp=lc:]" (s - wu"yr = ([e;]" —zu')r
(28)
ozJop=[c>]"ou/dp=[es] (Is - uu"yr = ([e)]" —zuyr
(29)

and
dzlov = 8{(Tf/]3)v u}/ov= (Tf/Bu’ (30)
ozJov= 0" @31
oz Jov= 0. (32)

Both the above components can be combined into a
single composite dz/0x = [Oh(x)/0x] = H(x), which
yields the final linear observation sensitivity matrix
(measurement Jacobian) as the goal:

5 oz, [ox
H(x) E[ oh(x)/ox ] = oz, [ ox
oz, [0x
u' +(Tf,/B)v" (13 —uuT)/r (T£,/f)u"
= (clT (t)—zu" )/r 0"
(cz(t)—zvuT )/r o'
(33)

3. Estimate of BLS Implementation Needs

A brief high level summary of the Raytheon Batch
Least Squares (BLS) algorithm, along with salient
aspects of its internal structure that are exploited within
BLS, is offered now since it may be less familiar than
the structure of a standard EKF that appears fairly

frequently in the literature for this type of application
[9]-[151, [22], [25]-[29], [36]-[41]. However, least
squares algorithms have been investigated before [3 1]-
[33] but never before compared so closely to an EKF.
(For other precedents, see chap. 15 of Example Book
associated with [16].) Differences between measur-
ements and their predictions, z — Z , at the same time
point t; constitute the measurement residuals, which
exhibit the following structure:

-2 =20 -h ) RED)
= 2(t) - h(R (6)-{Oh(X )/} [x(6) - X )]

(39)

= 2(t) - h(X ())- H(X (68X (O (36)

=5a(t) -HX (0)P(, 13 % (1) G7)

The chronological sequence of reciprocal 1c-weighted
or normalized set of coefficient matrices are aggregated
or adjoined by placing each beneath its predecessor for
each of the times, t;, for which measurements are
available. The resulting composite rectangular coeffi-
cient array, A(3mx6), has the internal structure (cf., Eq.
63 of [2]) summarized here on the right as:

[o.(t)] H(K(,) (1)
[o. )] HG@)O()

>
Il

(38%)

[o. )] Ak, D@,
and the corresponding aggregate column array Z(3mx1)
is likewise formed by adjoining the correspondingly
normalized (reciprocal 1-c-weighted) set of measure-
ment residuals, each (3x1) grouping adjoined beneath
its predecessor according to the same ascending time
tags, t;, as:

[o. ()] " 62t,)
sz.=| oI @)

(39)

lo. @, dutt,)

where, accompanying the measurements as input to the
BLS algorithm, we also have the measurement noise
standard-deviations, o(t), ou(t), and o,(t;), which de-
fine the appropriate normalizing or scaling factors that
were already utilized above, as shown.

The residual model introduced above is used in least-
squares iterations as the criterion for halting the
iterations, where convergence of |z — Z | to a minimum
(denoted |5Z)) is sought as 8x(t,) approaches zero. The
specific rule for either stopping or continuing the
iterations is based on a test for convergence, by gauging
how the magnitude of the square of the residual differ-
ences is proceeding as compared to its immediate
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history one iteration back: If this is the first pass
through the regression loop, then set |8Z|21ast = |8Z|2
and continue iterating; else if | I8Z st - I5Z)” | > €, then
set |8Z|21ast = |3ZJ" and continue iterating; else if

| I8Z 1ast - |5Z)* | < &, then calculate BLS covariance and
output it and the current estimate and stop.

3.1 The B matrix input to BLS

The target object’s fundamental physical data, captured
as the measurements received from the radar, serve as
inputs upon which the BLS algorithm operates. For
convenience, this input data is encapsulated as an
Aggregate Batch Measurement Matrix, B, being (9 x m)
with entries as explicitly defined below for each enum-
erated row designator:
1: t = time (seconds) [must be monotonically non-
decreasing from column 1 to column m];
2: t4 =range-Doppler coupling time (in sec.) used as
compensation for this observed radar effect;
3: I;= index of radar face (being either 1, 2, or

maybe 3, depending on the radar site);
4: r = range measurement (km) from target to radar
face at sample time, ty
5. u = direction cosine measurement (dimensionless)
from target to radar face at sample time, t
6: v = direction cosine measurement (dimensionless)
from target to radar face at sample time, t
7: o, = standard deviation (km) of range measurement at
sample time, ty;
8: o, = standard deviation (dimensionless) of u-
direction cosine measurement at sample time, t
9: o, = standard deviation (dimensionless) of v-
direction cosine measurement at sample time, ty, where,
in the above, the three quantities (r(t), u(t), v(t)) are
measured according to the standard radar convention in
sine space and where there are exactly m measurements
available that constitute the columns of this B matrix.

3.2 Overview of BLS’s processing flow

The criteria of optimality is the minimization of a cost
function consisting of the sum of the squares of the
normalized errors (gauged in terms of the entire collec-
tion of measurement-error-weighted residuals of the
form |[o, (t)]'8z (t)| using the reciprocal standard devi-
ations: [o, ' = diag[1/c,, 1/c,, 1/0,] as the normalizing
weightings). The error is calculated between results ob-
tained using the propagated target trajectory (obtained
as an intermediate calculation evolving from an initial
state estimate X (t,)) and the aggregate of measurement
data received {z(t,), Z(t,),-.., Z(tm)}, consisting of all the
associated individual radar return realizations collected
or logged over the entire specified tracking interval

[to, t] for a single identified target ID.

Both the candidate initial hypothesized X (t,) and its
associated error correction 8x(t,) are to then be further
processed and refined to determine the least-squares
estimate of this combined initial state vector after being
provided all these measurements. The associated under-
lying regression iterations are to be tested for the
simultaneous convergence of the estimation residual
evaluation [8Z|* as defined just prior to Sec. 3.1. In or-
der to obtain final results, a fundamental linearized
system of algebraic matrix equations (posed as a
nominal plus offset error formulation) is to be iter-
atively solved using a Householder transformation as
the crux of this BLS approach:

[8Z(t)] = [A(t)]8x(to)- (40)
This linearized system is to be solved yet again on each
BLS iteration for the indicated initial state estimate
correction 8x(t,), where available aggregate quantities
portrayed above summarize the fundamental underlying
relationship of Eq. 37 by using standard familiar re-
gression array notation: A(t) = [o,]"'[oh( X (1))/0x]®(t;)
and likewise denoting the entire collection of measure-
ments as 8Z(t;) = [o,]'[z(t) - h( X ()], respectively, as
already defined in Eqs. 38 and 39. The two step
Householder transformation-based solution procedure
consists of: (1) first forming an upper triangular matrix
as an intermediate result [by systematically annihilating
all elements in the columns below the principal diago-
nal of the normalized matrix of measurement derived
data]; (2) then, via standard “back substitution”, solving
for the unknown state estimate 8x(t,) [corresponding to
providing a refined initial condition estimate at the
starting time via Eq. 7].

The result of the above optimization may be
summarized as an initial state vector “whole value”
estimate availed at the starting time for the time epoch
of interest. This, in turn, is propagated to the end time
of interest along with an associated covariance of
estimation error as the primary outputs. After all refi-
ning intermediate iterations cease, the LSE error cova-
riance that emerges, denoted below as [AHTAH]'I, asso-
ciated with the final estimate X (t,) is computed as out-

put error covariance: COoV e = [Ag"(t) Ax(®]" and
D( ty to) -COVBLS-G)T(tf, t,) or, equivalently, as:

E{BR)EX)"} = Oltm, t)A () Altw)] " @ (b ).

(41)
(The number of sample points availed as radar return
measurements depends on actual acceleration magni-
tudes experienced by the target and the length of the
time interval over which it is viewed, so array sizes
associated with BLS are not known precisely in ad-
vance. However, they can be upper bounded using the
parameter RKMAX.)
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3.3 Summary of the sequence of BLS operations in
this joint evaluation versus that of EKF

1. Prior to any track estimation, initialize EKF with

a’priori estimate X (t,).

2. Save EKF update of prior estimate, [ X (t,)]", and all

subsequent measurements, Z™.

3. Request Batch Filter execution at t=t, and input
initial estimate [ X (t,)]'and measurements Z™.

4. Define LSE model,

SZ(t) = [o, ' [Oh(X)/Ox)]D(t, t,)0x(t,) = A(t)Sx(t,).

5. Use successive Least Square iterations, each with an
update of the initial state error 8x(t,), with revised
initial state as [ X (t,)]" = [ X (to)]" + 8x(t,).

6. Iterate over Steps 3 to 5 above until convergence is
achieved or until LMAX is exceeded.

7. Upon satisfying the stopping criterion, then output
number of iterations, indicate how looping ter-
minated, and output answers as final estimate: X (t;)
and corresponding error covariance.

The interpolation step discussed above was replaced
during the later timing studies of Sec. 4 (performed on a
desktop PC) with use of more frequent invocation of
Runge-Kutta integrations.

Either the prior direct EKF output information (dynami-
cally propagated back to the start of the interval over
which UEWR measurement processing is to be initiated
as a “cold start”) or indirect prior EKF outputs (ob-
tained externally as part of the prior solution to the
Lambert problem [30], which corroborates with earlier
target sightings from SBIRS [43], [44]) are used to
provide a better more accurate initial estimate desig-
nated below as an “initial seed” for the batch algorithm
(thus equipping the BLS with an initial full estimated
trajectory upon which it will operate to improve this
estimate). However, to obtain all the improvement
being sought requires performing a number of internal
optimizing iterations as already called for within the
algorithm.

4. Estimate of BLS Implementation Needs

A gauge of anticipated mission CPU time was made
using the Fortran intrinsic function CPU TIME to
measure the latency or computational delay in running
the BLS algorithm on a desktop PC using Compaq
Digital Visual Fortran ver.6 (an F90 Fortran compiler),
Windows NT-4 operating system with service pack SP-
3, 128M RAM memory, and a 266 MHz clock. The test
scenario consisted of a single target of constant radar-
cross-section (with antenna scan-loss present) at a star-
ting range of about 2500 km with a minimum signal-to-

noise ratio of 10 dB but increasing to nominally be a
SNR of ~13 dB. Use of a non-fluctuating target in this
manner gives a better idea of the actual algorithm ti-
ming under full worst case loading when no measure-
ments are missed or dropped.

The normalized time interval expended on the PC, per
iteration, per measurement, was approximately 0.00035
seconds. It is estimated that for the anticipated planned
(April 2000) hardware, the embedded version of this
same algorithm should execute several (at least 3 to 4)
times faster than the desktop version. The numbers
quoted here were obtained for just one Monte-Carlo run
for one scenario (D13.1).

A parallelized version could be even faster but that is a
different architecture. Only sequential Von Neumann
implementations were considered here. A parallelized
version of the Householder transformation, at the heart
of BLS, may be found in [42]. Lincoln Laboratory in-
vestigated this systolic array version of a parallel
Householder algorithm in the late 1980’s for radar
signal processing but later converted to implement a
cordic algorithm based on Givens rotations.

A parallel processing Fortran reference [16] indicates
that interpolation benefits from implementing on pa-
rallel processors by greatly speeding up the attainment
of the goal. Unfortunately, the clean lines of the ori-
ginal BLS algorithm were altered to replace inter-
polation with more frequent integrations between the
available measurements that are logged. This version of
BLS, written up for the MAS SRS spec, presumes only
a sequential Von Neumann implementation since we
could not accurately guess how a multi-threaded ver-
sion would be partitioned across processors and perfor-
mance also depends on target platform capabilities, its
OS, and on compiler settings.

Another possible variation on the original BLS is to use
SVD in place of the Householder’s transformation
when solving the fundamental system of linear equa-
tions at the heart of the BLS algorithm. When possible,
a “Householder transformation” should be used over
SVD in well-behaved situations since Householder
constitutes a lesser computational burden (being a vol-
tage or squareroot method) than that of SVD (which is a
power method, as revealed in [13, App. B]). However,
the vagaries of real data in some applications may
warrant use of SVD for robustness.

An estimate of the algorithm-allocated memory for its
internally defined variables is about 600 8-byte words
or about 5,000 bytes. If an object is to be tracked over
an interval of 2 minutes at a frequency of 1 Hz, then the
required memory allocation could be as much as
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(120)(5,000) or 600 K bytes (assuming no measure-
ments are missed or dropped).

BLS processes all the available measurements en masse
and requires several iterations (albeit a small number,
nominally 2) to do so. (The number of BLS iterations
previously encountered for the interpolated version
ranged as high as 8 but was nominally 3.) The number
of measurements processed from this segment of the
D13.1 scenario as a test case was not extremely large.
Other scenarios can have much longer lengths of data to
contend with. Intermediate arrays of transition matrices
depicted in the symbol notation of Sec. 2.1, as well as
regression arrays such as those in Eqs. 38 and 39, as
well as the fundamental (9 by m) Aggregate Batch
Measurement Matrix B defined in Sec. 3.1 for BLS
must be accounted for in 8 byte double precision for
these variable arrays for each track ID in process, where
m is the number of measurements available for each
track ID. As m increases, so must these intermediate
arrays increase within the BLS algorithm. Memory for
all but the above (9 x m) BLS B-matrix array can be
released afterwards and re-allocated where needed. The
actual BLS program code itself remains as a known
fixed size.

Regarding sensitivity to the radar data that it is
operating on, an EKF will follow any radar measure-
ments it receives while the BLS tries to fit all the
received data en masse to its internal model. The BLS
internal model assumes that all the data be exclusively
from a ballistic regime and that it be homogeneously
pure by not being tainted with mis-associations from
other tracks (which otherwise degrade BLS).

Timing above was performed for a situation that was
already known to converge. The real world is not so
accommodating as to allow us to know the situation
beforehand. Conservatism would dictate use of the
worst-case number of iterations, LMAX, that can be
incurred as a multiplier of these per measurement
timing estimates. While the in-place EKF processes
measurements  one-at-a-time so CPU-time-per-a-
measurement is a valid criteria for an EKF, the BLS
does not process measurements one-at-a-time so timing
estimates portrayed only this way are, at best, an
intermediate approximation for BLS. For BLS, it is all
or nothing in terms of measurement processing so CPU
time should be interpreted for the whole measurement
set that is being processed to be reasonable. BLS uses
“all the measurements available to it all the time” when
it is invoked.

The appropriate final CPU timing number that is unra-
veled here now decomposes naturally into two cases.
The first case is the simplest and corresponds to when

BLS is merely called once (as in the UEWR MAS
SRS). There is an upper bound worse case for this
situation of 25 x m x (0.00035 seconds). In nominally
benign situations (the prevalent case), the above timing
expression holds with 2 replacing 25 as the appropriate
pre-multiplying factor. These two expressions imme-
diately above with alternate prefixes, can be used to
bracket the actual CPU time from above and below.
Use of both bounds together in this way is more
conservative for performing predictions because the
user does not have to know what the actual situation is
beforehand regarding number of iterations to be
incurred for BLS to converge for an upcoming trial.

The second case involves a slightly more complex
expression and corresponds to when BLS is called
repeatedly at a known, fixed periodic rate. In this
situation too, there is an upper bound worse case

2]
:
ilry=
=1

as: 25- (0.00035) .

i

i i (e

In the preceding expression, m is as defined in Sec. 3.1
and r is the period at which BLS is automatically
invoked (at the desktop PC, or within TD/SAT or in
later simulators if implemented the same way) and the
brackets in the upper limit of the finite summation and
within the expression on the right hand side (where the
prior sum is simplified) denotes the smallest integer
portion of the resulting division indicated to be
performed within the brackets. Here LMAX = 25.

To see how this expression was obtained, first consider
the case for measurements being processed by BLS at a
periodic rate where BLS is invoked every 10 measure-
ments (where at each invocation, all the measurements
logged since the beginning for this object ID are
reprocessed by BLS). The CPU loading looks like the
following dot diagram representing batches of measure-
ments processed by the BLS algorithm each time it is
invoked:

For the first 40 data measurement points, where BLS
was invoked after 10, after 20, after 30, and after 40,
the total number of data points processed after 40 is 10
+ 20 + 30 + 40 = 100. This is 100 times the measured
individual per measurement CPU times reported above.
At the 47™ measurement, the remainder now processed
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is nominally no more than at 40 since the big burden of
BLS processing is not invoked until at 50.

Tallying the above dot diagram
)
10
yields: Zi -10=100. A useful formula
i=1

N ON(N+1)

is;i: 5

Using this in the above CPU loading factor for a
periodically invoked BLS yields a loading of:

. 477 [47
@), Lol Gl *®,, -
i 10 = 100

i=1 2

(43)

- 10=

which generalizes to:

BlHR

2

Zi-c:

i=1

- (44)

The per measurement normalization for BLS utilized
above appears to be appropriate and consistent with
numerical analysis theory for this main potential bottle-
neck apparently facing BLS. As already mentioned
above, the main problems being solved at the heart of
each BLS iteration is the solution of a system of linear
equations (the array of regression equations). Recall
that this is the crux or fundamental kernel and the
Householder transformation is used to solve it (as the
algorithm of least computational complexity, which
accomplishes the task at hand). Parallel implementa-
tions should be no slower than these estimates for a
Von Neumann machine and parallel multi-threaded
implementations may be considerably faster.

Operations Counts are available for a perfectly
implemented sequential version of the Householder
transformation from page 148 of [35]. The operations
count incurred in applying back-substitution as House-
holder’s transformation is being applied to solve the
linear problem [ignoring for the moment any consid-
erations related to obtaining the BLS covariance]), is:
O(mn) flops, where n = 6 and m is the total number of
measurements. For this aspect, averaging by dividing
the previous expression by m to obtain a per mea-
surement normalization yields the constant n= 6. The
CPU burden is merely linear in the number of measure-
ments and consistent with the above criteria selected of
“per measurement evaluations”. Since we also need the
explicit upper triangular matrix in order to calculate the

BLS covariance matrix (but don’t need an explicit
representation of the matrix transformation that gets us
there), the numerical complexity of a Householder
transformation in this case is greater for this aspect but
still only linear in the measurements and still consistent
with the criteria selected for conveying CPU time
above. Also from page 148 of [35], the expression for
the Househholder operatlons counts in this case of pro-
viding an explicit U matrix is: (n? m - n’/3) flops, where
n = 6 and m is the total number of measurements. This
operatlons count goes as m (the dominant power) and
again just grows linearly with m. Averaging by dividing
the previous expression by m to obtain an expected per
measurement normalization yields a constant based on
this numerical analysis theory. A similar invocation of a
Householder transformation per a measurement depic-
ted on page 252 of [13] also obtained a constant that is
a cubic in the remaining fixed variable, being n’. All are
consistent.

5. Representative EKF vs. BLS Performance in
UEWR Mission Simulator (TD/SAT)

The graph of Figs. 1 and 2 show the estimation error
time histories of both the Batch (BLS) and RVCC EKF
filter [10] tracking a single RV within the D13.1 scena-
rio of multiple objects in exo-atmospheric free-fall-
trajectories. The radar sensitivity in this simulation was
such that the tracking signal-to-noise ratio was a mini-
mum of 10 dB at a range of about 2500 km.

Position Estimation Error Time Histories

1 E EKE Estimation Error
10 s EKT Prdicied T-Sigiiia
il L EKF Sampled 1-Sigma
‘i ALV A 3 s
8 i N BLS Estimation Error
\\} \ A / BLS Predicted:1-Sigma
\ 5 BLS Sampled 1-Sigma
\ N
o || S
R X
4 \\ LN ~\\
i
\
\’\ / N -

0
400 450 500 550 600 650

Tracking Interval Time (seconds)

Figure 1: Estimated Position Error Time Histories for
Batch and EKF Algorithms

Batch algorithm estimation of radar object tracking was
compared with EKF tracking of the same object. Com-
parisons were made in a desktop simulation of an object
in exo-atmospheric free-fall. The radar was modeled by
the range equation with constant RCS and pulse-width.
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Observations were represented by models of monopulse
range and angle measurement errors in terms of SNR.
Comparisons were also made in a more comprehensive
mission simulator which included Earth's mass distri-

\
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Figure 2: Estimated Velocity Error Time Histories for
Batch and EKF Algorithms

bution and rotation, fluctuating targets, antenna gain pa-
tterns, RF noise, resource allocation and scheduling,
and multiple-target detections-to-tracks association.
The mission simulator generated a 100 Monte-Carlo
sequence of tracking interval time histories to lend
further support to the ten-trial desktop results (more
came later).

Both the desktop and the mission simulators showed
that, in comparison with EKF, the Batch algorithm con-
verged faster, more accurately, and closer to its own
self-assessed 1-sigma value.

6. Benefits of BLS for the UEWR Mission and
Summary of BLS Characteristics

The superior state vector estimation accuracy of the
Batch algorithm, in particular the more precise velocity
estimate, is a direct benefit to the UEWR portion of the
mission because it:

e enables earlier launch of the interceptor merely
by satisfying accuracy guidelines sooner and
provides more accurate in-flight-target-update
(IFTU) for the kinetic vehicle;

e provides better support for phase-ambiguity-
resolution and contextual feature discrimina-
tion;

e estimates better orbital elements for space
object identification, and results in better satel-
lite vs. missile discrimination;

e Offers better launch and impact accuracy for
legacy early warning functions;

e is potentially more robust in the ionospheric
scintillation, range, and Doppler error environ-
ment (see caveat below);

e should save 6 dB of radar energy in compari-
son with conventional EKF object tracking.

Regarding the first item above, the more accurate (non-
optimistic) on-line prediction of 1-sigma BLS bounds
helps properly constrain the region that the interceptor
needs to search for target acquisition. Use of an
optimistic bound in this role would result in limiting
search to too small a volume of space and therefore risk
missing the target although supporting theoretical
numerical calculations would falsely assure success
(because they expect the available 1-sigma to be
trustworthy, which it is not in general for an EKF).

The EKF immediately avails outputted estimates in a
more timely fashion and will follow any measurement
data that it is provided with. The EKF is appropriate to
use with the data association algorithm for multi-target
tracking (MTT) because it is a fixed lesser CPU burden.
On the other hand, the BLS algorithm provides more
accurate estimates with a higher fidelity (more trust-
worthy) on-line computed covariance accompanying its
estimates for the same data segment length. Estimation
errors of about 1 km are predicted from the on-line
computation of 1-sigma bounds while the actual value
is at the level of 8 km. The Batch algorithm on-line
calculation predicts error bounds of a similar magni-
tude, however, BLS pays off by actually realizing errors
of 1.5 km which are in the same vicinity.

However, BLS use incurs a larger computational bur-
den and more associated senescence (computational de-
lay time that is not fixed) than exhibited or needed by
an EKF (which has a delay time for computed output
that is fixed and known [12, Sec. 7.6]). The known but
not fixed BLS total processing demands always grow
with the amount of measurement data collected for the
particular track ID.

As stated above, BLS provides greater accuracy and a
better (more trustworthy) on-line 1-sigma gauge of
what the accuracy is but is more sensitive and may not
converge (i.e., may not produce any useable output if
LMAX is exceeded because no ballistic curve could be
fit to it) when the measurement data record is tainted.
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The worrisome tainting may be either by mis-
associations, or by failure to correctly prune away the
boosting segment, or by later thrusting if it comprises a
significant portion of the data record, or by the effects
of ionospheric scintillation. BLS expects data which it
assumes matches its internal model; otherwise, it may
fail to converge. This is less of a problem the longer the
measurement data segment is that BLS is provided with
to operate on, as long as the dominant regime it repre-
sents is ballistic (and ionospheric scintillation errors
have been approximately compensated for, as planned,
or either are not dominant). The good news is that this
better situation for BLS use will occur naturally if BLS
is only applied to more mature tracks of interest (which
corresponds to those with a longer data collection re-
cord).

There is still room for improvement of the EFK itself
either via inclusion of more terms in the approximating
Taylor series of the measurements [23], known as the
Hessian; or by including a few additional iterations (2
or 3) of the measurement linearization [22]. Both these
strategies should improve the accuracy of the measure-
ment linearization with but a slight increase in the CPU
burden. Another approach involving the Hessian for
handling measurement structures like this involving a
direct measurement of range [39] is actually adaptive.
Other options are to use different degrees of decoupling
in the initial covariance (and Kalman gain as a cones-
quence) or to pursue exquisite analytic variations of
EKF and its creative generalizations offered in [45].
Other more challenging AOT filter issues arise [25]
when escort jammers accompany RV’s.

Appendix A: Updated Considerations Regarding
Bierman’s Squareroot Filtering

Squareroot filtering is a convenient and practical contri-
vance used to obtain an effective double precision
implementation of a Kalman filter without having to
actually resort to explicit implementation in double
precision but merely by use of an alternate imple-
mentation (in single precision) of the factors of the
covariance matrix being propagated forward in time.
The so-called Bierman's form or U-D-U" form of
squareroot filtering [13] (which propagates U and a dia-
gonal D) had historically proved to be the best
formulation up until the late 1990's in that it is a nume-
rically stable implementation (an important conside-
ration for long duration on-line run times) and has the
smallest number of required operations and does not
call for the implementation of explicit scalar square-
roots (as earlier squareroot implementations did). Ear-
lier versions of squareroot filtering constituted much
larger computational burdens than conventional Kal-
man filtering; however, the Bierman implementation
was no worst a computational burden than the standard
KF implementation but offers an effective doubling in
the precision availed (and with guarantees of numerical
stability [which a standard Kalman Filter implemen-
tation lacks]). For more detail, see Chap. 7 (and, in
particular, the comparisons of Table 7.1) on p. 403 of
[46]. Other important considerations in U-D-U" square-
root filltering are addressed in [47], which shows how
to rigorously handle vector measurements in U-D-U"
filters. Ref. [48] discusses how to capitalize on certain
efficiencies that arise in Navigation applications invol-
ving GPS as an external navaid for an Inertial Navi-
gation System (INS). Ref. [49] demonstrates how to
incorporate handling of manual updates (known by
military pilots and navigators as “MARK ON TOP” as
a procedure that uses landmarks of known location to
update position in an aircraft’s internal INS filter at the
more or less “precise moment” that the aircraft flies
over the landmark). Ref. [50] was one of the first
designs that clearly demonstrated the details of how to
accommodate a U-D-UT filter formulation within a
NAVSTAR GPS application.

Bierman's U-D-UT Squareroot filter formulation was
preceded by or evolved from other efforts at deriving
squareroot filter formulations by J. Potter (1964), J. F.
Bellantoni and K. W. Dodge (1967), A. Andrews
(1968), P. Dyer and S. McReynolds (1969), P. G. Ka-
minski and A. E. Bryson and S. 1. Schmidt (197 1), W.
S. Agee and R. H. Turner (1972), and N. Carlson
(1973). Bierman's formulation (1974, '75, "17) had
originally proved to be the best of the lot for embedded
architectures where explicit scalar square root extrac-
tion was a much more time consuming algorithm until
computer architectures surfaced in the late 1990's where
this was no longer the case and now scalar squareroot
calculation is about the same as a floating point
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multiply thus now favoring Carlson’s [51] over Bier-
man’s formulation. There are also other recent conten-
ders and logical extensions [52]-[55].

For situations where the discrete-time dynamic state
variable system model is of the form:

x(k+1) = A x(k) + F w(k) + B u(k), with initial

condition: x(0) =x, (45)
with (optional) deterministic control input (i.e., exoge-
nous input) being present and the discrete-time sensor
data measurement observation model is of the form:

z(k) = C x(k) + G v(k), (46)
where w(k) and v(k) are independent Gaussian white
noises (GWN) with intensity variances of Q and R, res-
pectively. For the purpose of further reducing the
adverse effect of round-off error accumulation and to
avoid explicit calculation of the matrix inverse within
the Kalman filter by using a degenerate scalar form that
is, instead, only a division, it is frequently desired to
update squareroot filters using only one-scalar-mea-
surement-component-at-a-time, but the standard proce-
dure for doing so is only valid if R is diagonal
(corresponding to uncorrelated measurement noise) and
G is the identity matrix. In the more general case where
both of these conditions fail to be met yet the user still
wants to update the filter one scalar measurement
component at a time, the following simple (possibly
time-varying) transformation can be applied to achieve
the desired structure for single-component-at-a-time
updating. Merely form [G(k) R(k) G'(k)] and decom-
pose it via a Choleski decomposition into [G(k) R(k)
G'(k)] = W(k) W'(k), where W(k) is lower triangular,
then just pre-multiply the entire measurement equation
above to obtain z;(k) = W'(K)z(k) = [W(K)C(K)] x(k)
+ [W!()G(K)] v(k), and we have [W'(k)G(k) R(k) G
W K)]= WEOWEW KWT(K) = Lym, Where L, is
the mxm identity matix. The original Kalman filter,
described recursively by the following eqn., driven by
the measurement z(k) and control:
X (k+1]k) = @(k+1,k) [1 - K(k) C] X (klk-1) + ®(k+1,k)
K(k) z(k) + B u(k) 47
and with on-line propagate covariance of estimation
error equation being;:
P(klk) = [I - K(k) C] P(k|k-1) [T - K(k) C]" + K(k) G R,
G K(k)" (48)
and with on-line update covariance of estimation error
equation being:
P(kk-1) = @(k.k-1) P(k-1]k-1) @' (k,k-1) + F Qs(k) F',
(then k=k+1) (49)
with the standard discrete-time Kalman gain being:
K(k) =P(k) C" [C P(klk-1) CT + G R; G']. (50)
The above four equations are now modified for one-
component-at-a-time filtering as the following equiva-
lent Kalman filter driven by the transformed measure-
ment z,(k) and same deterministic control u(k), respec-
tively, as:

X (k+1k) = ®O(k+1k) [I - K'(k) W' C1X (kk-1) +

@(k+1,k) K'(k) z,(k) + B u(k) 1)
and
P(klk) = [I - K'(k) W' C] P(klk-1) [I - K'(k) W'C]" +
K'(k) K'(k) (52)
and

P(kk-1) = d(k-1) P(k-1[k-1) @ (kk-1) + F Qs(k) F,

(then k=k+1) (53)
with the new discrete-time Kalman gain being:
K'(k) =P(k) C"WT [W'C P(kk-1) C'WT + 1]\, (54)

Hint: If noises w(k) and v(k) are present but matrices F
and/or G are not apparent in the defining system and
measurement models; then, obviously, F = I, and

G = Lo

Again, the new wrinkle of the late 1990's in Square
Root Filtering is that within new processor chips, the
algorithm for performing explicit scalar squareroots is
no longer an iterative mechanization but now is just as
fast as multiplication or addition operations. The prior
motivation to use a particular version of Square Root
Filtering, based on operation counts that penalized
explicit computation of scalar squareroots is no longer
viable for implementation processors that calculate the
squareroot this new way. Motivation still exists to use a
Square Root Filtering structure for real-time implemen-
tations with long run times because these squareroot
formulations are still the only numerically stable imple-
mentation of a Kalman filter. Its use avoids such
contrivances as inserting stops to prevent any main
diagonal terms of the covariance matrix from even-
tually becoming negative as a consequence of adverse
effects of accumulated round-off errors within the more
straight forward implementation of the easy-to-read
conventional Kalman filter (although possibly “Stabi-
lized” by adding the transposed covariance to itself and
dividing by 2). Every navigation application should be
using a Square Root Filter formulation in the case of
long run times. However, target tracking for strategic
missiles may not require such stringent mechanizations
because main targets of interest (RVs) don't persist for
long enough time intervals to warrant Square Root
Filter use. New targets trigger new filter starts. Imple-
mentation needs for radar tracking of persistent
cooperative FAA targets can be a different story. The
longer “Control Segment” tracking intervals for GPS
satellite ephimerii drift definitely do use Square Root
Filter formulations. Evidently, whether or not to use
Bierman’s U-D-U" or Carlson’s squareroot filter for-
mulation in a particular application should be decided
on a case-by-case basis.

The usual benefits touted for the use of a U-D is that (1)
it is numerically stable (it mitigates the build-up of
round-off errors), while other formulations devoid of
square root filtering are not numerically stable; (2) it
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