
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 22, No. 4, AUGUST 1977 

Real-Time Failure Detection: 
A Nonlinear Optimization Problem That 

Yields a Two-EHipsoid Overlap Test 1°2 

T. H. KERR 3 

Communicated by A. V. Balakrishnan 

Abstract, Real-time failure detection for systems having linear 
stochastic dynamical truth models is posed in terms of two confidence 
region sheaths. One confidence region sheath is about the expected 
no-failure trajectory; the other is about the Kalman estimate. If these 
two confidence regions of ellipsoidal cross section are disjoint at any 
time instant, a failure is declared. 

A test for two-ellipsoid overlap is developed which involves finding 
a single point x* whose presence in both ellipsoids is necessary and 
sufficient for overlap. Thus, the overlap test is contorted into a search for 
x*, shown to be the solution of a nonlinear optimization problem that is 
easily solved once an associated scalar Lagrange multiplier is known. A 
successive approximations iteration equation for it is obtained and is 
shown to converge as a contraction mapping. The method was 
developed to detect failures in an inertial navigation system that appear 
as uncompensated gyroscopic drift rate, For simulated gyroscopic fail- 
ures, the iterations converged very quickly, easily allowing real-time 
failure detection. 

Key Words. Detection theory, function minimization, Lagrange prob- 
lems, contraction mapping principle, Kalman filter. 

1. Introduction 

Fa i lu re  de t ec t i on  and  fa i lure  i so la t ion  are  c o m m o n  p r o b l e m s  in 
eng inee r ing  systems.  In genera l ,  fa i lure  de t ec t i on  requ i res  con t inuous  
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vigilant monitoring of the observable output variables of the system. 
Under normal conditions, the output variables follow certain known pat- 
terns of evolution within certain limits of uncertainty introduced by slight 
random system disturbances and measurement noise in the sensors. When 
failures occur, the observable output variables deviate from their nominal 
state-space trajectories or evolutionary pattern. Most failure detection 
techniques are based on spotting these deviations from the usual in the 
observable output variables. 

Whereas the detection of an unknown signal at a known time or the 
detection of a known signal at an unknown time are standard problems in 
communication theory, the problem in failure detection is to detect a signal 
of unknown magnitude which occurs at an unknown time. Failure detection 
is a more difficult problem that has only recently received attention in the 
literature. Mehra and Peschon have suggested several failure detection 
approaches (Ref. 2) which are based on the innovations properties of the 
Kalman filter residual. Jones has approached the failure detection problem 
using a reference model, such as those that exist in observer theory or in a 
suboptimal Kalman filter (Ref. 3). Willsky has approached the failure 
detection problem using a generalized likelihood ratio (Ref. 4). Chien has 
approached the problem using a generalization of the Wald sequential 
likelihood ratio test (Ref, 5). 

This paper reports a different philosophical approach to the failure 
detection problem. It places a confidence region about the nominal unfailed 
trajectory corresponding to the H0-hypothesis and a second confidence 
region about the Kalman filter estimate based on processing the actual 
measurements. When these two confidence regions are disjoint, impling a 
non-H0 situation, a failure is declared. This approach was motivated by the 
computational constraints that were imposed for on-line, real-time failure 
detection in an inertial navigation system (INS). There was a high- 
dimensional system truth model, but only a reduced-order Kalman filter 
would be allowed because of the limited computer memory available. This 
confidence region approach appears to achieve its objective of detecting 
failures without being susceptible to some of the same ailments that the 
other four residual-based approaches would experience under similar com- 
putational constraints (i.e., the other four approaches were derived using 
systems or Kalman filters having the same dimensionality as the truth or 
error models). Residuals can be nonwhite or biased either because a failure 
occurred or because the Kalman filter is a reduced-order suboptimal filter 
(Refs. 6-8). The calculated confidence regions of this paper are still exact 
when used with a particular formulation of a reduced-order filter (Ref. 9) 
which results in a known covariance of error. The effect of using a reduced- 
order filter is discussed in a companion article (Ref. 10) which also discusses 
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other details of implementing for failure detection. Another  advantage of 
this confidence-region approach is that the arguments are geometric in 
nature and may be easily visualized, as will be seen in the figures. 

2. Analytical Theory of Failure Detection Using Two Confidence Regions 

Consider a system having a linear state variable truth model or error 
model of the following form: 

x(k + 1) = ¢P(k + 1, k)x(~)+ w(~), (1) 

z(k ) = H(k )x(k )+ v(k ), (2) 

where w(k) and v(k) are independent, zero-mean, white noises having 
covariances of intensity Q(k) and R(k) ,  respectively. There is a Gaussian 
random vector initial condition x(0) of mean 2o and covariance Po, and the 
failure modes of the system are included as states of the above model [e.g., 
unwanted ramp and bias gyroscopic drift-rates are states in the linear error 
model of an INS (Ref. 11)]. 

The solution of the associated Kushner partial differential equation for 
the conditional probability density function (p.d.f.) of x(k), given the 
measurements, is a Gaussian p.d.f, having the Kalman estimate £(k) and 
covariance of error P~(k) as mean and variance, respectively (Ref. 12), 
where 4 

£(k + 1) = qb(k + 1, k)2(k)+K(k + 1)',/(k + 1), (3) 

2(0) = Xo, (4) 

~/(k ) ~ z(k ) - H ( k  )cP(k, k - 1)£(k - 1), (5) 

K (k ) = P~(k )Hr (k )[H(k )e1(k )H T (k )+ R (k )]-l, (6) 

Pl(k + 1) = qb(k + 1, k)[I-K(k)H(k)]Pl(k)O2r(k + 1, k)+ Q(k + 1), (7) 

P~(0) = Po. (8) 

Hypothesis Ho. The system is in the unfailed condition, so that the 
failure states of the system error model (1) are zero. 

We shall use the symbol H1 to denote the case where Hypothesis H0 is 
not satisfied. Thus, H1 is non-Ho. A particular example is Eq. (1) of Ref. 4. 

At  a particular fixed time k, the p.d.f, of x(k) under Ho is a Gaussian 
having mean 

2(k ) & E[x(k )IHo ] = c~(k, 0)E[x(0)IHo] (9) 

4 The propagate and update equations of the Kalman filter have been combined to facilitate 
manipulation in the proof of Lemma 5.1, 
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and a variance that is the following solution of the associated linear matrix 
equation (Ref. 13): 

P2(k + 1) = ~(k + 1, k)e2(k)rbr(k + 1, k)+ O(k + 1), (10) 

Pz(O) = Po. (11) 

This time-varying variance represents the uncertainty in x (k) introduced by 
the system noise and random initial condition, undiminished by the use of 
the measurements. Therefore, at a particular time k, there are two Gaussian 
p.d.f.'s associated with x (k). One is Px(k)lHo and the other is p x(k:~Z(k). Figure 
1 conceptually depicts these two p.d.f.'s for the random variable x(k) at the 
fixed time k. 

The first moments of the two p.d.f.'s, E[x(k)[Ho] and £(k), may be 
considered to be point estimates of the random variable x(k) having 
uncertainty P2(k) and P1 (k), respectively. Conservatism is attained by using 
confidence regions about these estimates, instead of only the estimates 
themselves. An al-confidence region about 2(k) and an az-confidence 
region about E[x(k)lH0 ] are depicted in Fig. 1 as the confidence regions 
Rl(k) and R2(k), respectively. The probability of finding the realization of 
the true state x(k) within these two confidence regions may be calculated 
analytically, and the probability statements are 

Prob[x (k) ~ R1 (k')[Z(k)] = a 1, (12) 

Prob[x (k) ~ R 2(k)[H0] = or2. (13) 

In one dimension, these confidence regions are confidence intervals; in 
higher dimensions, these confidence regions (as usual, taken to have the 

Px(k)/H° / 

, , , I  I -  , R2lk) 

p1 (k)~Px(k)/Z(j), O~<j ~< k 

Rl(k) I 

Fig. 1. Gaussian densities used in two-confidence-region failure detection. 
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same boundaries as the levels of constant p.d.f.) are ellipsoids. The probabil- 
ity of finding the realization of the true state x(k) within these confidence 
region ellipsoids may be calculated analytically, and the probability state- 
ments are 

Prob[(x(k)-2(k))TP-~(k)(x(k)-~(k))<-KlIZ(k)]=oq, (14) 

Prob[(x(k)-~(k))rP-~(k)(x(k)-~.(k))<-g2IHo] = a2. (15) 

The constant KffK2) corresponding to the probability level affa2) is the 
normalized score value associated with the a~ probability level of a chi- 
squared random variable having n degrees of freedom, where n is the 
number of rows of x(k). The theoretical justification for the calculation of 
KI(K2) using chi-squared is given in Ref. 14; and the details of handling a 
time-varying confidence region sheath are discussed on pp. 281-291 of Ref. 
15 for a different application. 

At each decision time k, a confidence region about £(k), having oq 
probability of containing the true state x (k), and a confidence region about 

Y(k) ~ E[x(k)lHo], 

having a2 probability of containing the true state x(k), may be constructed. 
These confidence regions are ellipsoids having centers and variances that 
vary with time to define the two sheaths that are depicted in Fig. 2. The 
confidence region about ~(k) represents nominal unfailed behavior (H0), 
within the uncertainty introduced by the system noise. The confidence 
region about £(k) reflects the current information of the measurements 
which indicate the actual situation (either He or H1) within the uncertainty of 
the system and measurement noise. As long as the two sheaths overlap, the 
true state may be in both confidence regions. However, when the ellipsoids 
are disjoint, the true state cannot be in both confidence regions, and a failure 
is declared. Declaring a failure corresponds to a failure mode state being 
judged to be different from the nominal, while taking into account the 

I' 
TIME AT WHICH A 

FAILURE IS DECLARED 

. . . . . . .  REGION SHEATH 

(k)- ESTIMATE 

CONFIDENCE REGION SHEATH 

)-THEORETICAL UNEAILED 
VALUE (Ho) 

~E 

Fig. 2. Two nonoverlapping confidence region ellipsoids indicate failures. 
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uncertainty introduced by system and measurement noise. In the INS 
application, soft or subtle failures, such as intolerable uncompensated 
gyroscopic drift, are to be detected, where gyroscopic drifts are failure-mode 
states of the linear filter model. 

3. Two-Confidence-Region Failure Detection: Analytical Basis for the 
Two-Ellipsoid Overlap Test 

A test for the overlap of two ellipsoids having the same confidence level 
(al = a2 or, equivalently, K~ =K2) is presented which involves finding a 
single point x* whose presence in both ellipsoids is necessary and sufficient 
for overlap and whose absence from both ellipsoids is necessary and 
sufficient for disjointness. Basing an overlap test on the containment or 
noncontainment of this special point x* within the ellipsoid is desirable from 
the point of view of performing real-time numerical calculations. The point 
x*(k) may be examined for containment within the al-ellipsoid about 2(k) 
by forming the inner product 

(x*(k ) - 2 ( k  ))rP~t(k )(x*(k ) -  2(k )). (16) 

There is containment if this scalar quantity is below the threshold K> An 
analogous procedure is followed to check for containment of the point x*(k) 
in the other ellipsoid. 

Consider the two ellipsoids depicted in Fig. 3, representing a cross 
section of Fig. 2 at a fixed time. The boundaries of the two ellipsoids C1 and 
C2 are 

(x --~)TP71(X -- X) ~--- g l ,  (17)  

(x - 2)rP~(x - 2) = K2, (18) 

where the interiors of C1 and C2 correspond to x such that the scalar inner 
product of the left-hand sides of (1,7) and (18) are, respectively, -K1  and 

VARIANCE P I ~  ~n 

X N  
~ 2  BOUNDARY: C 2 

Fig. 3. Overlap of ellipsoids. 
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<-Kz. For Kt = Kz, these ellipsoids are equal levels of the following two 
strictly convex (since Pt and Pz are positive definite) quadratic forms: 

yl = (x --2)TPT~(x --2), (19) 

y2 = (x -X)rP~-l(x -•). (20) 

These two quadratic forms are pictured in Fig. 4. The two quadratic forms 
eventually intersect in a closed curve s as depicted in Fig. 5. 

The implicit expression for the x-projection of the curve of intersection 
of the two ellipsoidal parabolas in the domain R" is 

y~ =y2 
or, equivalently, 

(21) 

The maximum and minimum points on the curve of intersection are y** 
and y*, respectively (see Fig. 5). The x-projection of y* and y** are x* and 
x**, respectively. Naturally, x** and x* lie on the curve 

G(x)=0. 
It is the pair (x*, y*) that is of interest in the two-ellipsoid overlap problem. 

When 
K1 =/(2, 

and if there is overlap, the point x* is considered to be the most interior point 
in the intersection of the two ellipsoids described by (17) and (18). The 

s Degenerate  forms: If P~ = P2, then the x-projection into R"  of the curve of intersection is a 
straight line; if 2 = 2~ and P1 < P> then the curve is a single point. 

rR 

C1 : Yl : KI\ ~ t~' 

\ 
C2:Y2: K 2 

I 1 ! 

ON NUMBERS 

R n 

N HYP~.RPLANE,, {:~ - ~ }T( x 4 ) = 0 

Fig. 4. Ellipsoids are specific levels of two quadratic forms. 
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oF M,N,MOM 

~Rn PROJECTION OF MAX{MUM 

PERIMETER: O{x): 0 

Fig. 5. Projection of intersection of two quadratic forms. 

presence of x* in both ellipsoids is necessary and sufficient for overlap, while 
the absence of x* in both ellipsoids is necessary and sufficient for disjoint- 
ness, 

Without going into great detail, the value of the point x* in determining 
ellipsoidal overlap may be seen from Fig. 6, which is a true-scale drawing 
using projective geometry. The upper portion of Fig. 6 shows a top view of 
two elliptic paraboloids, with the elliptical contours of constant height 
labeled. The point x* occurs where two ellipses from two different elliptical 
families but of the same height are just tangent (i.e., the minimum point of 
the intersection of the two parabolas). A ray tangent to the two equal level 
ellipses through their point of common tangency x* is extended and a 
folding line is erected perpendicular to this ray. The front view, drawn below 
the folding line, shows the ellipses of the top view as constant levels. This is 
just the perspective needed to visually verify the presence or absence of the 
point x* in both ellipses as necessary and sufficient for intersection or 
disjointness, respectively. All constant-level ellipsoids of the two families 
which are below y* (i.e., neither contains x*) are disjoint; all which overlap 
are above y* (i.e., both contain x*). A general method for computationally 
obtaining this decisive point x* will now be given. 
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Ellipsoidal levels above y* contain x* (necessary and sufficient condition). 

4. Nonlinear Constrained Optimization Problem 

The vector x* is the solution of the following nonlinear optimization 
problem: minimize (19), subject to the constraint (21). This problem may be 
recast as an unconstrained optimization problem by using a scalar Lagrange 
multiplier A, according to the Kuhn-Tucker theorem (Ref. 16), and finding 
x* and A* that minimize the Lagrangian 

l(x, A)= (x -- £)TP-~I(X - £ )+  A G(x  ). (22) 

By first differentiating (22) with respect to x and setting the result equal to 
zero and then differentiating (22) with respect to A and setting the result 
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equal to zero, the following 
obtained. 

x* = [(1 - A * ) P ~  + A*P~I]-I{(1 - A*)PT~ + ~ *Pz~} ,  

where A* satisfies 

{1 - [w TA -~()t )P~A -~(~ )w/w TA -a(A)P2A -~(~ )w ]}2t 2 _ 2,~ + 1 = 0. 

solution to the minimization problem is 

(23) 

(24) 

Note that (24) is almost a quadratic equation, where 

A(A) __a [(1-A)P2+h~P1], (25) 

w _a (£_:~). (26) 

On simplification, (23) reduces to 

x* = (1 - ~ *)PzA-~(A *)~ + ,~ *P1A -I(A , ) £  (27) 

which is easily evaluated with only one matrix inversion once the Lagrange 
multiplier A* is known. 

5. Lagrangian Multiplier 

Substituting x* of (27) back into (22) yields 

l(x*, A)= ( 1 - A ) ( x * - ~ ) r p - ( l ( x * - £ ) + / t ( x * - 2 ) r P ~ l ( x  *-2) ,  (28) 

which must be minimized only over the scalar A. Once the proper A is found, 
(27) yields the proper x* to minimize the original constrained problem. 
Substituting the identities 

x * - ~ --- AP1A -'  (A)(2 - ~), (29) 

x* - 2 -- (1 - A )PzA-I(A )(~ - 2) (30) 

into (28) results in the following simplification: 

l(A) = A(1 -A  )w Ta-~(~ )w, (31) 

where A (A) and w are defined in (25) and (26), respectively. A necessary 
condition for a minimum, obtained by differentiating (31) with respect to A, 
setting the result equal to zero, adding and subtracting the same term, and 
simplifying, is that 

/ 0 ) =  (1 --;t)wTA-IO,)w -AwTA-I(A)P1A-t(A)w = 0, (32) 

where the dot denotes differentiation with respect to ,~ ; upon rearranging, 
(32) becomes 

X = l/[l+(wTA-l(X)P1A-~(X)w/wrA-l(;~)w)]. (33) 
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The  following successive-approximation equation for ;~ is obtained f rom 
(33): 

h,+l  = 1/[I+(wrA-I(A,,)P1A-I(A,)w/wTA-I(A,)w)].  (34) 

We return now to address the question of whether  (34) gives the 
max imum x** or the min imum 6 x*, as depicted in Fig. 5. Consider (27). For 
h = 0 in (27), the result is 

x* = P1P~I£ = d; (35) 

for A = 1 in (27), the result is 

x* = P2P~t2 = £. (36) 

In (35)-(36), 2 and £ are the centers of the two ellipsoidal parabolas where 
they are just tangent to the horizontal plane representing R "  in Fig. 5, 
Notice that the minimum occurs on the continuous curve in R "  for x*(h),  as 
a function of A, where it also intersects the constraint set 

G(x)=0 
of (21) [a condition embodied  in satisfying (33)]. Since x*(A*), the true 
constrained minimum, occurs between 

x*(0) = 2 and x*(1) = i ;  

the correct value of h satisfies the condition 

0 < A * < I .  (37) 

Notice that  the max imum occurs for ,~ > 1 in (27), with (33) also satisfied. 
The following Lemmas  5.1 and 5.2 and the associated Corollary 5.1 are 
easily proved. All proofs are given in the Appendix.  

L e n a  5.1. The  following result hoids: 

Pffk)>PKk)>-O for k > l °  (38) 

It  is easy to establish this fact rigorously, since it is intuitively obvious that 
the covariance of error  of the filter with no measurements  is greater than the 
covariance of error  given the measurements  (here, greater than is taken in 
the matrix sense as the positive definiteness of P 2 - P 1 ) .  

6A standard computational technique for solving the optimization problem, such as the 
Fletcher-Powetl method (Ref. 17), was not used: It was seen that both x** and x* satisfy the 
necessary conditions for a minimum. It must be guaranteed that the computational method is 
going to the minimum at each iteration and not oscillating back and forth between going to a 
maximum and going to a minimum. 
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Lemma 5.2. If 

then 

O < A . < I ,  

P2>PI>O,  

then 

I /2  <A,+I < 1. 

Corollary 5.1. Under the condition (40), if 

O<Ao<l ,  

(39) 

(40) 

(41) 

(42) 

with 

There exists a fixed point A* in (0, 1) such that 

A* = g(A*), (44) 

got) -~ 1/(I+(s(A)/b(A))), (45) 

sOt) a--A wrA-I(A)P1A-I(A)w, (46) 

b(A) & wrA-~(A)w. (47) 

Note that Lemma 5.3 is consistent with (33). 
Now, the convergence of the successive iterations equation to the 

correct value A* will be investigated. The successive iterations equation (34) 
is of the form 

A,+~ = g(A,). (48) 

The objective is to establish that g(.  ) is a contraction mapping, i.e., 

[g (An+l)- g (A,)[ < ¢[A,+1 - A, [ < ¢" iA1 - Aol (49) 

Lemma 5.3. 

where 

1/2 < A. < I (43) 

for all n - 1. 
The purpose of Lemma 5.1, Lemma 5.2, and Corollary 5.1 is to aid in 

establishing rigorously that, if the successive iteration formula (34) is 
reasonably initialized with a value of Ao in the interval (1/2, 1) (say, 
Ao = 0.75), then the successive iterates also lie within this interval, where the 
correct value of A for attaining the minimum also lies. The existence of this 
correct A-value, which may be argued geometrically from Fig. 5, is estab- 
lished rigorously in the following lemma. 
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for some ~ such that 

0 < ~ < 1 .  (50) 

It is sufficient to show that (see p. 32 of Ref. 18) 

ig(A)t < 1 (51) 

or, equivalently, that (see p. 32 of Ref. 18) 

g(a) < 1, (5 2) 

- I  < g(a). (53) 

From the form of (45), the following expression for the derivative of 
g(.  ) with respect to A is obtained: 

(a) = (s (a)b ( a ) -  b (a)~ (a))/(s (a) + b (a))2. (5 4) 

Using (54), we can see that the conditions (52)-(53) are satisfied, or 
equivalently (51) is satisfied, as asserted in the following theorem. 

Theorem 5.1. If the condition (38) holds, then 

s(X )6(a )-b(2~ )~(a )< (s(X )+ b(a )) 2, (55) 

-(s(X )+ b(A ))2 <s(A )b(A )-b(A )~(A ); (56) 

hence, g( .  ) of (45) is a contraction mapping by Theorem II.2.2 of Ref. 18. 
Consequently, A* of Lemma 5.3 is unique by Theorem II.1.3 of Ref. 18; 
and it is permissible to take the limit in (43) as n -~ co (since it exists) to yield 

1/2 < A* < 1, (57) 

which is consistent with (37). In other words, the iteration algorithm (34), 
when properly initialized, converges to the correct A*. 

The condition (38), that is sufficient for the conclusion of Theorem 5.1, 
is proved in Lemma 5.1. This is exactly the condition that exists when solving 
this associated Lagrange optimization problem in the context of failure 
detection using confidence regions. 

A minimum rate of convergence for the successive approximations 
algorithm will now be established. 

Theorem 5.2. The iteration algorithm of Eq. (34) converges at least 
linearly to A*. 

In actual implementation, the performance of this algorithm indicated 
that the rate of convergence was greater than just linear. Since a linear rate 
of convergence has been established, Steffensen's method (Ref. 19) may be 
used to accelerate the rate of convergence. 
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There is also an interesting numerical problem (and a remedy) when the 
ideal mathematical conclusions associated with a contraction mapping (i.e., 
the conclusion that a unique fixed point as the limit of the successive 
approximations is the solution of the optimization problem) are altered 
slightly in doing numerical calculations on a computer having computer 
words composed of a finite bit size and having the consequent roundoff 
errors. In computer calculations, the successive iterations converge to a 
point that is within a ball centered about the idealfixed-point solution, where 
the ball has a radius that is the roundoff error (Ref. 19). In the ellipsoid 
overlap computations, use of double-precision calculations reduces the 
occurrence of roundoff error enough to make the calculated solution for x* 
close enough to the theoretical solution for practical purposes. The verifica- 
tion that this proposed remedy is sufficient was to evaluate (19) and (20) 
using x = x* and to check that the evaluations were identical; whereas, when 
there was a roundoff problem, the two separate evaluations did not agree 
exactly. 

6. Summary 

The main contribution of this paper is considered to be the two- 
ellipsoid overlap test which is fast enough for possible implementation in an 
INS real-time failure detection application. A scalar iteration equation was 
obtained for an associated Lagrange multiplier A, used in obtaining x*, the 
cornerstone of the CR2 ellipsoid overlap test. v The iteration equation (34) 
involved the inversion of a matrix sum [Eq. (25)] and was initially rather 
unwieldly analytically as convergence was investigated. This difficulty was 
surmounted, and a proof of convergence and the rate of convergence were 
established. The table in Fig. 7 summarizes the mechanization equations 
needed to implement this CR2 ellipsoid overlap test for failure detection in 
real time. 

A summarizing overview is given in Fig. 8 on how this failure detection 
approach works. The theoretical basis of the CR2 failure detection approach 
is a generalization of the use of confidence intervals. The three main ideas 
that serve as the foundation for CR2 failure detection are shown as three 
different diagrams in Fig. 8 and are discussed below. These diagrams are 
shown in juxtaposition to facilitate a comparison of how the relative 
overlapping of the confidence regions affects the scalar test statistic at three 
specific check times (tl, t2, t3). These confidence regions are portrayed in Fig. 
8(a). At each check time, these confidence regions are elliptical. A failure is 
declared when the two confidence regions do not overlap. 

7 CR2 is an acronym for two confidence regions. 
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Processing Calculatlons To Be Performed At Decision Tlme k Step 

#1 Update :  

P2(k)~l(k,k-l)P2(k-1)oT(k,k-l) + Q(k) 

~(k)  ~ ~(k,k-l) ~ ( k - 1 )  

#2 Read 

x(k) and Pl(k) EFrom Kalman Filter] 

#S 

#4 

#5 

S o lv e  t h e  O p t i m i z a t i o n  Problem:  
( A c t u a l l y  u s e  o n l y  t h e  f a i l u r e  mode s t a t e s )  

Form: w ~ ;c(k) - ~(k) 

), . 3 
o 

I t e r a t e  t o  Convergence :  

1 

(~n+l  " wTA~IPI ( k ) A n I ,  

T e s t  : S t o p  Nben 

r °.l - " l°-el ol 

F ix  Maximum Number o f  I t e r a t i o n e  a t  30, 
i s  ~*. 

C a l c u l a t e  S o l u t i o n :  

A* - [ ( l - ~ * ) P 2 ( k )  ÷ ~ ' P l ( k ) ]  

X* = ( I - ~ * ) P 2 & * ' I x  + ~*Pl A*-I 

S o l u t t o l  

Perform Over lap T e s t :  

F o r  L(k) ~ (x* - ; ) r  p ~ 1 ( x ,  - i )  

I f  ~ (k )  > KI, D e c l a r e  a f a i l u r e  

I f  ~(k)  ~ K1, C o n t i n u e  

#6 Proceed t o  Next Dec i s i on  Time, k + l ,  
Repeat s teps  ~1-#8. 

Fig. 7. Mechanization equations for CR2 failure detection. 

At  each check time tl, the two elliptical cross sections of the confidence 
regions, shown in Fig. 8(a), are fixed levels of two parabolas, shown in Fig. 
8(b). The problem is to determine whether these two ellipses overlap. In 
developing the real-time detection algorithm, the test for the presence or 
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Overview of procedure: (a) two confidence regions; (b) new optimization at each time 
instant; (c) CR2 failure detector. 

absence of overlap was formulated as the solution of a minimization 
problem. The relative position of l(ti), the minimum point of the intersection 
of the two parabolas, to Kl(ti), the level that corresponds to the elliptical 
cross section of the confidence regions, determines if there is overlap (and, if 
so, the amount of overlap). As long as l(ti) is below Kl(ti), there is overlap; 
but, when l(ti) exceeds K1 (t~), then the confidence regions are disj oint and a 
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failure is declared. The relationship between the test statistic l(t~) and the 
decision threshold Kl(t i)  is summarized in Fig. 8(c). It is sufficient to observe 
only the test statistic l(ti) and to declare failures when l(ti) exceeds K~(ti). 

In the CR2 failure detector, a higher level of the threshold K1, to which 
the test statistic l(ti) is compared, effectively raises the heights of the 
ellipsoids in the associated optimization problem; this corresponds to 
stouter confidence regions. Analytic expressions which are used for pre- 
specifying the time-varying decision threshold Ks and the expressions for 
the instantaneous probabilities under Ho and H~ are derived in Ref. 10. The 
expressions are used in the setting of the threshold K1 in a characteristic 
trade-off of instantaneous probability of false alarm versus the probability of 
correct detection associated with hypothesis-testing detection decisions. 
The probabilities of false alarm and correct detection that characterize the 
CR2 test over a time interval have been calculated using the level-crossing 
probability upper bound that is optimized in Ref. 20. The result of applying 
these upper bounds to the discrete-time CR2 technique is shown in Ref. 21. 

It is hoped that this test for ellipsoid overlap will also be useful in areas 
other than failure detection (such as comparing simulation model results 
against experimental data when etlipsoidal confidence regions exist for both, 
Ref. 22). 

7. Appendix 

The following propositions constitute the rigorous working tools that 
were used both in the proofs of the lemmas and in the main convergence 
proof (Theorem 5.1). 

]Proposition 7.1. 

then 

For symmetric, positive-definite matrices H a n d  J, if 

Proposition 7.2. 

a l l <  a J, 

for all scalar a such that a > 0. 

Proposition 7.3. For H as in Proposition 7.1, H > 0, then 

H ~ > 0 .  

H < J ,  (58) 

H-1 > j -  i. (59) 

For the conditions of Proposition 7.1., 

(60) 

(61) 
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Proposition 7.4. For the conditions of Proposition 7.1 and M of full 
rank, if condition (58) holds, then 

0 < MTHM < MTjM. (62) 

Proposition 7.5. 
follows that 

For symmetric H and J as in Proposition 7.1, it 

[H+J] T = [H+J ]  > 0. (63) 

Proposition 7.6. For H and J as in Proposition 7.1, 

( [H+J] - I )  T = [H+J]  -1 > 0. (64) 

The above familiar propositions are easily proved and can be found in 
Ref. 23. 

Proof of Lemma 5.1. Now, P2 is the solution of (10) and P1 is the 
solution of (7); hence, upon subtracting (7) from (10) and letting 

N(k) & P2(k)-PI(k), (65) 

the following result is obtained: 

N(k + 1) = qb(k + 1, k)N(k)c~T(k + 1, k) 

+~(k + 1, k )PI(k )HT(k )[H(k )PI(k )HT(k )+ R (k )]-I 

× H(k)PI(k)~T(k + 1, k). (66) 

By the condition of observability and controllability (Ref. 24), it follows that 

PI (k)>  0. (67) 

Now, H(k) is assumed to be of full rank; so, by Proposition 7.4, 

H(k)PI(k)HT(k) > 0. (68) 

Adding the positive-definite matrix R(k) to (68), inverting, and using 
Proposition 7.6 yields 

[H(k)Pl(k)HT(k) + R (k)] -1 > 0. (69) 

Note that, by the weaker (but more generally met) condition of detectability 
and stabilizability (Ref. 25), condition (69) directly holds without the 
requirement of proceeding from condition (67) to (69). 

Premultiplying and postmultiplying (69) by 

ap(k + 1, k )nl(k )HW(k ) (70) 
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and its transpose, using Proposition 7.4 to conclude that the result is positive 
definite, and adding the (at worst) positive semidefinite quantity 

• (k + 1, k)N(k)(br(k + 1, k) (71) 

yields the right-hand side of (66), which is positive definite. Since the 
right-hand side of (66) is positive definite, by equality it follows that 

N(k  + 1)> 0 (72) 

for every k > 0. At time k = 0, the term (71) could only be assumed to be 
positive semidefinite, since 

N(0) = e2(0)-  Pl(0) = P o - P o  = 0; (73) 

but the term (71) is positive definite for k > 0, by induction on (72). By the 
definition (65), the result (38) of Lemma 5.1 follows. 

P r o o f  o f  L e m m a  5 .2 .  i f  (39)  holds, then 

0 < ( 1 - ~ . ) <  1; (74) 

and, since (40) holds, by Proposition 7.2, the following inequality results: 

(1 - A . )P :  > (1 - An)P1. (75)  

Adding AnP1 to both sides of (75) yields 

[(1 - A,)P2 + A~P1] > (1 - An)P1 +AnP1 = P1 > 0. (76) 

Premultiplying and postmultiplying both sides by 

w r[(1-2tn)P2 +,~nP1]-i (77) 

and its transpose yields the relation 

w T[(1 - An)Pz + A,,P1]-I w 

> wT[(1 -;t.)P2+A.Pll-tPI[(1 -A.)Pz+i~.P~]-lw >0.  (78) 

Dividing through by the left-hand side, adding 1 to both sides, and taking 
reciprocals yields 

t / 2  < 1/(1 +s(An)/b(A.))< 1, (79) 

where s( .  ) and b(, ) are defined in (46) and (47). Now, the statement 

1/2<A~ < 1 (80) 

is equivalent to (79) and is consistent with (37). Z] 
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Proof of Corollary 5.1. By Lemma 5.2, if 0 < h 0 <  1, then 

1 /2<A1<1;  

applying Lemma 5.2 again yields 

1 /2<A2<1.  

The fact that (43) holds for all n follows by induction and by successively 
applying Lemma 5.2. [] 

Proof of Lemma 5.3. Using the definitions (25), (46), (47), and (45), it 
is seen that g(A ) is continuous in A for fixed P1, P2, and w. By Lemma 5.1 and 
Corollary 5.1, the continuous function g(.  ) maps the interval [0, 1] into 
[0, 1]; hence, by Ref. t9, there is a fixed point)t* such that (44) holds. [] 

Some additional propositions are needed in the proof of Theorem 5.1. 
Since these propositions are familiar, the proofs will be abbreviated. 

Proposition 7.7. For Z = Z T > 0, there exists a matrix U such that 

UT= U -1, (81) 

U'rZU = A a__ diag(dn, d22 . . . . .  d.n)>0.  (82) 

Proof. Take U to be the normalized eigenvector matrix associated 
with the symmetric, positive-definite matrix Z;  then, U has the property 
indicated in (81) and diagonalizes Z, as shown in (82). [] 

Proposition 7.8. For 

Z ~ o~o-lo~ (83) = Z l l  2 Jrl~ 

and with the condition (40) holding, then 

I > h > 0, (84) 

where A is defined in Proposition 7.7; specifically, 

l>d~ i>0 ,  i = 1  . . . . .  n. (85) 

Proof. Using (40) and Proposition 7.1 results in 

p l l  > p ~ l .  (86) 

Premultiplying and postmultiplying both sides of (86) by P~ and its transpose 
and using Proposition 7.4 yields 

1 1 
I >  P~P~ Pl  = Z > 0. (87) 
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Premultiptying and postmultiplying (87) by U defined in Proposition 7.7 
yields 

or, equivalently, (85). 

Proposition 7.9. 

I >  A = diag(dn, d22 . . . . .  dnn)> 0 

then 

(88) 
[ ]  

If 

0 < h < 1, (89) 

0 < d. < 1, (90) 

0 < 1 + (d. - 1)a < 1. 

Proof. Subtracting 1 throughout (90) yields 

- l < d u -  1•0.  

Multiplying (92) by a, h > O, yields 

- a  < (di~ - 1)a < 0. 

Adding 1 to both sides yields 

O < I - A  < l + ( d . -  1)~ <1,  

and (91) follows. 

Proposition 7.10. 

then 

(91) 

(92) 

(93) 

iff 

(94) 

[] 

0 <dii, i = 1 . . . . .  n. (97) 

Proof, This is obvious from the definition of positive definiteness. D 

Proof of Theorem 5.1. For convenience of notation, let 

s & w T A - I P 1 A - l w  (98) 

b & w r A - t w ,  (99) 

C & wTA-1PIA-1P1A- lw ,  (100) 

0 < A (96) 

For  

A = d i a g (dn  . . . . .  dn,,), (95) 
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d ~ w r A - 1 P 1 A - t P 2 A - I w ,  

e ~ w T A - 1 p 2 A - i w ,  

f a= w r A - 1 P 2 A - 1 P 2 A - l w ,  

(101) 

(102) 

(103) 

where A is defined in (25) and where it is noted that s, b, c, d, e, f are scalars 
resulting from a vector inner product  operation. Define the symmetric, 
positive-definite, inner product  matrices correspondingly to be 

S ~ A - 1 P 1 A  -~, (104) 

B ~ A -~, (105) 

C a A - 1 P i A - 1 P ~ A - 1 ,  (106) 

D -~ A - 1 P 1 A - i p z A - 1 ,  (107) 

E a A-1P2A--1, (108) 

F ~ A - 1 P 2 A - i p 2 A - 1 .  (109) 

Notice that the terms that appear in the numerator  of (54) may be 
expressed as 

b = - e  + s, (110) 

s = w T A - 1 P 1 A - ~ A A - i  w = (1 - h )w r A - 1 P i A - 1 P 2 A  - lw  

+ A w r A - ~ P 1 A - 1 P 1 A - ~ w  = ( 1 - h ) d  +hc,  (111) 

g = 2d - 2c, (112) 

b = ( 1 - h ) e  +As = (1 - h ) e  + h ( 1 - A ) d  + it 2c, (113) 

and (110)can  be rewritten, using (111), as 

5 = - e  + (1 - it)d + hc. (114) 

Therefore,  the left-hand side of (55) may be reexpressed, using (111)-(114), 
as 

s/~ - b* = [ - (1  - it)de - Ace + (1 - h )2d2 + 2it (1 - h )dc + it 2c2] 

- [ 2 ( 1 -  a )de - 2 ( 1 -  it )ce + 2it ( 1 -  a )dZ + 2it ( -  l + 2it )dc - 2it 2c z] 

= - 3(1 - h)de + (2 - 3h)ce + (1 - h)(1 - 3h)d  2 + 2 ( 2 -  3it)dc + 3h 2c2. 

(115) 
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Using (111) and (113), the right-hand side of (55) may be expressed as 

(s +b)  2 = [(1 - A ) e  +(1 -A2)d  +A(1 +A)c] 2 = (1 - 1)2e2 + (1 - A 2)2d 2 

+ t2 (1  + 1)2c2 + 2(t  - A a)ce +2(1 - t ) ( 1  - A 2)de 

+ 21 (1 + 1)(1 -,~ 2)dc. (116) 

On substituting (115)-(116) into (55), it is seen that the verification of the 
following inequality is equivalent to establishing (55): 

(2 - 51 + 23. 3)ce + (1 - 1 )(212 _ 5)de + 21 (1 - 41 + 12 + 2t 3)dc 

+ t 2 ( 2 - 2 t  -12 )c2  +A (1 - t ) ( 3 . 2 + t  - 4)d2 < (1 -- )t )2e 2. (117) 

Substituting 

e = ( 1 - a  )f + ad (118) 

into (117) and moving all terms to the right-hand side yields 

0 < (1 -- ,~ )4/2 + (1 -- 1 )2(5 + 21 -- 4 1 2 ) f d  + 3. (1 - 1)(9 - 43. 2)d2 

- ( t  - I ) ( 2 - 5 1  + 2 1 3 ) c f - 1  (4 - 13t  + 212 +413)dc + 1 2 ( t 2 + 2 t  - 2 ) c  2, 

(119) 
which is a scalar relation. Stronger conditions on a matrix relation will now 
be established: these are sufficient conditions for the scalar relation (119) to 
hold, which is equivalent to (55) holding. 

Factoring A-1  into the form 

A -1(1 ) = [(1 - 1 )Pz + 1Pl1 -~ = P ~  [(1 - 1 )P-~ezP? ~ + 1i]-1P7~', 
(120) 

the following structure is exhibited by premultiplying and postmultiplying 
(106), (107), (109) by P[~ to yield: 

c'  a 

~ " ~ - - [ ( l - - t l t ) a - l + x I ] - l [ ( t - - l i t ) z - l + , ~ [ l - l [ ( 1 - - 1 ~ ) z - l + a ~ - I  , (121) 

D' a e iDe~ 

=[(1 -a )Z-~+M]- I [ (1 -A)Z-~+AI] - 'Z[ (1 - ,~ )Z- I+)d]  -~, (122) 

F' & P~FP~ 

= [(t --/It ) Z -  1 + a~r]- 12-1[(t  -/~ ) 2  -1 + 2d]-*Z-*[(1 - )t )Z  -1 +2,I] -~, 
(123) 
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where Z is defined in (83). Now premultiply and postmultiply (121)-(123) 
by 

[(1 - 1 ) Z  -1 + hi] 

to yield 

C" & [ ( 1 - A ) Z - I +  1/]  -1, (124) 

D" _a [ ( 1 - A ) Z - l + h I ] - I Z  -~, (125) 

F ° ~ Z - l [ ( 1  - I ) Z  -1 --[- lI]-lz-1, (126)  

Using Proposition 7.7, premultiply and postmultiply (124)-(126) by U 
in (81) to exhibit the following structure: 

C'" a__ u T c , , u = [ ( I _ I ) A - I + h I ] - I  =diag{d , / ( l+(&, -1)h)} ,  (127) 

D "a-- U T D " U = [ ( 1 - A ) A - I + M ] - ~ A - I = d i a g { 1 / ( I + ( d , , - 1 ) A ) } ,  (128) 

F" a__ UTF, U = A-1[(1 - 1)A -1 + M]- IA -1 = diag{1/d,, (1 + (d,, - 1)I )}. 
(129) 

By Propositions 7.7 and 7.9, the denominators of the elements of the above 
diagonal matrices are never zero. 

A sufficient condition for the scalar relation (119) to hold is for the 
following stronger matrix condition to hold: 

0 < ( 1  - -  I )4[F'"]2 + (1 - -  1 )2(5 + 21 -- 412)F"D'"+  1 (1 - • )(9 - 412)[D'"]2 

- ( 1  - I ) ( 2 - 5 1  + 213)C"F  ....  A ( 4 - 1 3 1  + 212 + 4 h 3 ) D ' C  '' 

+ h z(A 2 + 21 - 2)[C'"12. (130) 

Substituting the right-hand sides of (127)-(129) into (130) and using Pro- 
position 7.8 yields 

0 < (1 - )t)4{1/d~(1 + (di, - 1)1)2} + (1 - 1)2(5 + 21 - 412) 

x {1/d,~(1 + (,t,, - 1)I)~} 

+ 1 (1 - h )(9 - 412){1/(1 + (d,~ - 1)1 )2 _ (1 - h )(2 - 51 + 213) 

× (1 / (1 + ( 4  - 1)a )2} 

- h (4 - 13 h + 2 1 2  + 4 1 3  ) { d J  (1 + (d,, - 1)1  )2} 

+ t 2 ( 1 2 + 2 1  - 2){12/(1 + ( d . -  1)1)2}, i =  1 . . . .  , n. (131) 

Multiplying (131) by 

d,](1 + ( d . -  1)h)2 
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yields 

0 < (1 - A )4 + (1 - A)2(5 + 2A - 4A 2)d, + (1 - A)(-2 + 14A - 6A 3)d2 

- A ( 4 - 1 3 A  +2A2+4A3)d3+A2(Az+2A -2)d~,  i = 1 . . . . .  n, (132) 

Let hl be the following function of the real variables ,~ and d, :  

hi(A, d,)  & right-hand side of (132), i = 1 , . . . ,  n. (133) 

Then, (132) holds iff 

for 

h,(A, 4i)>0 (134) 

1 / 2 < A  < 1, (135) 

0 < d l i <  1, i = 1  . . . . .  n. (136) 

That (134) holds under the restrictions (135}-(136)will now be established. 
Notice that 

hi (A, 0) = (1 - A )4 > 0, (137) 

hi(X, 1)--4>0, (138) 
under condition ( 1 3 5 ) ,  i = 1 . . . . .  n .  Also notice that 

hi (1, d . )  = d3(dil + 3) > 0, (139) 

h,(1/2, d.) = (1/16)+ (5/4)4i + (17/8)d~ + (3/4)(1 - (1/4)d.)d3.> O, 
(140) 

under condition (136), i = 1 , . . . ,  n. Now that the boundaries have been 
shown to be safe, the interior of the region described by (135}-(136) is 
examined. 

Evaluating (133) at the midpoint of the rectangular region yields 

hi(3/4, 1 / 2 ) = 2 5 7 7 / 4 0 9 6 = 0 . 6 2 9 > 0 ,  i =  1 . . . . .  n. (141) 

So far, the function hi(A, d , )  has been shown to be positive on the bound- 
aries [except at A = 1, d;~ = 0, where it is zero, but these boundaries are 
excluded anyway by (135}-(136)] and at the midpoint of the region. Since 
h;(A, d;~) is continuous in A and die, it is possible to infer from the shape of the 
function he(A, dig) that it is positive throughout the region specified by 
(135}-(136). Even before proceeding with the next analytical step in the 
proof, the author checked to see that what he wished to prove was true [i.e., 
that hi(A, d,) is positive over the region in question] by evaluating hl (A, d )  on 
the computer and observing that it is indeed positive for a range of values of 
A and d spanning in incremental steps the region in question. Rearranging, 
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the function implicitly defined using (133) may be rewritten as 

h,(A, di,) = (1 + 5du-  2d~)+ ( -4  - 8d,, + 16d 2 -  4d3,)h 
2 3 4 + (6 - 3dii - 14dii  + 1 3 d i i -  2dii)A 2 

+ ( - 4 +  1 0 d , - 6 d  2 -  3 4 3 2di i+  2dli)A 

+ ( - 4 d ~ +  d~,),t', i =  1 . . . . .  n. (142) 

The above function of two variables may be shown to be positive throughout 
the region of interest by a complicated application of Sturm's theorem (Ref. 
26), which is normally for only one variable, by considering the other 
variable to be subsumed in the coefficients. The function (142) was directly 
shown to be positive by applying Bose's generalization of the Sturm test to a 
suitable test for the positivity of this function of two variables over the 
rectangular plate defined by (135)-(136). Therefore, the condition (134) 
holds. 

The fact that the scalar relation (134) is satisfied is equivalent to (135) 
being satisfied; by Proposition 7.8, this is equivalent to the matrix relation 
(130) being satisfied. Premultiplying and postmultiplying (130) by 

w rp~-~ [(1 - A ) Z  -1 + h i ]  -~ U (143) 

and its transpose (this amounts to unraveling what has just been proved and 
relating it to the original problem) and using Proposition 7.4 results in the 
scalar relation (119) being satisfied, which was already shown to be equival- 
ent to (117), and ultimately (55), being satisfied. The proof that (56) is 
satisfied follows by steps analogous to those used in proving (55). 

Proof of Theorem 5.2. By Theorem 5.1.3 of Ref. 19, for h* such that 
(44) holds, it follows that 

IA.+I-A*I = Ig(A.)- g(A*)l < ~lA. -A ' l ,  (144) 

where ~ is the contraction constant obeying the condition (50). Forming the 
ratio by dividing through by the positive quantity ]A. -A*] yields 

0 < IA.+l- A*I/IA. -A*I < ~IA.-A*I/IA.-A*I = ~ < 1. (145) 

Upon taking the lira sup (which exists because the sequence is bounded, Ref. 
19), the result is 

lim sup([An+I-A*i/Ian -A*[)< ~<~ 1 as n ~ oo. (146) 

The fact that the lim sup of this quantity is less than one is just what is needed 
to prove, by the definition, that the iteration algorithm (34) converges at 
least linearly to A* (Ref. 16). [] 
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