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Abstract

We look into both the theoretical and practical
aspects of “decentralized” Kalman filtering (KF)
methodology as it is combined with the method-
ology of existing 2-D Kalman filtering for image
restoration to yield a new architecture for mul-
tisensor fusion of images in close to real-time.
The outfitting of each participating imaging sensor
with its own dedicated 2-D Kalman filter (raster
scanned in multi-layer sync) allows a final collating
filter to assemble the data from diverse imaging
sensors of various resolutions into a single result-
ing image.

We also respond here to a recent (Jun.” 96) crit-
ical theoretical scrutiny of fundamental decentral-
ized KF architectures which concluded that they
are usually sub-optimal in general. We identify
and vindicate use of a particular decentralized KF
formulation as being “exact” and therefore an op-
timal linear estimator to be used in our approach
to imaging sensor fusion (as well as being exact in
other identified KF applications).

1 Introduction

As a new theoretical development [1], we pursue
the idea that recent “decentralized” Kalman filter
(KF) technology [2]-[9], by outfitting each partic-
ipating imaging sensor with its own dedicated 2-D
Kalman filter ! can be used as the basis of a sensor
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!Started with state of the art as it has evolved over
the past 20 years for “centralized” version of 2-D KF, as
surveyed in [10]-[17] in identifying the most practical im-
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fusion methodology that allows a final collating fil-
ter to assemble the data from diverse imaging sen-
sors of various resolutions into a single resulting
image that combines all the available information
(in analogy to what is already routinely done in
multisensor NAVIGATION (7], [30]-[49]).

The novelty is in working out the theoretical de-
tails for 2-D filtering situations (using [50]-[54] as
a guide) while assuming that the image registra-
tion problem (reduction to a common scale and co-
ordinated alignment registration) has already been
independently handled [55], perhaps by hardware
proximity multiplexing through a shared common
aperture [perhaps using rotating mirrors] where
scale of sensor scene image could have been cal-
ibrated and adjusted in a static environment be-
forehand) 2. We must synchronize frame size and
location of pixels of interest to be comparably lo-
cated with same “raster scan” speed and size used
for each to match up for different sensors. Rule for
Kalman filters is that the combining of underlying
measurements or sensor information can only help
and never hurt.

We interpret this approach as involving several
common views of the same scene, as instanta-
neously obtained from different sensors, with in-
termediate results all stacked up vertically one
planar view on top of another planar view, each
with its own local 2-D Kalman-like image restora-
tion filter proceeding to raster scan (in multi-layer
sync). Then applying the multi-filter combining
rules from Decentralized filtering [4, Sec. 1.5], [29]
to the bunch yields a single best estimate image
as the resulting output and as a convenient and

plementation to yield best performance for complexity in-
curred in implementation and then added our novel theo-
retical results to it [2]-[9] to enable sensor fusion [1].

2The specific application which motivated this particu-
lar imaging approach and exhibits these characteristics is
discussed in [1, Sec. 1, pp. 548-549) and in [49)].
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Figure 1: A Standard centralized discrete-time KF
mechanization (1-D)

useful methodology to achieve sensor fusion.

While we have previously sketched an overview
of the constituents of our approach to image
restoration and sensor fusion and its rationale in
[1], we reveal our particular 2-D mechanization
equations here in Sec. 3.2 after reviewing the his-
tory of 2-D Kalman filtering for Image Restoration
in Sec. 3.1 as a prologue. The Kalman filter struc-
ture of Fig. 1 is flexible, compliant, and efficient
enough so that it can expedite real-time Image fu-
sion using this new technique as has already been
done in many other KF applications represented in
[30]-[49], as characterized in Sec. 2.3. The purpose
of this new algorithm is to compensate for motion
blur and for general noise abatement while addi-
tionally reaping the benefits of alternative views of
the same scene from the augmenting perspective of
different sensors that tap into various complemen-
tary spans within the range of the electromagnetic
spectrum.

We also respond here to a recent critical theo-
retical scrutiny of fundamental decentralized KF
architectures [18] which concludes that most are
usually sub-optimal in general. Use of a particu-
lar ezact decentralized KF is key to the success of
our sensor fusion approach, so we emphasize the
benefits of this decentralized KF implementation
in Sec. 2 and explain when it’s optimal and when
it’s sub-optimal and how to correctly evaluate its
actual performance in either case.
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2 Decentralized KF Status

It initially seemed to be unnecessary to further re-
visit the existing theory of decentralized filtering
in [6] and [7] (which instead focuses more on new
results in failure detection and redundancy man-
agement reaped by utilizing the decentralized KF
architecture) since the various important aspects
of decentralized KF were already developed and
clearly reported (as it evolved and was refined)
by J. L. Speyer (1979), T. S. Chang (1980), A.
S. Willsky et al (1982), and Levy et al (1983) in a
form that is already applicable to the time-varying
case needed for navigation applications. Detailed
summaries had been provided earlier in [2}-[4],
(and also in [6], [7], where a precedent for this par-
ticular formulation is cited as being [72] and the
gist of this 1968 precedent is demonstrated within
an abbreviated description of the principles of op-
eration of decentralized filters in [7, Sec. IV.C] ([6,
Sec. 4.3])).

However, since the decentalized version of
Kalman filtering and its benefits are still largely
unfamilar to most signal processing profession-
als/practicioners (viz., as his rationale for not tap-
ping into what had already been done, [19] claims
that his “new” theory of decentralized Kalman fil-
tering needs to be worked out in its entirety from
scratch since there are no prior theoretical for-
mulations or precedents in applying it to naviga-
tion applications [dispite the existence of [5] which
somehow was overlooked in [19]]), the existing the-
ory is summarized here again for the reader’s con-
venience while offering certain new results within
the fabric of the historical context so that they
can be better appreciated (as we also relate sev-
eral other theoretical precedents).

An overview explanation of how the inherent
cross-correlation can be taken into account and
compensated in appropriately combining several
local estimates to obtain the optimal global esti-
mate (pp. 185-189 of [21]) along with providing
illustrative simplified low-order simulation exam-
ples for variations of this Speyer approach for navi-
gation applications (viz., JTIDS RelNav) were of-
fered in 1981-82 by G. Gobbini and W. S. Wid-
nall (and later by J. F. Kelley), respectively, in
Refs. 136, 137, and 140 of [7]. Five more naviga-
tion precedents of using decentralized KF’s were
cited on p. 101 of [7] (as Refs. 98, 152, 197
of [7]) and in Sandia Corporation’s SITAN and
in C-4 Trident SINS/ESGN submarine naviga-
tion, where real-time decentralized navigation fil-
ters have already been implemented since at least




1976 (viz., 14 state ESGN Reset Filter and 15 state
SINS Correction Filter and 7 state STAR filter for
the SINS alone) in Fig. 2 from [43], being both
reduced-order multi-rate cascaded filters since the
existing truth model had 1004 and 34 states for
the RI/Autonetics ESGN and G7-B SINS, respec-
tively). And now there are even more decentral-
ized KF applications [19], [20], [56], [58], [64].

While Speyer’s original development (for Com-
mand, Control, Communication, and Identifica-
tion C3I applications) avoided the military single-
point-vulnerability issue of having only a central
processing node by Speyer’s cross-communicating
so much information between each of the n partic-
ipating decentralized filters in the network that
each filtering node could fully reconstruct the
global optimal estimate (see Fig. 3); it was rec-

gnized in [6] and [7] that this full flexibility is
not needed for the application of current interest
involving multisensor navigation fusion in a single
aircraft, so we selected just the minimum subset
of cross-communication required to support total
synergistic use of all the available sensor measure-
ments for a globally optimal estimate reconstruc-
tion to occur at just a single node 2 (see Fig. 4),
designated to be the Unification Collating Filter
output (see Fig. 5) in [6] and [7], while each in-
dividual constituent filter in the design of Fig. 5
still correctly cover their previously assigned indi-
vidual jurisdictions by providing the locally opti-
mal estimate under any operational constraints of
only being allowed to use just the locally available
sensor measurements.

In the event of a recognized processor failure
(where prescribed voting/tallying algorithms are
offered within the Voter/Monitoring Screen for
recognizing underlying failures in real-time), these
local filters still correctly perform their originally
assigned function of providing locally optimal es-
timates at the locally designated rate and so pro-
vide a degree of robustness in their backup mode
of operating singly.

The results of Willsky et al (for the time-varying
systems of Eqs. 1.5 to 1.7 in Ref. 3 of [19])
and Levy et al (Ref. 4 of [19]), respectively, pro-
vide the flexibility invoked in [6], [7] of the n fil-
ter nodes having distinctly different subset system
models and different measurement source sensors
and noises (and associated analytic characteriza-
tions or representations) and even rigorously ac-
commodate use of reduced-order models (Section

3 Another back-up would be to have a second Unifica-
tion Collating Filter on a different processor as just one
controlled level of redundancy.
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5 in Ref. 4 of [19]) within their particular decen-
tralized filtering framework that was tapped into
for navigation applications. The idea of using a
single collating filter within a single platform was
deduced from Levy et al (see Fig. 8 in Ref. 4
of [19]) and the introduction of an intermediate
Voter/Monitoring Screen was the major contribu-
tion in [6] and [7] (cf., Fig. 8 of [7] to Carlson’s
almost identical Fig. 1 of [19]), which was justi-
fied there while providing details for a practical
mechanization in [7, Sec. IV.B).

Carlson’s futuristic so-designated Type B Sys-
tems differ fundamentally from what was offered
for use in [6] or [7]. On a positive note, Carlson de-
velops the square root filter and information filter
form of decentralized filtering in [19], as recom-
mended in (7, p. 105, last sentence in column 1]
to be the next logical step that is needed in de-
centralized filter development. [61) constitutes a
prior 1987 precedent illustrating the mechanics of
formulating decentralized parallel filters in square
root and information filter form, just as Carlson
has done. In a more critical vein, however, there
may be some concerns regarding Carlson’s Type B
Systems, related especially to the sharing of ini-
tial conditions and system process noise ¢ across
n participating filters according to his weighted-
linear-combination rule using the weightings [19,
Eq. 26]: 7;, where ;1;+ ;71; + o4 -le =1, and
0< 1L < 1.

The main problem with use of this scheme ap-
pears to be that no individual filter gives the cor-
rect answer (the correct answer being either the
global or even a locally optimal estimate or con-
ditional expectation given only the local measure-
ments, as normally associated with the output of a
single reduced-order Kalman filter). In Carlson’s
Type B framework, the correct answer is only ob-
tained if all participating decentralized filters are
available and all participating sensor subsystems
are unfailed. Thus, this is a larger computational
burden to implement than use of a single cen-
tralized filter yet offers little robustness of perfor-

4 At least Carlson’s formulation has process noise inten-
sity @. The four alternative decentralized formulations
offered by O. E. Drummond for distributed or decentral-
ized multi-target tracking are devoid of any process noise.
When process noise is absent, alternative decompositions
are much easier to obtain. One of the few applications that
can be represented without an underlying Q is the post-
boost phase of reentry vehicle tracking for the “Star Wars”
Strategic Defense Initiative, which is in fact Drummond’s
application. Upon actual reentry back into the atmosphere,
@ should again be present to account for turbulence in RV
lift and drag so other KF decompositions are then needed.
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Figure 2: Overview of the INS1/INS2 System.

Spyer Filter (1979)
A @ ~@ D

><.

BQ C

Figure 3: Globally optimal KF estimates can be
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Figure 4: Globally optimal KF estimates can be
reconstructed ONLY at node D.
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mance in the face of processor or sensor availabil-
ity failures that would delete a constituent filter’s
expected contribution. Hence, Carlson’s Type B
Systems appear to offer only drawbacks without
any apparent ameliorating benefit as an offset in
a trade-off.

2.1 Decentralized filtering benefits

Standard techniques for quantifying the computer
burden associated with implementing alternative
filter mechanizations have been refined over the
years and typically involve assessments of algo-
rithm operation counts, the corresponding algo-
rithm cycle times as determined for the target ma-
chine, and allotments of program and stored mem-
ory (J. Mendel, IEEE Trans. on AC, Dec. ’T1).
Precedents in applying such tallies are offered in
[2]-[4] for several alternative decentralized filtering
formulations. The utility of such considerations
1s quantitatively illustrated below in arguing the
case favoring implementing a Kalman filter in dis-
tributed form on two (or more) processors rather
than as a standard single large filter on one pro-
cessor (that is more susceptible to being through-
put limited). Some early approximations (A. N.
Joglekar and J. D. Powell, ATAA G&C, Aug.’73)
are a historical filtering approach to navigation
data compression with simplifications to conserve
on-line computer resources being its rationale.

As an example of the benefits to be reaped in
going to a decentralized filter formulation, for two
separate GPS and JTIDS filters of dimension 12
and 15, respectively, the advantage of two over one
larger 19 state unified filter is obtained from the
ratio of the total number of required operations

(12)3 + (15)® _ 5103

(192 6859

or a 26 percent reduction in the total number of

operations to be performed during each filter cy-

cle even though the INS gyro drift-rate states are

modeled twice. Unfortunately, a slight 2 percent

increase in required computer memory allotment
for data is indicated by

(12)? + (15)? _
O 361
However, the large benefit in throughput as the

major consideration in such applications appears
to be well worth the slight penalty.

=0.74

_102

The case favoring two separate filters is even
more pronounced or compelling when considering



an alternative state selection corresponding to two
filters of state size 12 and 18 versus a single 22
state filter since calculations of the above form in-
dicate savings to be achieved in both the number
of operations (equivalent to algorithm cycle time
of processing a filter measurement) and computer
data memory required as, respectively, 30 percent
and 3 percent.

If two separate digital processors are used, par-
allel processing of each of the two filters on dif-
ferent machines provides the advantage that the
system is only limited by the slower speed of the
single larger filter (of 15 or 18 states). In com-
parison, the smaller filter of 12 states can proceed
through 6 Kalman filter measurement processing
cycles in the same time that a larger unified 22
state filter could complete only one cycle, as indi-
cated by the following ratios:

(22> _ 10648 _

(12 ~ 1728 = 10

The conclusion is that a unified single filter will
limit processing throughput and hinder full uti-
lization of the GPS measurements available. The
above arguments are graphically portrayed in
Fig. 6. Precedents for filter sizes depicted here
and specifics of states utilized are provided in [7,
Table II1].

A fairly straight forward generalization to three
concatenated but nested filters (i.e., the states of
the consecutive filter models are nested by perhaps
an allowable similarity transformation) operating
at decreasing sampling rates of fast/medium/slow
isrepresented as the middle diagram of Fig. 7. The
approach for accomplishing this task is roughly
merely a back-to-back repetition of the two fil-
ter technique already worked out in [4] but ap-
plied separately to each two-filter pair of, first, the
fast/medium, then to the medium/slow filter pair
(with generalization to Fig. 5 being immediate).

2.2 Commonality between four de-
centralized KF formulations

“Partitioned” Kalman filters have been used for
RV tracking since the initial development of
SAFEGUARD anti-missile system for first city
then silo perimeter defense (pre-dating SDI) as an
approximation to alleviate the computational bur-
den (Brown, Cohen, et al, EASCON, 1977) before
SAFEGUARD was abandoned, and “partition-
ing” has been advocated by Daum and Fitzgerald

__./ o
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Figure 5: Decentralized Semi-autonomous Multi-
sensor Navigation (SMN) filter to enhance failure
detection/isolation and to ease reconfiguration
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Figure 6: Benefits of two filters over one federated
filter (for GPS/JTIDS/INS example)
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(IEEE Trans. on AC, 1983). Even though Steve
Rogers had initially offered a refinement for “parti-
tioned” filters (IEEE Trans. on AC, 1986), Rogers
now identifies (in NAECON, 1988 and in [22]) the
high likelihood for partitioned filter instability and
the divergence that frequently occurs within this
approximation. Hence, “partitioning” is no longer
as lucrative a technique as it once was considered
to be (as a type of cascaded decentralized filter-
ing) in target tracking. Notice that these are yet
another variant of decentralized KF.

Three independent teams of investigators use
the same alternate form 3 of the “centralized” KF
implementation equations that they select as a
jumping off point for generalization ¢ to the fol-
lowing diverse applications:

e Multi-sensor camera data fusion for robotics
and/or telerobots [60];

e Target tracking using data from non-
geographically co-located sensors with cou-
pling via noisy communication lines [61] (cf.,

(59]);
e Multi-sensor integrated navigation [63].

All of the above three investigations now use the
alternate KF form (depicted here in Table 1) for
computing the Kalman gain K (in [60, Eq. 7],
[61, Eq. 7b)], [63, Eq. 45]) involving use of the
covariance update Py; instead of using the usual
predicted covariance Pyx_1. While these refer-
ences do display their final mechanization equa-
tions, they don’t show its derivation, which can
be elusive and not obvious so we offer our deriva-
tion below to expose important details.

The alternate form for centralized KF mech-
anization (serving as the fundamental stepping
stone or jumping off point in [60]-[63] for eventual
generalization to the decentralized filtering case)
has a theoretical twist that is utilized within this
structure, as reviewed next. The measurement
records collected by the multiple 1-D decentral-
ized sensors (i = 1,...,N) can be summarized in
aggregate block form as measurements:

T
2(k) = [T (k),..., 20 (k)] ,
and as an effective observation matrix:

H(k) = [HT (), ..., HE®)]"

(1)

(2)

5The distinction being in how the Kalman gain is cal-
culated (cf., Tables 1 and 2 of [1]).

6 All identically reminiscent of the earlier structural re-
sult of [72].
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and as an effective additive measurement noise:

o(k) = [oT (), ..., vF(®)]T (3)

with the further assumption that the zero mean
white Gaussian measurement noises across parti-
tions (i.e., between sensors as a consequence be-
tween different planar views for the 2-D general-
izations to come) are uncorrelated (from sensor to
sensor) so that the associated covariance intensity
matrices are of the form

E [v(k)vT (k)] = blockdiagonal{R;,..., Ry} .
(4
Similarly, let each sensor’s local system model con-
sist of the same 7 n x 1 state vector in common
throughout, of the form

:B.'(k + 1) = Q,‘(k +1, k).’c;(k) + w;(k) ) (5)

with a suitably tailored (specialized) m; x 1 vector
measurement model for sensor 7 of the form

zi(k) = Hi(k)zi(k) + vi(k) , (6)

so each local filter, using the alternate KF formu-
lation, is expressible as in Table 1.

The vehicle or contrivance for linking up these
results for eventual decentralized filtering is the
formation of the centralized HT (k)R~*(k)H(k) as

N
HT(R)R™(k)H (k) = > HT (k)R (k) H; (k) .
i=1
(7)
Now from Table 1, the covariance update formula
for the it? sensor may be rewritten as
P (klk) = P (klk = 1) =
H{ (k)R " (k) Hi(k)

LHS covariance info broadcast from each local sensor ¢

7Here is the assumption that matches up with the iden-
tical assumption in [25] and [26] that harkens back to Bar-
Shalom’s revelation (AES, 1986) that two tracks from dif-
ferent sensors tracking the same target are correlated be-
cause of the common underlying process noise maneuver
model. [25] obtains nice closed-form solutions using o — 8
filters and analytic solutions to Sylvester's Equation (i.e.,
a non-symmetric Lyapunov Matrix equation) for the case
of just two sensors. [26] gets into heavy use of pseudo-
inverses in decentralized multisensor target tracking. The
theory and mechanics of pseudo-inverse construction are
quite familiar [34], [35]; however, the necessity of their use
in this target tracking application remains to be seen.
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Table 1: “Alternate” Kalman Filter Implementation/Mechanization Equations (as separate local filters not

yet combined)

and similarly for the aggregate global centralized
covariance update as

N
Pl (klk)—P~" (kle-1) = 3 HT (k)R] (k) H;(k),
j=1
(9)
which may now be reexpressed (by substituting
Eq. 8 in Eq. 9) as

P-Y(klk) = P~Y(k]k - 1) =
(10)
>y [Pri(klk) — PY(kIE-1)]

as an equation for the global covariance update in
terms of the summation of local entities (consist-
ing of n(n + 1)/2 + n = n(n + 3)/2 floating point
variables) originally calculated at the j** sensor
()=1 to N) and broadcast via a communication
network to a processor node that is tasked with
collating all the local information into a global best
answer.

Another benefit of block decomposition of the
aggregate centralized form is in exposing the fol-
lowing equivalence that exists:

N
HT(K)R™Y(k)z(k) = HJ (k)R; (k)z;(k) .

j=1
(11)
Another simplifying contrivance is the observation
from the covariance update, known as Joseph’s
form, which is known to be mathematically equiv-
alent to

P(k|E) = [T — K(k)H(k)| P(klk —1)  (12)

(cf., [60, Eq. 20], [61, Eq. 9], [63, Eq. BI11])).
Then post-multiplying throughout Eq. 12 above
by P=1(klk — 1) yields

([ - K(k)H(k)] = P(k|k)P~Y(klk—1). (13)

Now by taking the estimate update equation as

&(klk) = 2(k|k—1)+ K (k)(z(k)— H(k)Z(k|k-1)) ,
' (14)
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we further have that
z(k|k) = &(k|k — 1) + K (k)(2(k) - H(k)z(klk - 1)) =
(I — K(k)H(k)) &(kjk — 1) + P(k]k)HT(k)R‘l(k)z(k)
15

and substituting for [I — K(k)H(k)] from Eq.
13 and pre-multiplying throughout by P~1(k|k)
yields

P=Y(k|k)&(k|k)
= P=1(k[k)P(k|k)P~(k|k — 1)&(k|k — 1)
+P~Y(k|k)K (k)z(k)
= P~ (k|k — 1)&(k|k — 1)
+P=Y(k|k)P(k|k)HT (k)R (k)z(k)
= P~Y(klk — 1)&(k|k — 1) + HT (k) R~ (k)2(k)
= P~ (klk — 1)2(klk — 1) + 72, HT ()R (k)2 (k) ,
(16)
and, by now pre-multiplying Eq. 16 throughout by
P(k|k), yields the fundamental estimation update
expression:

&(klk) = P(k|k)
[P-l(k|k — Da(klk - 1)+ ¥, H,T(k)R;l(k)z,-(k)] .
(17)
as an equation for the global state update in terms
of the summation of local entities originally calcu-
lated at the i** sensor (i=1 to N) and broadcast
via a communication network to a processor node
that is tasked with collating all the local informa-
tion into a global best answer.

By a derivation route and arguments identical
to that presented for Eqs. 11 to 17, we obtain a
local state estimation equation of a form similar
to that of Eq. 17 for each local sensor as

.’ft.‘(ka) = P,'(klk)

[P (klk — 1)&i(k|k = 1) + HT ()R (k)= (k)] ,
(18)



or, rearranged to be
P (kIE)&(kIE) — P (klk = 1)a(klk — 1) =

HE ()R; (B)zu(k)
LHS estimate info broadc:.sl: from each local sensor §
(19)
In conclusion, the final architecture for central-
ized globally optimal estimates obtainable from
the indicated info broadcast on the network from

each local sensor ¢ is derivable from Eq. 19 sub-
stituted into Eq. 17 as

s(k|k) = P(klk)

of particular local m;) in the collating update ar-
chitecture of Eqs. 20 and 21. Although, unstated
in [60]-{63], an even greater perceived benefit of the
architecture being offered is that for sensors that
fail to report by the designated collation time for
time-step k (due to possible failures, battle dam-
age, overly delayed message packets, pruned out-
lier readings, etc.) the summation can still take
place (using info from those sensors that do re-
port) to yield the best there is with the collection
of local information available at the time!

This author had previously cautioned (or re-
minded) the estimation community in [65, p. 944,
Eq. 47] not to make the mistake of using the sim-

[P-l(m YRR S E:‘_‘(Pj“(klk)i,-(klk) - Pk = 18y (ki - l),]p_ler version of the discrete-time Kalman Covari-

(20)
(f., [60, Eq. 26], [61, Eq. 16b], [63, Eq. 51]) to be
used along with the covariance update of Eq. 10,
rearranged as

P(k|k) =
-]
[P-lmk -1+ [E;‘=l (P} (k) = Pyt (ulk - 1))] "]

=[A'+B1]"' = A[A+B]™'B,

(21)
(cf., [60, Eq. between Egs. 17 and 18], [61, Eq.
17b], [63, Eq. 52]) 8 which is recognized to be
of the form of a triple n X n matrix inversion,
where operations counts for each of these inver-
sions is merely n3. Reiterating, reference [60] rec-
ommends that each local sensor node i broadcast
two pieces of critical information at each desig-
nated synchronous time step k being (1) the n x n
matrix difference {P;"(k|k) — P (k|k — 1)} and
(2) the n x 1 vector difference {P;(k|k)z;(k|k) —
P7Y(k|k — 1)&:(klk — 1)}, which have now al-
ready been demonstrated above to be equivalent
to transmitting the normally expected natural info
on H;(k), Ry !(k), and z(k) (respectively, of di-
mension m; X n, m; X m;, and m; x 1). However,
since the above matrix difference arising in Eq. 21
is symmetric, one only needs to actually transmit
n(n+ 1)/2 entries of the matrix rather than n? at

each time step k as a considerable savings.
The obvious perceived benefit of the above for-
mulation is structural consistency (independence

8Notice that there are slight discrepancies between what
is summarized here and what was offered at comparable
steps in [63] so, strictly speaking, the approach of [63] is
not identical to that of [60] and [61] even if most of the
particulars are the same. Similarly, {61] looks further into
an information filter formulation and a square root filter
formulation after it has passed through these same primary
results that are revealed here to be in common with the
other two approaches. However, these further formulations
are rather routine KF variations.
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ance Update Equation:
Py = [I - KiHyg]Pep—y

when the following (so-designated Joseph’s form)
should be used instead °:

Py = [I— KeHg)Popo1[I — KeHy]T + K, RKT .

Da was also pursuing the reduced-order filtering
problem in {29] but, unfortunately, so many of the
existing so-called reduced-order filtering method-
ologies currently being employed are flawed, with
enumerations detailed in [35, pp. 79-82] and in-
dependently confirmed [71]. The author Da had
some interesting new ideas on use of optimal and
simpler sub-optimal “combining rules” (for com-
bining the local estimation results from separate
local filters to obtain the globally optimal estimate
as an outcome) that are of interest in what is dis-
cussed later. The present author has also obtained
more expedient sub-optimal combining rules in [4,
Sec. 1.5].

2.3 More candidates for decentral-
ized KF reformulation

APPLICATIONS: Over the past thirty years,
Kalman filters (KF) have been used in telephone
line echo-cancelers, missiles, aircraft, ships, sub-
marines, tanks that shoot-on-the-run, air traf-
fic control (ATC) radars, defense and targeting
radar, Global Position System (GPS) sets, and
other standard navigation equipment. Histori-
cally, Kalman filters have even been used in mod-
eling to account for the deleterious effect of hu-
man reaction times on the ultimate performance

9The former doesn't yield the correct covariance associ-
ated with using a reduced-order suboptimal Kalman gain
K. while the latter does!



of a control system having a man-in-the-loop.
In recent years, GPS/Kalman filter combinations
in conjunction with laser disk-based digital map
technology is being considered for use in future au-
tomobiles (as well as in ships using displays rather
than paper charts) to tell the driver/pilot where he
is and how to get where he wants to be. Commer-
cial products as well as military vehicles and plat-
forms rely on Kalman filters. Computers are used
to implement Kalman filters and to test out their
performance (assess the speed of response and the
accuracy of their estimates) beforehand in exten-
sive simulations. Indeed, Kalman filter variations
are now being used for supervised learning in some
Neural Networks. (For more examples, see special
March 1983 issue of IEEE Transactions on Auto-
matic Control, Vol. AC-28, No. 3 entirely devoted
to other less well known applications of Kalman fil-
ters. Also see March 1982 NATO AGARDograph
No. 256 and February 1970 NATO AGARDo-
graph No. 139 for standard applications.) Those
that may benefit from a decentralized reformula-
tion are depicted in Fig. 8.

Besides the exciting areas of multi-sensor /multi-
target tracking in clutter (related to optimal re-
source allocation solved by invoking appropriate
generalizations of Munkres, or the Hungarian, or
the Jonker-Volgenant-Castenon (JVC) algorithm
from Operations Research), we perceive the cut-
ting edges of Kalman filter theory and technology
to be along the following five application fronts
enumerated below:

1. (Now that hardware has caught up to make
such endeavors practicable !°) application of
paralle] “Bank-of-Kalman-Filters” (see Fig. 9
where each has a different underlying system
model matched or representing a different hy-
pothesized underlying situation) with global
probability assessments of each filter possi-
bly coinciding exactly with the true situation
[currently prevailing and from which the only

measurements are availed throughout] being

automatically calculated on-line as an inte-
gral part of this totally rigorous methodology
for linear systems. [As conceived of in 1965
but only relatively recently pursued for actual

19The ideal natural computational framework for both
this Bank-of-Kalman-filters algorithm and our sensor fu-
sion architecture would be synchronized multi-processing
on a machine with several processor boards (one per fil-
ter and one for each probability calculator /maximization
selector) proceeding in parallel using a pre-emptive multi-
Processing operating system, such as Microsoft’s Windows
NT or IBM's 08/2.
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Variations on a Theme by Kalman

(Applications requiring futher post-processing of KF outputs)
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Figure 8: Variations on a theme by Kalman
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Figure 9: Multiple Model of Magill (MMM): N
alternative filters, each with its distinctly differ-
ent system models, vying to match the true (un-
known) system as it progresses through its likely
operating regimes (characterized a priori by an-
alysts), with associated on-line computation of
probabilities of each being correct so that a tally is
available to decide which one (choice of a “winner”
varying with time) offers the best match



use within the last 7 years in IR, GPS, Radar,
and multi-target Sonar applications with sig-
nificant extensions being provided in the last
six years by Y. Bar-Shalom, H. Blom, and
X.-R. Li]

2. Extension beyond standard 1-D random pro-
cess Kalman filter scenario to a 2-D Markov
Random Field (MRF) for image processing
situations for motion blur reduction and noise
abatement 1.

3. “Decentralized Kalman filter formulations”
tailored to applications where there is a nat-
ural fit and an obvious advantage to be ex-
ploited, such as in:

e On-line “Failure Detection, Identifica-
tion, and Reconfiguration” (FDIR) in
analytic (virtual) and actual redundancy
management of complementary and sup-
plementary sensors within coherently fo-
cused NAV Systems [7];

e “Sensor Fusion” of frame-synchronized
scenes for multiple sensor-dedicated
Kalman Filters using optimal and sub-
optimal combining schemes [1];

o Decentralized detection [combining de-
centralized Kalman filtering and hierar-
chical decision processes] [26];

e Generalization of Kalman filter-based
Schweppe likelihood ratio {47] to multi-
ple filter situation, and to nonlinear sys-
tem situation (involving non-Gaussian
noise statistics).

4. A fully rigorous extension of the standard
Kalman filter beyond those systems routinely
described by ODE’s to systems described by
partial differential equations (PDE’s) [using
infinite dimensional Banach-space derivation
techniques rather than the Hilbert-space tech-
niques that Rudy Kalman used in originally
discovering/revealing/uncovering the Kalman
Filter structure for optimal estimation] has
materialized and matured in the last 25

12,
years ~“;

11Tmage fusion applications exist in machine vision and in
medicine (ultrasound, X-Ray, NMR/NMI) as well as in mil-
itary Surveillance/Reconnaissance (Lidar, millimeter wave
radar imagery, IR, UV, TV).

12 These are appropriate in monitoring lakes, rivers, and
streams for impurities and contaminating effiuents [thermal
and chemical], where the conduction type PDE is the more
accurate mathematical description of the true situation.
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5. Another application scenario for decentral-
ized Kalman filtering is {33] in monitoring the
state of a distributed application [as a pre-
lude to control compensation] for a flexible
large space structure (LSS), such as arises
within the proposed Space Station Freedom
and within other orbiting platforms, where
these techniques will again be useful in the
face of likely time-shared tasking of onboard
computational resources and a distributed
implementation architecture, making'it neces-
sary for multiple sensor measurement data to
vie for access to communication links so that
it may be conveyed in a timely fashion to rel-
atively scare computational resources concen-
trated at various places across the structure
(where decisions have to be made on which
subset of the totality of measurements actu-
ally gets through to be processed).

2.4 Recent Criticisms of Cascaded,
Federated KF

The discussion (ION, June ’96) by Larry J. Levy
(APL/JHU) reported in [18] is extremely well
written and insightful and is almost a “paragon
of perfection” that should be read by everyone se-
riously interested in this field. Levy correctly iden-
tifies in the Introduction that the Federated filter
is a generalization of Cascaded filters and is opti-
mal (i.e., equivalent to the centralized filter) when
the full global state is modeled in each local filter
and the Master filter is run at the (fast) data rates
of the local filters (but untenable in practical on-
line implementations). Levy also correctly identi-
fies how to perform dual state covariance analysis
(for the reduced-order filters present) to obtain a
proper evaluation of the actual covariance of esti-
mation error (for linear systems).

However, Levy taps into the methodology of
Minimum Variance Reduced-Order (MVRO) for
actual numerical evaluation in his examples (in-
stead of perhaps using one of the more trustwor-
thy reduced-order covariance analysis methodolo-
gies [69]). Regarding Levy’s use of the MVRO
methodology, several authors have already inde-
pendently discussed the fact that it is unreliable as
an evaluation methodology (and also say exactly
why in [70], [35], [34], and especially [71] (Draper
Laboratory)). Now regarding the novelty of the
dual state evaluation idea, Prof. Ren Da (cur-
rently of Ohio State University, Columbus, OH,
Center for Mapping, previously at GNC, in CA) -
introduced this three state augmenting approach



for covariance analysis of reduced-order decentral-
ized filters in his Ph.D thesis ~ 1990 and in [29].

TeK Associates further observes here that the
Federated filter is also optimal (i.e., equivalent to
the centralized filter) when the full global state is
modeled in each local filter and all the local fil-
ters are run at the synchronized common (slow)
data rate of the Master filter. However, the re-
sulting INS errors will consequently be larger in
this case of a slow rate (as an Upper Bound # 1
on estimation error), while the scenario described
in the prior sentence is a Lower Bound # 1 (but
is an unrealistically heavy computational burden
that precludes on-line use). Notice that all other
asynchronous measurement processing rates typ-
ifying normal Cascaded filter and Federated fil-
ter use yield results that fall somewhere between
these two upper and lower bounds (when all fil-
ters utilize the full truth model). There is no con-
straint imposed on Kalman filters that measure-
ments must be periodic (however implementation
is easier when measurements are received period-
ically) and the SINS/ESGN submarine applica-
tion utilizes fixes of opportunity whenever they
are conveniently accessible (so, for other applica-
tions, it shows us how to accommodate aperiodic
fixes from a number of different navaid sensors
[31], [32]).

A further observation here is that when using
the actual prescribed reduced-order filter models
througout the Cascaded or Federated filter de-
composition or partitioning in conjunction with
an adequate dual filter reduced-order filter covari-
ance evaluation methodoloy [69] of augmenting the
truth model states with the Master filter states,
along with the states of every participating lo-
cal filter, then the resulting INS errors will con-
sequently be larger in this case of all processing
taking place at the slow Master filter rate (as an
Upper Bound # 2 on estimation error), while the
scenario just described yields Lower Bound # 2
when all processing takes place at the rate of the
fastest local filter (but is again an unrealistically
heavy computational burden that precludes on-
line use).

Notice that all other asynchronous measure-
ment processing rates typifying normal Cascaded
filter and Federated filter use with their respec-
tive specified reduced-order filter states yield re-
sults that fall between these two Upper and Lower
Bounds # 2 (without requiring all filters to use the
same filter model in common being the distinction
between this more realistic situation and that of
the earlier paragraph for UB and LB # 1). So we
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can now use covariance analysis to properly as-
sess the accuracy hit that we tollerate in order to
get timely managable througput in using realistic
decentralized filters for linear systems! Nonlinear
systems are handled by linearizing to also utilize
this theory but prudence usually requires realistic
representative Monte-Carlo simulations to demon-
strate that system behavior is reasonable and as
expected (as necessary but not sufficient proof).

Moreover, another TeK Associates’ observa-
tion here is to remind the NAV community that
properly handling NAV resets (i.e., deterministic
corrective control actions such as torquing local-
level gyros) in multi-filter scenarios can also be de-
duced from the submarine scenario: use low qual-
ity resets available from local filters at the high
rate (but keep track of them by propagating each
through its appropriate system transition matrix
and integrated to access the effect at the current
time), then when a higher quality reset is available
from the Master filter, remove the effect of the ear-
lier intermediary resets donated by the local filters
and just use that provided by the Master filter.
Repeat the process, starting with frequent resets
from the fast local filters again until replaced by a
Master reset.

3 Status of 2-D KF

3.1 History of 2-D KF for image
restoration

Generalizations of standard 1-D random process
evolving in time or indexed on a single time vari-
able (isomorphic to the real line so that it is to-
tally ordered for simply distinguishing past from
present from future [i.e., for any t; and t5, ei-
ther ¢; < 13, or t; = ¢y, or t; > t5] and having
a standard unique definition of causality) have al-
ready been extended to 2-D [73] for Input/Qutput
realizations. Early approaches to 2-D modeling
usually invoked non-symmetric half-plane (NSHP)
type causality merely for simplicity and conve-
nience [50], [53].

The following representative milestones are re-
counted in briefly summarizing the generalization
of Kalman filter formulations from 1-D to 2-D:

e Although Eugene Wong [10] alerts the reader
in the mid 1970’s and raises their level of
consciousness to appreciate the difficulty of
this problem (since the 2-D planar index of
a random field can’t be totally ordered for a



clear unambiguous delineation of what’s past,
present, and future as can be done for the
real line [as occurs for the time index of a
random process]; however, the 2-D plane can
be partially ordered but partial orderings are
not unique and are also not wholly satisfy-
ing since there are several viable candidates
that are reasonable to use but all have am-
biguous “past”, “present” (being a set rather
than being a mere point, as occurs with a
random process), and “future” defined, de-
pending on which partial ordering convention
is invoked). While [10] originally doesn’t ex-
tend much hope for immediate resolution, a
few years later he reports substantial progress
in this area {11], [12].

In the 1980’s, Howard Kaufman along with
his students and colleagues blazed an impres-
sive development trail in further generaliza-
tions of 2-D Kalman filters specifically for im-
age restoration applications [13]-[17]. In par-
ticular:

— Quoting [13]: “it is established that
for typical autoregressive signal models
with nonsymmetric half-plane support,
the dimension of the state size to be
used within the Kalman filter is approxi-
mately equal to the product of the image
model order and the pixel width of the
image.”

— Quoting [16]: “ a parallel identifica-
tion and restoration procedure is de-
scribed for images with symmetric non-
causal blurs. It is shown that the iden-
tification problem can be recast as a
parallel set of one dimensional ARMA
identification problems. By expressing
the ARMA models as equivalent infinite-
order AR models (sic) [the present
author takes issue with this limit-
ing claim and clarifies why in the
first bullet in [1, Sec. 2.3] (based on
[38], [39]) as a minor improvement],
an entirely linear estimation procedure
can be followed.”

— Quoting [17]: “it is established that
an EKF for on-line parameter Identifi-
cation was found to be unsuitable for
blur parameter identification (sic) [the
present author takes issue with this
limiting claim and clarifies why in
the second bullet in [1, Sec. 2.3]
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(based on [68]) as a minor improve-
ment] because of the presence of sig-
nificant process noise terms that caused
large deviations between the predicted
pixel estimates and the true pixel inten-
sities.”

— Quoting [15): “model-based segmenta-
tion and restoration of images is per-
formed. It was assumed that space-
variant blur can be adequately repre-
sented by a collection of L distinct point-
spread functions, where L is a predefined
integer. (The ‘Multiple Model of Magill’
(MMM)) bank of parallel Kalman filters
was applied to this problem.” See Sec.
2.3 for more about MMM.

— Quoting [17]: “it is revealed that im-
age restoration based upon unrealistic
homogeneous image and blur models
can result in highly inaccurate estimates
with excessive ringing. Thus it is im-
portant at each pixel location to restore
the image using the particular image and
blur parameters characteristic of the im-
mediate local neighborhood.”

3.2 Our version of 2-D KF

The equation for 2-D optimal linear estimation of
a scalar partial differential equation (PDE) system
¥(z,y) described over the z,y plane with bound-
ary over the interval [0, 5] by:

0% (z,y) _ 0¥(z,)

22
Oz oy? tul(=y), 22)
with boundary condition:
a¥(z,y) = %‘Q aty=0andaty =1y

(23)
for scalar @ > 0 and with w(z,y) being additive
Gaussian white process noise in the plane of posi-
tive semi-definite intensity Q(z,y) and scalar sen-
sor measurements:

2(z,y) = H¥(z,y) +(z,9), (24)

with v(z,y) being additive Gaussian white mea-
surement noise in the plane of positive definite in-
tensity R(z,y), then the associated Riccati PDE
to be solved as part of optimal linear KF estima-
tion of linear systems described by Eq. 22 is

2 2
8P(x,y,t) =2 P(x,y,t) + 8 nggx,t) _ f P(x,t.x’)HR-IHP(x,y.x’) ax’
x oy at y

+Q(y, 1),

(25)



with corresponding boundary conditions:

P ,t
aP(z,y,t) = 3—(—;;/y—)-aty=0andaty=yf ,
(26)
aP(z:,t,y): ap(%t’ggaty=0andaty=y,,
(27)
and
P(z,,t,y) = S(t,y) an initial condition.  (28)

These can be solved by using rectangular dis-
cretization over the 2-D plane or by using the
by now well-known Finite Element technique of
Fix and Strang for specifying meshes and utilizing
PDEase code or MatLab’s 13 PDE code (both
available on a PC). We generally follow the results
pioneered by Kaufman for a single sensor but for
real-time use we advocate synchronizing parallel
processing using one processor for each local sen-
sor filter and a final one for the Unification Collat-
ing Filter. Compare our equations to perspectives
offered in [28, Ch. 7] and [27]. Our Image Com-
bining Rule is the 2-D analog of Eqs. 20 and 21.
Simulations to date have only been with a single
processor to merely demonstrate proof of concept
and images to date have been Lena at different res-
olutions with different levels of additive Gaussian
White Noise superimposed to corrupt the image.
We welcome a real data test case!

130ne technical problem that we did encounter was with
MatLab's new capability to isolate level-crossing instant
of either constant or specified time-varying thresholds with
almost infinite precision. This MatLab capability ac-
tually exists only for completely deterministic situations
since the underlying algorithms are predictor/corrector-
based which are stymied when noise [albeit pseudo-random
noise (PRN)] is introduced in the simulation. The presence
of noise has been the bane of all but the coarsest and sim-
plest of integration methodologies since the earliest days
of digital simulation. However, engineering applications
where threshold comparisons are crucial usually include
the presence of noise, as in detection (i.e., is the desired
signal present or just noise) in radar or communications, in
Kalman filter-based failure detection or maneuver detec-
tion [46], or in peak picking as it arises in sonar processing
[36] and in image processing [74]. Other problems with
calculation of matrix functions using matrix Signum func-
tions, as occurs in some MatLab routines, are elucidated
in (1) Bamett, S., “Comments on “The Matrix Sign Func-
tion and Computation in Systems',” Applied Mathematics
and Computation, Vol. 4, pp. 277-279, 1978; (2) Bar-
rand, A. Y., “Comments on ‘The Numerical Solution of
ATQ 4+ QA = —C"" IEEE Trans. on Auvtomatic Conirol,
Vol. AC-24, No. 4, pp. 671-672, Aug. 1977. Also 3)
Petkov, P. H., Christov, N. D., Konstantinov, M. M., “On
the Numerical Properties of the Shur Approach for Solving
the Matrix Riccati Equation, System Control Letters, Vol.
9, No. 3, pp. 197-201, 1987 for weakness in using the Shur
method.
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