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Abstract

The existence of several fairly recent improper utilizations of shaping filters in a variety of different
engineering applications motivated this paper as a cautionary warning. The warning consists of two
distinct parts: (1) explaining what theoretical restrictions have been violated, and (2) providing explicit
pointers to a few applications (such as in certain missile guidance simulations) where such dangerous
violations have historically already occurred. We focus on this as a prelude to their remedy or at least
to raise awareness to avoid any repeated violations. An alternate approach is discussed that rigorously
supports comparable simulation objectives.

1 Introduction

The presence of several improperly invoked shaping filters in a smattering of varied engineering applications
motivated the issuance of this cautionary warning so that others will be aware of and may thus avoid these
traps that evidently have already ensnared so many. First, the motivation for using shaping filters, both
historically and recently (also see [68, App.]), is briefly reviewed in Sec. 2. Certain philosophical questions
that were previously asked and answered by pioneering theoreticians concerning the appropriateness of
the shaping filter representation for specific power spectra sought are also reviewed in this section. These
questions and their associated answers constitute the crux of what can be validly achieved using shaping
filters.

New insights are offered in Sec. 2 into exactly where the lines of demarcation occur within the limits of
applicability of fairly familiar input-output autocorrelation and spectral density relations for linear systems
that in turn supports the shaping filter formalism being validly invoked. This elucidation of the limits of
shaping filter applicability is the main constructive thrust of this paper. The obvious key requirement is
established that, for valid use of shaping filters, the associated linear system must be strict sense stable
and thus correspond to a stationary process. That a shaping filter has time invariant parameters and is
realizable is not sufficient to satisfy this fundamental requirement. It will be demonstrated here that there
have already been numerous unfortunate violations and misapplications of shaping filters along these lines
that indicate an apparent lack of awareness of this previously unstated or underemphasized requirement.
A brief overview summary of related supporting statistical notions and examples along these same lines is
undertaken in Sec. 3. Several misapplications of shaping filters are reviewed in Secs. 4 and 5 as a preventative
caution.

In Sec. 6, some pitfalls are revealed to occur in an early method that sought to tractably approximate the
autocorrelation function of a general covariance stationary random process as a logical prelude to invoking
shaping filter representation. An example from Sec. 2 conveniently serves as a counterexample to the method
warned of in Sec. 6 by verifying its previously unacknowledged limited applicability. A summary of sorts is
provided in Sec. 7.

Rather than invoke mere classical theorem/proof, a simple transparent story telling style is adopted
throughout to facilitate a more concise breadth of topic coverage while still illustrating all concepts with
concrete examples. What is unique here is the ordering and juxtaposition of the examples for clarity and
pedagogical expediency. This particular strategy was pursued in order to warn a wider number of applications
engineers than would otherwise be the case if a more terse discussion of the topics were utilized. In this
same vein of attempting to increase the readership beyond just the specialist in this area, several alternative
technical synonyms are provided to reduce confusion by using familiar language and standard jargon and
ample supporting references and, moreover, pinpoint citations are supplied as backwards pointers for further
elaboration or for crosscheck and detailed substantiation.
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2 Motivational Historical Context

The concept of capturing the requisite second order statistics by modeling wide-sense stationary random
processes as white noise passed through so-called “shaping filters” has been employed for many years in the
analysis of physical systems in such diverse areas as:

1. Handling of serially time-correlated noise in seeking to utilize a standard Wiener or Kalman filtering
framework (that nominally expects only uncorrelated nonsingular white noise) by modeling the second
order statistical structure of the time-correlated noise using state augmentation [1, pp. 133-135] which
then unfortunately induces singularity of the resulting white measurement noise (whose singularity
initially appears to be a barrier to successful Kalman or Wiener filter implementation but can be
computationally handled by the techniques of [2], [3]);

2. Pre-whitening as a prelude to performing matched filtering when the additive noise is not originally
white [4, pp. 142-143];

3. Modeling and tracking of randomly initiated target maneuvers as recently utilized in a novel application
of missile guidance simulation [5], [6], [28];

4. Implementation of the Levinson-Durbin and Burg algorithms in modern spectral estimation [7].

All these techniques have been successfully applied even though several different random processes with
radically different sample functions (synonyms: sample paths, trajectories, or realizations) can possess the
same correlation function (viz., [8, ex. 3.10, p. 204]) and consequently the same power spectra (i.e., the same
second order statistics).

While every positive definite function can be a valid covariance function of some process (in particular,
of a Gaussian process [9, paragraph prior to Eq. 22]), only for stationary processes does a complete answer
(i.e., consisting of both necessary and sufficient conditions) exist to the following: QUESTION: Under what
conditions can the scalar random process y(t) be represented as the output of a causal and causally invertible
linear filter (having transfer function H(ω)) with a white noise input, w(t), where the scalar output spectral
density Syy(ω) is related to the scalar input spectral density Sww(ω) by the familiar formula:

Syy(ω) = |H(ω)|2Sww(ω) (1)

where
Sww(ω) = q > 0 (2)

and q is constant, representing the covariance intensity (power) of ideal stationary zero mean Gaussian white
noise?

ANSWER: The Paley-Wiener condition:∫ ∞

−∞

| lnSyy(ω)|
1 + ω2

dω < ∞ (3)

is a necessary and sufficient condition [10, p. 114] that a known power spectrum of y(t) can be represented
using a shaping filter and white noise as in Eqs. 1 and 2. (Pointers to existing generalizations of the Paley-
Wiener condition in several directions, including the important multi-dimensional case, are provided on [9,
p. 265] but follow-up may likely be less satisfying than anticipated from the original advertisement. Also
see [67], [68].) It is indicated in [11, p. 215] that Eq. 3 should be further augmented to require the presence
of absolute values about Syy(ω) and in addition, require that |Syy(ω)| be square integrable on the open
infinite interval (−∞,∞) as a more proper statement of the necessary and sufficient Paley-Wiener condition
depicted above in Eq. 3.

As derived in [10, pp. 111-114], for the damped harmonic oscillator described by the following time-
invariant second order differential equation:

ÿ(t) + 2αẏ + (ω2
o + α2)y(t) = w(t) (4)

with the dot above the variable signifying differentiation with respect to time and having scalar Gaussian
white noise input w(t) with covariance intensity level as in Eq. 2. Use of the input-output formula of Eq. 1
for this situation yields:

Syy(ω) =
q

(ω2
o + α2 − ω2)2 + 4α2ω2

(5)
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Since the correlation function and the power spectrum are Fourier transform pairs 1, a table of transform
pairs [12, No. 5, p. 25] demonstrates that the correlation function corresponding to Eq. 5 is

Ryy(τ ) =
q

4α(ω2
o + α2)

e−α|τ|
[
cos (ωoτ ) +

α

ωo
sin (ωo|τ |)

]
(6)

This is a standard result. An even more startling result is that the correct output power spectrum and
autocorrelation function for the undamped oscillator corresponding to Eq. 4 with

α = 0 (7)

cannot be obtained by taking the limit as a goes to zero in Eqs. 5 and 6, respectively; although the first limit
exists as

lim
α→0

Syy(ω) =
q

(ω2
o − ω2)2

(8)

the second does not since

lim
α→0

Ryy(τ ) = lim
α→0

q

4α(ω2
o + α2)

e−α|τ|
[
cos (ωoτ ) +

α

ωo
sin (ωo|τ |)

]
(9a)

= ∞ +
q

4ω3
o

sin (ωo|τ |) = ∞, (9b)

and ∞ here is notation for the limit diverging or not being defined for the situation being considered. While
the finite portion of Eq. 9b is an even function and does not exceed the amplitude at τ = 0 to conform to
the properties that all proper autocorrelation functions must satisfy and the “power spectrum” of Eq. 8 is
appropriately non-negative, this much-worn primrose path of seeking to utilize Eqs. 8 and 9 fails to yield
the correct output power spectrum and correlation function for the undamped oscillator.

The apparent inconsistency stems from the fact that it is inappropriate to use Eq. 1 for a pure oscillator or
for any linear system that is only marginally stable rather than strictly stable! To understand the nature of
this limitation, one must recall how the familiar formula of Eq. 1 was originally derived from the fundamental
superposition or convolution integral representing the input-output relation for a linear time-invariant system
[13, p. 25] as:

Yt(ω) =
∫ ∞

−∞
h(t − τ )Xτ (ω) dτ (10)

where

h(t) = deterministic impulse response of a time invariant linear filter;
Xt(ω) = sample function of a wide− sense stationary random process that is input to the linear system;
Yt(ω) = sample function of a wide− sense stationary random process that is the output of the linear system.

The convolution in Eq. 10 can be interpreted on two different levels: either as an absolutely convergent
Lebesgue integral for each different sample function of the Xt(ω) random process; or as a quadratic mean
(q.m.) Riemann integral (i.e., limit in mean square sense [14, pp. 99-108],[15, pp. 66-70]). As stated in [16,
p. 92] , to ensure the existence of Eq. 10 as an absolutely convergent Lebesgue integral, conditions must be
imposed on the Xt(ω) process that are more restrictive than its being merely a second order process (thus
the desired generality of Eq. 10 to all wide-sense stationary processes would be lost). Consequently, it is
more convenient to interpret Eq. 10 as a q.m. integral, as is routinely done (whether or not it is explicitly
recognized to be so by the user). The existence of Eq. 10 as a q.m. integral (i.e., Eq. 10 being well-defined
and making sense as a mathematical entity) is assured if and only if∫ ∞

−∞
h(t − τ )h(t − u)Rxx(τ − u) dτ du =

∫ ∞

−∞
|H(f)|2Sxx(f) df < ∞ (11)

and Rxx(·) is both L1 and continuous (see [16, pp. 92-93 prior to Eq. 5.17]. Once Eq. 10 has a valid
interpretation, it can be multiplied times itself (for a different time index and dummy variable of integration)
and expectation taken throughout to yield

Ryy(t, s)
�= E[Yt(ω)Ys(ω)] =

∫ ∞

−∞

∫ ∞

−∞
h(t − τ )h(s − u)Rxx(τ − u) dτ du (12a)

=
∫ ∞

−∞
e2πf(t−s)|H(f)|2Sxx(f) df (12b)

1An original observation is that the time domain expression in Item 4 of [12] should be multiplied by 2, otherwise the sums
of Item Nos. 5 and 6 are inconsistent with the Item 4.
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where an interchange in the order of expectation and integration has been performed in Eq. 12a (c.f., [8,
p. 82]). Since the operation of expectation is itself an integral over a sample space with respect to a probability
measure (or some such equivalent notion using the monotonely increasing cumulative distribution function
in a Riemann-Stieltjes integral or alternatively using the probability density function itself, if it exists), the
inter-change of expectation and integration that occurs in Eq. 12a is actually an integral-integral interchange
And, as such, is validated in [16, p. 93] under the sufficient (but stronger than necessary) assumption that∫ ∞

−∞
|h(τ )|2 dτ < ∞ (13)

(this condition also being sufficient but not necessary that h(t) be Fourier transformable [17, p. 31]).
Therefore, if the condition of Eq. 13 is satisfied and the condition of Eq. 11 is satisfied, then Eq. 12 holds
and both sides can be validly inverse Fourier transformed to yield Eq. 1.

The following condition, reminiscent in form to the condition of Eq. 13, being∫ ∞

−∞
|h(τ )| dτ < ∞ (14)

is equivalent to the linear system being bounded input-bounded output stable in the strict sense (i.e.,
disallowing marginally stable systems with poles on the ω-axis), as proved in a Theorem provided in [17,
pp. 28-29]. However, for the linear undamped oscillator of Eq. 4, with parameter as in Eq. 7, both the
conditions of Eqs. 13 and 14 are violated 2 since, respectively,∫ ∞

−∞
|A sin (ωoτ ) + B cos (ωoτ )| dτ =

∫ ∞

−∞
|
√

A2 + B2 sin (ωoτ + arctan {B

A
})| dτ = ∞ (15)

and ∫ ∞

−∞
|A sin (ωoτ ) + B cos (ωoτ )|2 dτ =

∫ ∞

−∞

(A2 + B2)
2

[1 − cos (2ωoτ + 2 arctan {B

A
})] dτ = ∞ (16)

Consequently, the condition of Eq. 13 does not hold for the undamped oscillator of Eqs. 4 and 7, thus the
interchange of integration in Eq. 13 is not validated and its corresponding inverse Fourier transform, as Eq. 1
is not validated as well.

Frequently, engineers with a practical bent are of the opinion that the order of integration can be routinely
interchanged whenever both versions of the alternative integral interchange exist. That this is not strictly
the case is demonstrated via the counterexample in Appendix A.

The exact correlation function for a marginally stable undamped oscillator forced by a Gaussian white
noise process has already been worked out in detail using two different but rigorous approaches in [14, pp.
158-161]. One approach utilizes the white noise directly, while the other approach (acknowledging that white
noise is a mathematically inconsistent albeit useful fiction) instead resorts to dealing with the more rigorously
consistent underlying Brownian motion or Wiener process. The correct correlation function, corroborated
by both approaches in [14], is

Ryy(t, s) =
q

ω2
o

[
t cos (ωo[t − s]) − 1

2ωo
sin (ωo[t− s]) − 1

2ωo
sin (ωo[t + s])

]
(17)

for s ≤ t and vice-versa by interchanging t and s in Eq. 17 for t > s. Since the first and last terms on the
right side of Eq. 14 are not a function of only the time difference (t − s), the correlation function of Eq. 17
represents a nonstationary process. This nonstationarity of the undamped oscillator is further acknowledged
in [19, ex. 45, pp. 167-168]. This conclusion of nonstationarity is consistent with what might be reasonably
expected from simple physical intuition for a linear system having a deterministic impulse response consisting
of a pure undamped oscillator being excited by white noise having the same level of energy in all frequencies,
and so capable of stimulating (as with deterministic resonance phenomena) the natural frequency of the
oscillator. Occurrences of this type of stochastic resonance phenomenon have reportedly been encountered
by TASC [1] in early 1970’s navigation applications.

2There are in fact some functions that are L1[−∞,∞] but not L2[−∞,∞] and vice-versa, as explicitly demonstrated in
[18, p. 17, ex. 3]. However, over a finite interval of integration (i.e., where both upper and lower limits in the associated
integral have magnitudes less than infinity and are specified explicitly), being L2[a, b] ensures also being L1[a, b] by virtue of
the Cauchy-Schwarz inequality.
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3 On Ergodicity, Stationarity, and Mixing

On the other hand, a well-known random process that has sinusoidal sample functions of differing initial
phase is:

y(t) = A sin (ωot + θ) (18)

where t is continuous time, A and ωo are deterministic and θ is a random variable with theta uniformly
distributed in the interval [0, 2π] as

pθ(θ) =

{ 1
2π for 0 ≤ θ ≤ 2π

0 otherwise.
(19)

The random process of Eq. 18 is known to be wide-sense stationary [20, p. 286] since the correlation is a
function of time difference only

Ryy(t, s) =
A2

2
cos (ωo[t− s]) (20)

and the mean is a constant
E[y(t)] = 0 (21)

moreover, the first order probability density function for y(t) in Eq. 18 exists [20, p. 272] as

py(y, t) =




1

π
√

1−y2
for |y| ≤ 1,

0 for |y| > 1,

(22)

which is independent of the particular time t, therefore, indicating that y(t) is stationary. The above process
is obviously non-Gaussian as can be inferred from Eq. 22. Since y(t) of Eq. 8 is non-Gaussian, it cannot be
represented as the output of a linear system driven by Gaussian white noise; otherwise the output process
y(t) would also have to be Gaussian (i.e., Gaussian into a linear system, consequently has Gaussian out)! In
addition to being stationary, the y(t) process of Eq. 1 is ergodic [20, p. 290] (i.e., time-averages and ensemble
averages are equal); and as is evident for the first two moments from the demonstration below that the time
averages of Eq. 1 as

< y(t) >= lim
T→∞

1
2T

∫ T

−T

A sin (ωot + θ)dt = 0 (23)

and

< y(t)y(t + τ ) >= lim
T→∞

1
2T

∫ T

−T

A2 sin (ωot + θ) sin (ωo[t + τ ] + θ) dt =
A2

2
cos (ωoτ ) (24)

correspond to the ensemble averages of Eqs. 21 and 20, respectively. For general second order random
processes, there are explicit necessary and sufficient conditions in terms of fourth order moments [21, p.
330] for establishing ergodicity of the autocorrelation function; however, these conditions simplify to a test
involving only the ensemble autocorrelation function for the special but prevalent case of a zero mean
Gaussian process (since all even higher moments of Gaussian processes reduce to functions of just the second
only). Ergodicity implies stationarity, but more recent assumptions on a process as being “mixing” [22], [23,
p. 488], [24], [25] (as a form of asymptotic independence) implies ergodicity (but not vice-versa).

Unfortunately, a recent Theorem 6 on p. 786 of [26] refers to matrices having elements that are random
processes, being both phi-mixing and yet also nonstationary, an apparent contradiction to historical notions,
and a definite contradiction to the well-established nesting of properties, as provided in [27, p. 71].) The
topic of this well known example of Eqs. 18, 19, 20 was raised here as a prelude to the discussion in Sec. 6,
where this same random process is used as a counterexample to another fairly prevalent misconception.

4 An Extension with Potential Utility in Simulating Randomly
Initiated Missile Maneuvers

The concept of a shaping filter excited by white noise is extended in [5], [6], [28] to apply to the statistical
representation of disturbances with known form but random starting time. The contrivance that is exploited
in [5] is that second order statistics of a process (such as the mean-squared value being one such of many
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possibilities) remain invariant if the original process is replaced by another having the same autocorrelation
function. The type of input considered as constituting the replacement is of the form

yt(ω) = h(t − T (ω)), (25)

where

h(·) = a disturbing function of known form which vanishes for negative values of the argument;
T (ω) = a random starting time of the disturbance;
pT (t) = known probability density function (pdf) for the random starting time.

Using Eq. 25 and the pdf of the random starting time, the fundamental theorem of expectation [8, p. 85]
yields the following expression for the autocorrelation as

Ryy(t, s)
�
= E[y(t)y(s)] =

∫ ∞

−∞
h(t − τ )h(s − T )pT (T ) dT (26a)

=
∫ min(t,s)

−∞
h(t − T )h(s − T )pT (T ) dT. (26b)

However, if yt(ω) here is assumed to be the output of a shaping filter or impulse response h(·) with possibly
non-stationary white noise input, then the expression for the output autocorrelation is

Ryy(t, s) =
∫ t

−∞
h(t − τ1)

∫ s

−∞
h(s− τ2)q(τ1)δ(τ1 − τ2) dτ1 dτ2 (27a)

=
∫ t

−∞
h(t − τ )h(s− τ )q(τ ) dτ, (27b)

where the upper limit occurs in both Eqs. 26b and 27b as a result of h(·) being assumed to vanish for negative
arguments. As developed in [5], [6], the process described by Eq. 26 and the process described by Eq. 27 have
equivalent second order statistics if the time-varying covariance intensity level of the nonstationary white
noise relates to the pdf as

q(t) = pT (t). (28)
Unfortunately, a problem arises in [5], [6], [28] in the application of this technique of replacement by a

process with equivalent second order statistics. Please notice from Table 1 of [5, p. 3] and in [6, p. 153],
also depicted here, that Item D consists of an undamped sinusoidal sample function and an associated block
diagram of an undamped second order linear time-invariant system that is prescribed as the appropriate
shaping filter to produce the desired matching output correlation function. As a consequence of the inconsis-
tency of this view with the previous rigorous discussion in Sec. 2 of the appropriate nonstationary correlation
function (Eq. 17) as the output of an undamped second order system forced by even stationary white noise
and the non-Gaussianess of the process of Eq. 18 (as initialized by Eq. 19 ), it is immediately recognized
that Item D in Table 1 of [5], [6], [28] should be omitted as incorrect to avoid erroneous conclusions while
the remaining Items C to G in Table 1 of these references appear to be appropriate without modification,
but Items A and B are also incorrect (e.g., integrated Gaussian white noise is a random walk [1, p. 83] which
is also well-known to be nonstationary).

In assessing missile intercept capabilities in Table 2 [28, Fig. 2], [5], the improper Item D of Table 1 is
unfortunately utilized as a one-dimensional representation of a “barrel roll” executed by a target during an
evasive maneuver (for the linear case of no gravity saturation). Also in Table 2 from [28], the improper
Item D is also utilized twice (in a two term Fourier series expansion [5, p. 6]) in representing a target
executing a “vertical S” maneuver in which the target attempts to pull maximum g’s alternatively upward
then downward. Both of the above representations of evasive target maneuvers in simulations in both [6] and
[28], as seen from Table 2, appear to suffer from problems of utilizing an improper shaping filter, as already
discussed above since the output would be nonstationary for these cases and, moreover, Eqs. 1 and 12 would
not be applicable. Recall that finite time snippets of non-stationary processes are again non-stationary. The
multiplication of the nonstationary marginally stable system’s output by a single finite duration unit pulse
gate in the time domain is equivalent to convolution in the frequency domain, which would smear out and
attenuate the effect. However, use of periodic maneuvers would correspond to multiplying the marginally
stable system’s output by a train of finite duration unit pulses and the corresponding convolution in the
frequency domain would not attenuate the effect.

However, a rigorously defined technique has been more recently proposed as [29] for validly obtaining the
output ensemble average, even if the linear system under consideration is time-varying; however, the input
must be of an especially restrictive benign form (such that it is both sinusoidally periodic and covariance
stationary) to be able to use the approach of [29] in applications. The maneuvers of interest apparently do
not satisfy this constraint.
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5 Other Erroneous Applications of Shaping Filters in Inherently
Nonstationary Situations

The misapplication of shaping filters for second order undamped systems is just symptomatic of an un-
fortunate but prevalent general trend toward improper usage as can sometimes occur in special studies as
discussed in [31] involving standard linear error models of navigation systems [30] (where both 24 hour
earth-rate oscillations and 2π

√
R/g = 84 minute Schuler oscillations occur, with g being the acceleration

of gravity and R being the mean radius of the earth). These same errors of improper usage (as described
throughout this paper) have assumed different guises in the past such as in an unnamed researcher’s attempt
to quantify the mean squared error of a marginally stable system by utilizing Parseval’s identity [20, p. 15]
in conjunction with Eq. 12 and the condition of Eq. 2 as

E[y2(t)] = Ryy(t, t) =
∫ ∞

−∞

∫ ∞

−∞
h(t − τ )h(t − u)qδ(τ − u) dτ du (29a)

=
∫ ∞

−∞
|h(t − τ )|2q dτ (29b)

= q

∫ ∞

−∞
|H(f)|2 df. (29c)

Tables do exist (viz., [32]-[34]) to allow the convenient evaluation of Eq. 29c without having to explicitly
perform integration for the standard case of H(f) being a rational function (i.e., the ratio of two polynomials
in f). (Ref. [33, Appendix] appears to provide the most extensive table and its derivation [33, Sec. 7.9],
but [34] indicates proper generalization to any order of numerator/denominator. Both [33] and [34] are
more convenient to use than [32] since the numerator in the integrand of Eq. 28c need not be factored in
order to use them.) The problem, as has often been cautioned against in the past, is the unsubstantiated
utilization of the tables of [32]-[34] to evaluate Eq. 29c for marginally stable systems since following this
procedure can yield (proper appearing) finite answers, with no warning that Eq. 29 has been misapplied to a
marginally stable nonstationary system (since reasonable looking but incorrect “answers” are obtained from
this erroneous approach). The correct answer is that the integral blows up and is infinite in the marginally
stable case. These earlier tables, mentioned above, are perhaps rendered obsolete by the simple recursive
algorithms and short 23 line FORTRAN implementation code offered in [41, Chap. 5] for performing the
requisite evaluations. Karl Astrom credits J. Nekolny [41, p. 157] for originating the recursive evaluation of
these integrals in 1957. An interesting connection is that the pre-1970 derivations of [41] in this regard have
the same form as the order-recursive relation in the Levinson-Durbin algorithm [7, pp. 82-85, 99-10] that
also involve autoregressive (AR) systems with associated poles that are guaranteed to be within the unit
circle and therefore are stable at each recursion by virtue of the corresponding reflection coefficients having
magnitudes that are less than unity. Actual simple proofs of the stability that ensues are provided in [41,
Chapt. 5].

Another guise this problem has assumed in the past appears in [35, pp. 39-41], where for a time invariant
linear system of the form

x(t) = Fx(t) + Gu(t) (30)
y(t) = Hx(t), (31)

where

u(t) = zero mean Gaussian white process noise (ref. [35] instead utilizes the equivalent but more
mathematically rigorous Brownian Motion representation of the process noise);

Q = QT = covariance level (being a positive definite matrix) of the above white process noise, u(t);

then the corresponding second-order statistics may be represented in the time-domain and in the frequency-
domain, respectively, by the following matrix concatenations:

Ryy(t, τ ) =
{

HeF (t−τ)PHT for t > τ

HPeFT (τ−t)HT for τ ≥ t
, (32a)

and

Syy(ω) = H(ωI − F )−1GQGT (−ωI − F T )−1HT (33a)

= H(ωI − F )−1PHT + HP (−ωI − F T )−1HT . (33b)
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Of course corresponding, straightforward, equivalent discrete-time versions of Eqs. 32 and 33 above also
exist. In Eqs. 32 and 33 here, the P is required to be the positive semi-definite solution to the following
steady-state Lyapunov equation

FP + PF T = −GQGT , (34)

and
E[x(t)xT (t)] = P. (35)

However, ref. [35] implicitly considers only the case when a positive semi-definite solution to Eq. 34 is as-
sumed to exist rather than invoke the well-known explicit conditions (discussed in [42]) when solutions do
exist. This absence of conditions on Eq. 34 in [35] is somewhat paradoxical since [35, pp. 65-80] provides one
of the most succinct considerations of existence and uniqueness of solutions of the related Riccati equation
(e.g., in order to recursively obtain the steady-state solution of the Riccati equation via a quadratically
convergent or even geometrically convergent [36] Newton-Ralphson iteration procedure, the algorithm of
[37], [38] repeatedly obtains a steady-state solution of a Lyapunov equation, as discussed in [39, pp. 252-254]
with related comments in [40]). The recursive multi-channel generalization or extension by Nuttall of the
Maximum Entropy Method for spectral estimation also requires solution of an algebraic matrix Lyapunov
equation of the form of Eq. 34 (c.f., fourth unnumbered equation from the top of Sec. 3 in [51]) on each itera-
tion of the recursion. Because [35] enjoys such renown for being exacting on topics relating to estimation, the
presentation in [35] of Eqs. 32, 33, and 34 appearing without the explicit cautionary conditions summarized
in [42] (for when a positive semi-definite solution to Eq. 34 exists) was probably widely disseminated. Within
the Maximum Entropy Method (MEM) of power spectrum estimation, utilization is made of the relationship
of Eq. 1 or, more exactly, of its multidimensional or multi-channel discrete-time generalization (reminiscent
of a variant of Eq. 33a) as specialized to pth order autoregressive AR processes (e.g., [1, pp. 90-95]). The
alternative versions of multidimensional MEM ([47]-[51]) utilize a multidimensional generalization of scalar
AR processes. Finally, within some of these alternative approaches to generalize the scalar MEM to be
applicable in the multi-channel case, recursive algorithms for the autoregressive coefficients are encountered.
Here again it is important that the roots of the AR process correspond to a strictly stable system otherwise
Eqs. 1 and 33 are meaningless and the AR process will be nonstationary. As indicated in [51], [63], both
the Levinson-Wiggins-Robinson (LWR) and Nuttall multidimensional techniques contain a theoretical proof
of the stability of the resulting AR process, but unfortunately the effects of performing computations with
finite word length arithmetic can cause some roots to not be stable. In these unfortunate situations, the
underlying Eqs. 1 or 33 are not valid and this can cause problems during successive iterations of these re-
cursive techniques. The main point here is that some computer programs implement a multichannel MEM
routinely by implicitly utilizing Eq. 1 on each iteration, however, roots of the AR process associated with
that particular iteration can be unstable (as induced computationally by numerical round-off) so that Eq. 1,
as utilized, is no longer valid.

6 A Pitfall in One Procedure Intended to Tractably Approximate
Stationary Autocorrelation Functions

In [45, Appendix D], an ostensibly general approach is suggested for approximating the 1-D power spectral
density of a scalar stationary process S(ω) in terms of rational functions of prescribed form. It is further
suggested in [45] that for convenience, the technique should be applied to the autocorrelation function R(τ )
in an equivalent manner in the time-domain using an approximating finite series for R(τ ) of the form [45,
Eq. D-1]:

R(τ ) ≈
n∑

k=1

Ake−ck |τ|, (36)

where the exponent constants ck in Eq. 36 are neither imaginary nor complex [but purely real], making
it impossible to simply relate Eq. 36 to a sine and cosine series via Euler’s identity. The procedure of
[45] assertedly consists of further constructing an orthonormal set {Ψk(τ )}∞k=1 over the entire real line (the
domain of τ ) from the original set of independent functions {e−ck|τ|}∞k=1 via a standard Gram-Schmidt
ortho-normalization, then determining the appropriate coefficients Bk in the alternative approximation of
the correlation function of interest as

R(τ ) ≈
n∑

k=1

BkΨk(τ ), (37)

where the convergence indicated is asserted to be “in mean square” rather than “point-wise” which is
consistent with acknowledging adverse possibilities such as Gibbs’ phenomenon occurring using these usual
techniques for orthonormal sets of functions. A cautionary observation being made here is that, unlike
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what is asserted [45, p. 384, second sentence], neither the sequence {e−ck|τ|}∞k=1 nor its corresponding ortho-
normalized sequence {Ψk(τ )}∞k=1 is complete [61, Sec. 6.02], (i.e., complete in the sense that the only function
that is orthogonal to every element in the sequence is the null or zero function; the term “completeness”
being a concept that originated in connection with Fourier series since for an arbitrary piece-wise continuous
function that is neither even nor odd, it is well known that neither the infinite sine series nor the infinite
cosine series alone are complete but together they are complete by spanning the whole space of continuous
functions (this definition of completeness is in contradistinction to other prevalent notions of completeness in
mathematics such as “completeness of measures” [44, p. 27], or Banach and Hilbert spaces being “complete”
in the sense that all Cauchy sequences only converge to points within the space or ground set [44, p. 76]).
Analogously, the infinitude of both the 1st and 2nd kind of solutions of standard Sturm-Liouville problems
[43], [61, Chapt.6], [62, Chapt. 22], [66] are needed in order to span the entire solution function space and use
of the infinite collection of just one kind by itself is insufficient to do so. If the set of functions {e−ck|τ|}∞k=1
were cosine functions instead, then this collection would have sufficed since the correlation function of a
stationary process is an even function.

To illustrate that the procedure recommended in [45, App. D] is not applicable, in general, without
further yet to be enumerated restrictions imposed, please consider application of Step 1 on [45, p. 384] to the
stationary correlation function of Eqs. 20 or 24. Step 1 suggests “subtracting a constant from Ryy(τ ) so that
the difference approaches zero (in the limit) as τ → ∞”, but accomplishment of this directive is impossible
to carry out for Ryy(τ ) in Eq. 20 since it is periodic in tau, and no alternative recourse for properly handling
this non-pathological problem is availed in [45] so apparently the procedure offered in [45] is not applicable to
even this common stationary correlation function. Fortunately, the entirety of Chapter V of [46] is devoted
to the following four alternative approaches for correctly approximating stationary spectral densities in the
frequency domain with rational functions via:

• interpolation;

• approximation based on a Fourier series expansion;

• approximation based on a Laguerre series expansion;

• approximation of the logarithmic curve of the power spectral density by intersecting straight line
segments.

However, the attainment of adequate frequency domain or time domain representations of power spectra
and correlation functions, respectively, may be more of a moot point now with the advent of several modern
techniques to provide shaping filter representations as an output [64]. By operating directly on the measured
data, without first forming sample correlation functions as an intermediate step [65], variants of the Maximum
Entropy Method (MEM) can provide as output a shaping filter consisting of all-poles with autoregressive
(AR) coefficients completely specified.

7 Summary/Conclusions

Standard input/output relations for linear system autocorrelation functions and power spectra representation
were reviewed in Sec. 2 and limitations or restrictions on their applicability were revealed and emphasized. A
low dimensional second-order example was used to illustrate the nature of the problem. Some observations
were made in Sec. 3 on the interrelationships of ergodicity, stationarity, and proper phi-mixing. Sec. 4
discussed an apparent problem in applying a novel somewhat recent technique since the shaping filter in
the application corresponds to an undamped oscillatory system of the form cautioned against in Sec. 2 as
being neither stable nor stationary. Other instances of shaping filters or other related equivalent notions
being attempted in inherently nonstationary situations are recounted in Sec. 5 as a warning to analysts.
A few pitfalls are revealed in Sec. 6 to exist in an early method that sought to tractably approximate
the autocorrelation function of a general covariance stationary process. For additional original clarifying
counterexamples that we have provided in a number of other areas of modern estimation and control, please
see [52]-[59], [68]-[72].

A A Surprise in Interchanging the Order of Integration

Consider evaluation of the following innocent looking integral:

I
�
=

∫ 1

0

∫ ∞

1

(e−xy − 2e−2xy) dx dy. (38)
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In order to demonstrate that the order of integration cannot be validly interchanged for this integral, a result
concerning another related integral is useful. The related integral to be evaluated is:∫ ∞

0

(e−t − 2e−2t)
t

dt. (39)

Evaluation of Eq. 39 is accomplished easily by exploiting properties of unilateral Laplace transforms. The
numerator of the integrand of Eq. 39 consists of the following function of exponentials:

f(t) = (e−t − 2e−2t), (40)

which has the obvious Laplace transform:

F (s) =
1

s + 1
− 1

s + 2
. (41)

By a well known property of the Laplace Transform [43, p. 53]:∫ ∞

0

[f(t)
e−st

t
] dt =

∫ ∞

s

[
1

u + 1
− 1

u + 2
] du (42a)

= [ln (u + 1) − ln (u + 2)] |∞s (42b)

= ln | (u + 1)
(u + 2)

||∞s = lim
u→∞ ln | (u + 1)

(u + 2)
| + ln | (s + 2)

(s + 1)
| (42c)

= ln | lim
u→∞

(1 + 1
u )

(1 + 2
u )

|+ ln | (s + 2)
(s + 1)

| (42d)

= ln (1) + ln | (s + 2)
(s + 1)

| = ln | (s + 2)
(s + 1)

| (42e)

for all s with real part greater or equal to the abscissa of convergence, which in this example can be taken
to be −1/2 since all the poles of F (s) are to the left of −1/2. In particular, for the special case of

s =
1
n

, (43)

the integral of Eq. 42 simplifies as ∫ ∞

0

[f(t)
e−t/n

t
] dt = ln

( 1
n ) + 2

( 1
n ) + 1

(44)

for any positive integer n. Using this intermediate result, the objective of evaluating the auxiliary integral
of Eq. 39 can now be taken to completion as:∫ ∞

0

[
f(t)

t
] dt =

∫ ∞

0

lim
n→∞[f(t)

e−t/n

t
] dt (45a)

= lim
n→∞

∫ ∞

0

[f(t)
e−t/n

t
] dt (45b)

= lim
n→∞ ln [

( 1
n ) + 2

( 1
n ) + 1

] (45c)

= ln [ lim
n→∞

( 1
n ) + 2

( 1
n ) + 1

] = ln [2] �= 0, (45d)

where the interchange in the order of limit taking and integration is allowed in going from Eqs. 45a to 45b
via the Lebesgue monotone convergence theorem [44, p. 21] and the interchange of limit taking and taking
the natural logarithm in the last step in Eqs. 45d and in going from Eq. 45c to 45d is permissible since the
function ln(·) is a continuous function on (0,∞) and every continuous function is sequentially continuous
[60, p. 77, Theorem 5.2.6] (i.e., its value at the limit of the sequence { 1

n}∞n=1 is the same as the limit of the
term by term evaluations of the sequence).
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Now that the auxiliary integrals of Eqs. 39 and 45 have been evaluated and seen to be non-zero via a
mathematically rigorous path, verification can now proceed in demonstrating that the order of integration
of the original integral of Eq. 38 cannot be validly interchanged.

The verification of the above assertion will be proved by contradiction. First, assume that the order can
be interchanged so that:

I
�=

∫ 1

0

∫ ∞

1

(e−xy − 2e−2xy) dx dy (46a)

=
∫ ∞

1

∫ 1

0

(e−xy − 2e−2xy) dy dx. (46b)

Now the integral in Eq. 46a can be iteratively integrated once to yield:∫ 1

0

∫ ∞

1

(e−xy − 2e−2xy) dx dy =
∫ 1

0

[
(e−xy − 2e−2xy)

y
]|∞1 dy (47a)

=
∫ 1

0

[
(e−y − 2e−2y)

y
] dy =

∫ 1

0

[
(e−t − 2e−2t)

t
] dt. (47b)

Similarly, the integral in Eq. 46b can be iteratively integrated once to yield:∫ ∞

1

∫ 1

0

(e−xy − 2e−2xy) dy dx =
∫ ∞

1

[
(−e−xy + 2e−2xy)

x
]|10 dx (48a)

=
∫ ∞

1

[
(−e−x + 2e−2x)

x
] dx =

∫ ∞

1

[
(−e−t + 2e−2t)

t
] dt. (48b)

Since the two double integrals have been assumed to be equal in Eq. 46, quantities that each side is equivalent
to as Eqs. 47b and 47b, respectively, should also be equal to each other as∫ 1

0

[
(e−t − 2e−2t)

t
] dt =

∫ ∞

1

[
(−e−t + 2e−2t)

t
] dt (49)

Algebraically manipulating the integral equality of Eq. 49 so that both are on the same side of the equality
sign yields:

0 =
∫ 1

0

[
(e−t − 2e−2t)

t
] dt +

∫ ∞

1

[
(e−t + 2e−2t)

t
] dt =

∫ ∞

0

[
(e−t − 2e−2t)

t
] dt, (50)

however, the above result equaling zero contradicts the auxiliary but rigorously derived result of this same
integral on the right hand side of Eq. 50 being nonzero in Eq. 45d. Therefore, the results of the two iterated
integrations in Eq. 46 are not equal (e.g., Eq. 46a �= Eq. 46b) even though each exists separately (and each
is finite). QED

In order to always get correct answers, analysts must use creativity to proceed only along valid substan-
tiated paths if rigor is to be claimed. A problem is that frequently analyst’s managers may not understand
why such care is needed (or care). This paper demonstrates why.

Acknowledgment: Research funded by TeK Associates’ IR&D Contract No. 06-101 along with devel-
opment of its commercial Kalman filter/EKF/IEKF/LMS/LQG/LTR optimal feedback control software:
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