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On the other hand, introduction of vibrations can stabilize all modes 
simultaneously, as it was  in the case of  glow discharge. 

2) The main  results of t h i s  paper  were  presented at several seminars 
and in the course of all of them  the question was  asked: Is it possible to 
stabilize  the  system  using not regular but random “vibrations”? Since I 
strongly  suspect that the same  question  may  also appear now, I would 
Like to give  some comments. 

The answer to the stated question is not found, although it was 
discussed in many  publications  (see, for instance, [14], [l5D, and some 
particular result  concerning  first- and second-order  systems were ob- 
tained. In the light of the  present study, a  plausible conjecture can be 

Hypothesis: Let system i = A x  be observable in princjple. Then the 
condition tr A < 0 is  necessary and sufficient  for the existence of the 
stationary ergodic  matrix random process W(t)= Ilwij(t)llTi-l (with 
zero mean)  such that system i = ( A  + W(t ) )x  is  asymptotically stable 
with  a  probability of one. 

posed. 
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Statistical Analysis of a Two-Ellipsoid Overlap  Test 
for Real-Time  Failure  Detection 

THOMAS H. KERR, MEMBER, IEEE 

Abstnrcr--Real-time failure detection for systems having linear 

deuce region sheaths in [1]-[3]. One confidence region sheath is abont the 
expected nominal no-failure irajectoq; the other is about the I(alman 
estimate of the state(s) b e i i  monitored for failures. ’Ibe  implementation 
of a necess8~y and  snfficient  test of whether these two confdence regions 
of elliptical cross section are disjoint at any  time  instant is shown to result 

stochasticdynamicaltruthmodelshasbeeoposedinte~oftwoconfi- 
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in a scalar test statistic that is compared to a prespecified &&ion 
threshold at each check-time in making failure/no-failure decisions. 

’Zhe motivating thearetical basis of the test statistic is briefly disassed, 
the implementation equations and  theoretical milestones previously en- 
countered in guaranteeing algorithm convergence  and establishing ~ n v e r -  
gem rate are summarized, then the details are presented for: 

1) the derivation  and analytic evaluation of the expressions for the 
probabies  of false alarm and correct detection  that  serve as a basis for 
snbsepoent tradeoffs in setting the threshold  level;  and 

2) the derivation of an expresion for the decision threslmld  and a 
bxhdqne for its calculation from tbe covariance of the I(alman fiiter. 

’Ibe  probability of correct detection is shown to be a moaotooely 
increasi fmction of the underlying fmdamental signal-to-noise ratio 
response of the Halman fiiter estimate of the failure mode state to a 
particolar magnitude of failura Real data results are provided to illustrate 
application of this tecbniqoe for the twdimensional case to detect f a i l m  
in an ind navigation system having t w w f - f r e e d o m  gyros. This 
is the  application for which the techniqoe was developed. 

I. INTRODUCTION 

Whereas  the detection of an unknown signal at a known event  time or 
the detection of a known signal at an unknown time are standard 
problems  in  communication  theory as presented in [4]-[7], the problem 
in failure detection  is to detect a  signal of unknown magnitude which 
occurs at an unknown time. Failure detection in a dynamic stochastic 
system is a  more difficult problem that has only  relatively  recently 
received attention in the literature [3], [8, References 5, 9, 12, 15, 16, 22, 
24,26,28,29,31,33,521, as discussed in the failure detection survey, and 
in [9]-[20]. Each of the above cited  references  represents a different 
approach to failure  detection. 

Most of the abuw proposed fairure detection methodr utilize a statistical 
rest which  relies on the  whiteness proper@ of the Kalman Jlter innooations 
or resirfuals [24, pp. 597-6061. However,  a  reduced-state  filter is required 
in many  practical  implementations to avoid an otherwise unacceptable 
computational burden or to avoid poor sensitivity characteristics [29, p. 
2791. Filter residuals may be nonwhite either because of a failure 
occurring or because of the required use of a  reduced-order or “densen- 
sitized” filter for practical reasons [29, pp. 230-2321. Therefore, when 
using  a statistical test that only  checks  for  white  residuals  a  dilemma 
arises from  the  difficulty of distinguishing  between  the  nonwhite  residu- 
als due to a  nominal  unfailed  system that is implemented with a 
“practical” filter [21]-[23] and the nonwhite  residuals that arise from an 
actual occurrence of failure. 

The so-called  two-confidence  region failure detection approach has 
been developed [1]-[3] which  is  based on the multidimensional confi- 
dence  regions  associated  with the underlying  Gaussian random processes 
under both failure and no-failure. The Gaussian processes  persist  even if 
a suboptimal filter is used as long as the  filter is linear. This failure 
detection approach  also uses the estimates and covariances of error of a 
linear filter, buf does not depend on there  being  white innavltions in the 
nominal unfailed situation (further details on the use  of a suboptimal filter 
are found at the end of Section VII). 

The contribution of this paper is in the derivation of the general 
expressions for the  off-line statistical analysis of the two-confidence 
region  decision  test  in  terms of the probabilities of false alarm Pfa and 
correct  detection Pd. A technique  is  specified for numerical quantifica- 
tion of P and P,, for the scalar and two-dimensional cases and the 
technique IS used in an inedal navigation system  application. 

To date, a  detailed statistical analysis in support of a failure detection 
technique that has been  proposed for specific  navigation applications is 
available in  the open literature as [20]. However, an assumption in [20] 
for the  nominal  unfailed  operating condition, is that the gyro drifts of 
that application are neghgible as compared to gimbal  angle  resolver 
quantization error so the test statistic for calculating Pfa is  consequently 
taken to be a function of only  the  gimbal  angle quantization error. In the 
real-time  application of the two-confidence  region  failure detection ap- 
proach to an inertial  navigation  system (INS) presented in Section 111, 
the test statistic is specifically  a function of the gyro drift-rate states that 
are modeled  in  the  filter  because an objective is to detect  large anoma- 
lous excursions of the gyro drift-rate as a  failure. 

f? 
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11. MOTIVATION FOR USING Two C o m m a  REGIONS -ru 
DBTEcr FAILURES 

The two-confidence region approach to failure detection may be 
applied to systems that have either truth models or error models that 
may be  represented in the following linear state variable form: 

x(k+  l)=@(k+l,k)x(k)+ w(k)+l&, (1) 

z (k )  = H(k)x(k) + o(k) (2) 

where w(k) and o(k) are independent, zeremean, Gaussian white noises, 
having covariances of intensity Q(k) and R(k), respectively, and x(0) is a 
Gaussian random vector initial condition (independent of the noises) of 
mean x,, and variance Po. The failure modes that can be monitored using 
t h i s  two-confidence  region approach can be modeled as states of the 
system (1) (e.g., unwanted deleterious ramp and bias gyro drift-rates and 
accelerometer  biases are examples of soft or subtle failures that may be 
modeled as states in the linear error model of an INS [9D. A failure may 
be represented' [8, eq. 401 as the vector v (unknown magnitude and 
direction unknown but confined to the subspace spanned by the mod- 
eled failure mode  states) that occurs at the unknown failure time 8. The 
event of a failure occurring is  commonly represented by the Kronecker 
delta a,,, that is, unity for k = 8 and zero otherwise. 

Unlike the situations for which the usual likelihood ratio is a uni- 
formly most powerful (UMP) test in  that it is as good as or better than 
any other decision  test [S, p. 911, [6, p. 1021, the failure event to be 
detected  is  a random event that occurs at a random or unknown time. 
There is a little justification for using  a  likelihood ratio as a  decision 
function 127, p.  3151 since it is not UMP for this situation of unknown 
failure time and there  may be other decision functions that are as good 
or bettes [5, pp. 91-96]. confidence region tests serve as an alternative 
approach although no formal proof is yet available to demonstrate that 
they are necessarily better or worse than a  likelihood ratio approach. 
However, confidence region approaches have recently been proposed for 
other detection applications as well [ZS]. 

A Kalman filter,  modeled on the unfailed system  of (1) with the term 
vS,, absent, is implemented to track the system that is to be monitored 
for failures.  The Kalman filter  uses the measurements z(k) as inputs and 
the estimate $k) evolves from an iteration equation which has the 
following  form  (by  combining propagate and update stages [29D as 

i ( k + l ) = @ ( k + l , k ) i ( k ) + K ( k + l ) [ z ( k + l ) - H @ ( k + l , k ) i ( k ) ]  

(3) 
i ( 0 )  = x, 

with the covariance of error in estimation being provided from the 
following iteration equation: 

P,(k+1)=0(k+l,k)[l-K(k)H(k)]P,(k)@'(k+l,k)+Q(k+l) 

(4) 

PdO) =Po 

and with the Kalman gain, as used in (3), being  defined as 

X(k)=P,(k)HT(k)[H(k)Pl (k)HT(k)+R(k)] - ' .  (5) 

In order to use two confidence  regions for failure detection, the expected 
value of the unfailed  system and the associated variance available, 
without using the measurements, are needed and are provided, respec- 
tively, as solutions of the following  two iteration equations: 

E(k+ l )=E[x(k+ l)IH,]=O(k+ l ,k)f(k) (6) 

f(0) =x, 

P2(k+l)=O(k+1,k)P2(k)@*(k+1,k)+Q(k+1) (7) 

P2(0) = Po. 

'The two-confidence region approach can also be used to  detect  time-varying  failures. 
* m e  generaked likelihood ratio (GLR) has been described as an "optimum decision 

rule" for  failure detcccion [8, p. 6071, but no criterion w-as provided in support of this 
claim to indicate how it would be optimum. Indeed, four caveats have been cited [a, p. 

done with GLR. 
1061 for use of a Wrelihood ratio in conjunction with  a maximum likelihood estimate as 

The underlying alternative hypothesis for the failure mode states xi are 

(no-failure) Ho: ;,(k)--N(O,[P;;(k)],) (zero  mean) (8 )  
(failure) H I :  <,(k)--N(d(k),[P;;(k)],) (nonzero mean) (9) 

where d(k)  is defined as 

d(k)  ith component of the mean  deterministic  response of the 
filter to  an assumed specific failure mode 6 that is to be 
detected3 

(10) 

and 

Pi,;,( k )  is the ( i ,  i)th component [ P';(k)]ii of 

P;;(k)=P,(k)-P,(k)>O fork>O. (1 1) 

(Equation (1 1) follows from an application of the projection  theorem [30, 

Figure 1 presents the principle  underlying  the  so-called twoconfi- 
dence interval  hypothesis  test for distinguishing  between Ho and H I  at 
time= k. The two confidence intervals that are being  tested for overlap 
are depicted as lying along the horizontal axis. One confidence interval is 
centered about the expected  unfailed  value of zero and reflects the 
uncertainty of the system noise  by the conservative  extension to 
& n(k).  . The other confidence region is centered about the 
Kalman estimate ii(k), which  itself reflects  the current information 
obtained from  the  measurements4, within the uncertainty of the system 
and measurement  noise  conservatively  included in the  extension of 
? n(k) .  . As long as the two confidence intervals mrlap,  the 
true state xj(k) be in both confidence intends; howecer, when both 
c o n f i k e  intervals  are dsjoint, the true state CcRUtot be in both intends 
simultanemsly and a failure is  idectared. 
An obvious  test for the overlap of the two confidence intervals is to 

compare the endpoints of the two intervals. From Fig. 1, it is seen that 
there is no overlap  either if 

P. 2021.) 

n(k)- + n(k)- < ; ~ k )  (12) 

or if 

;,(k) < - n(k).  - n(k). . (13) 

This decision  rule  may be concisely  written  by  combining (12) and (13) 
as 
NO OVERLAP (DECLARE FALURE) WHEN: 

I s , ( k ) I > n ( k ) * ( m  +-) (144 

OVERLAP (NO-FAILURE) WHEN: 

I;i(k)I <n(k)* (  M + GCK ). ( 14b) 

An alternate test for the overlap of the two confidence intervals  results 
from considering the associated parabolass of  Fig. 1. First, notice that 
the image in the range of each of the four endpoints of the two 
confidence  intervals is [n(k)F. The decision  threshold at time= k is 

W k )  [n(Wl2 (15) 

but specification of the exact  value of n(k) is deferred to Section VI. 

%e time history of the  parameter d(k) may be evaluated through a simulation using 

only the F failure  mode activated 
the  truth model with the system and  measurement noise sample functions meed out and 

covariance Q(k) so that the filter  bandwidth rewins open to prevent  subsequent 
4Matching the filter to the "nefailure" model may  require 'Yuning" [29, p. 2791 of the 

measurements  from being ignored- 
5These  two parabolas correspond to the exponent of the Gaussian densities for x , ( k )  at 

time-k from  the  Gauss-Markov  system  of (1) and as the solution of the Stratonovich- 
Kurhner-Bucy equation [30, p. 178b respeciively. 
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J(kI.TESTSTATlSTlC 

ON THE  INTERSECTION 
IS MINIMUM  POINT 

OF BOTH PARCIBOLAS 
/ 

I HEIGHT 

Fig. 1. Confidence intervals  and  associated  parabolas at time=& for Iwo-mnfidence 
interval  failure  detection. 

From Fig. 1, notice that x:(k) (i.e., the point in the domain that 
corresponds to the minimum point on the intersection of both parabolas) 
serves  a  special function. If the  two intervals overlap,  they both contain 
x,Z(k). If the two intervals are dqoint, neither contains x:(k). Conse- 
quently, the presence of the  special point x,?(k) in  either of the two 
confidence intemls is necessav and sufficient for owriap of the interwls. 
This special  point x,f(k) may be  conveniently  found as the solution of 
the constrained nonlinear optimization  problem  having the following 
Lagrangian: 

where X is a s c a l a r  Lagrange  multiplier and the term in braces  represents 
the constraint that the minimum be on the intersection of the two 
parabolas. The optimization  problem  may be conveniently  solved ana- 
lytically for t h i s  case of one-dimensional  confidence  intervals by pro- 
gressing as described  below.  Solve  for the critical points of L(xi ,X)  by the 

1) Differentiating (16) with  respect to xi, setting the result to zero, and 
following. 

solving for x, as shown in (17) and (IS), respectively: 

~ ~ ~ ( ~ - ~ ) [ ~ z ~ ~ ~ / [ ( ~ - ~ ) [ ~ z I ~ + ~ [ ~ ~ I ~ I ~  (18) 

2) Differentiating (16) with  respect to X, setting the  result to zero, and 
substituting for x, from  (18)  yields 

[ ~ - ~ ~ ~ ~ , l , f / ~ ~ ~ z I i i ~ l ~ z - ~ + ~ = ~  (19) 

a quadratic equation that X+ must satisfy? 
3) Upon solving the quadratic equation of  (19), choosing the correct 

sign to yield  the minimum rather than the maximum, the correct 
Lagrange  multiplier is 

h * = m L  /(a +m). (20) 

4) Substituting the scalar X+ from (20) back into (18) results in an 
expression  for  the special point as 

5) Checking that x: corresponds to the intersection of the two 
parabolas of  Fig.  1, substitution of (21) into both parabola equations 
results in the anticipated equality as 

6ln the  multidimensional case, the I s  OCCUT in an inner product in (19) and do not 
divide out; the  solution for X in the  multidimensional case requires an iterative  equation. 
The derivation of (17)-(23) is supplied to enable e conIrast between  the  simple scalar 
results presented here and  the slightly more complex dts of 13) for the  general 
multidimensional ULSL 

L ( X i * , X * )  =y(x,*(k)) =[l;i(k)12/( + ).' (22) 

I(k) L(X,+(k) ,A*(k) )~[ i i (k)I2 / (  + >' 
6) Defining  the  test statistic at time= k as 

(23) 

allows the alternate overlap/no-overlap decision  test of Fig.  1 to be 
performed in the range  using Z(k), rather than in the domain using x,*(k). 
The equivalent' alternative decision rule in the range compares the test 
statistic i(k) of (23) to the  decision threshold K,(k) of (15) as 
NO OVERLAP (DECLARE FAILURE) WHEN: 

4 k )  >Kl(k) (24a) 

OVERLAP (NO-FAILURE) WHEN: 

i(k)  <Kl(k). (24b) 

While the obvious  decision  rule of (14)  was easy to obtain as a  test for 
the overlap/nonoverlap of confidence  intervals it is the alternate for- 
mulotion of the decision  rule m (24) that generalizes to two or more 
dimensions. (The  use of one two-dimensional  two-confidence  region  test 
is  more appropriate than the use of two  similar scalar tests in seeking to 
detect drift-rate failures in two-degree-of-freedom gyros that utilize  two 
input axes. With  a  two-dimensional test, tilt or skewness information, 
intrinsically  contained in the  cross correlations, is not neglected as it 
would  be if two scalar tests were  used to monitor  these axes. An 
additional advantage of using  a  two-dimensional  confidence  region  test 
over  using two scalar confidence interval tests for this application is the 
larger  underlying  signal-to-noise ratio (SNR) response to a  failure, 
available for subsequent  processing at the input of the failure detection 
algorithm, as demonstrated in Appendix A) 

A summarizing  overview is provided in Fig.  2 of  how this failure 
detection approach generalizes to the multidimensional case (treated in 
[31). The top diagram  depicts the two  confidence  regions of elliptical 
cross section which indicate a  failure at the check  times at which  they 
fail to overlap. At each check  time ti, the elliptical  cross  sections of the 
top diagram are fixed  levels of two paraboloids, shown in the middle 
diagram. This is where  the  overlap  test is formulated as the solution of a 
minimization  problem.  A  necessary and sufficient  test  for disjoint confi- 
dence region  ellipses  is that ( t i ) ,  the minimum point of the  intersection 
of the two paraboloids,  be  above K,(t i )  (which can be determined by 
monitoring  only  the scalar test statistic history and decision  threshold in 
the bottom diagram). A more  detailed explanation of Fig. 2 can be 
found in [3, Section 61 where  the six steps  for  mechanization are 
presented in a table to demonstrate how  simple the CR2 test is to 
implement.  Analytical  expressions are derived  in  Sections VI and VI1 
which are used to calculate the time-varying  decision  threshold K, and 
for evaluating  the detection and false alarm probabilities  associated with 
this decision  test. 

111. SUMMARY OF PREVIOUS SUPPORTING T H E O ~ I C A L  
DEJUVATIONS 

As established in [3], the  decision rule of (24) can be applied directly 
to the failure/no-failure decision test for two multidimensional  confi- 
dence regions by  using the following  test  statistic: 

l (X+,k)=X'( l -h*)ir(k)[( l -h+)P,(k)+X*Pl(k)]- '~(k)  (25) 

where X* is  the  solution of the  following scalar iteration equation: 

~ + , = l / [ l + ( ~ ~ ( k ) A - ~ ( ~ ) ~ , A - ~ ( ~ ) i ( k ) / ~ * ( k ) A - l ( ~ ) ~ ( k ) ) ]  

(26) 

A(&,) 2 [ (1-&)P2(k)+hIpl (k) l  (27) 

where 

with X, chosen (as explained in [3, Section 5D so that 

'That  the decision rule of (24) is identical to that of (14) may be verified by using the 
definition of I(&) and K , ( k )  from (23) and (13, multiplying  through by the  covariances 
and taking square roots throughout. 
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tI 

AT t = t l  AT t = t 2  AT t - t g  

, 
/ 

THRESHOLD 

- - - - - - -  
@-- 
K I ( t I )  

1 EXCEEDING THRESHOLD KI 
INDICATES M A T  a, CONFIDENCE 
REGIONS NO LONGER OVERLAP 

/ f  f ( 121 T IME AT WHICH FAILURE 
IS DETECTED 

L(tl I 

t I  '2 '3 
> T I M E  

(C) 

Fig. 2. Overview shown how comparison of scalar test  statistic to decision threshold 
related to test for confidence region overlap through artifice of optimization problem. 
(a) Two confidence  regions. (b) A new optimization at each  time. (c) CRZ failure 
detection. 

3 <&< 1. 
1 tions (1) and (2) which is "stabilizable and detectable,"*  the iteratioe 

atgorithm wilt always converge. By using another property of contraction 
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24 1 

KI SET FOR 
THRESHOLD 

Pfa =0.001 

t 
TIME(hrs1 

f 
FAILURE MONITORING COMMENCES FAILURE MONITORING  COMMENCES 

(a) (b) 

Fig. 3. INS (CR2) failure detection performance using real data. (a) No faihue. (b) 
Large  magnitude  ramp drift rate  failure in the equational  input axis of a two degree of 
freedom gyro in an INS ( S N R  (24 h)=538). 

needed to converge.  See [3] for  more elaboration on aspects pertaining to 
rate of convergence. 

The failure  detection performance on real INS data for a  naval 
application is presented in Fig. 3. Details of the 9-state  reduced-order 
filter and 94-state truth model (used for superimposing failure  responses) 
are omitted to avoid  conflicts  with  classified national security informa- 
tion; however,  a  detailed structural block  diagram is in [45].  When 
external  position  fixes are available to the INS, failures in the  individual 
INS are more easily detected by a comparison to this more accurate 
external  fix as a standard. The proposed use  of the CR2 algorithm is to 
detect failures (of a certain critical magnitude corresponding to a certain 
critical  signal-to-noise ratio associated  with the resulting filter failure 
signal  response to excessive gyro drift or accelerometer  pickoff  errors) 
between  external  fixes. The plot of Fig. 3(a) depicts the CR2 test statistic 
and the prespecified  decision  threshold K, under a no-failure condition 
using real data. After the initial 24 hlO, the test statistic is well  below the 
decision  threshold, confirming that no failure is present. The plot of Fig. 
3(b) represents  the CR2 test statistic and decision  threshold  for  a 
simulated"  large  magnitude ramp drift-rate failure in one of the INS 
gyros. Following the initial 24 h waiting period,  the CR2 test  statistic 
quickly  exceeds  the  threshold,  correctly indicating a failure. 

IV. AN I"EDIATE QUANTITY NEEDED TO SPECIFY THE 
DECISION THRE~HoLD 

A parameter i is used in calculating  the  time-varying  threshold for a 
spenfied probability of false  alarm Pfa(k), and in calculating the 
associated  probability of correct detection P,(k). Using (11) and [33, 
Properties (62)  and  (628)],  which relate an inner product to the trace of 
a  matrix, the expected  value of (25)  is 

E[l(h,k) l=h(l-h)tr[S(~,k) l  (28) 

where S@,k) is just used for shortened notational convenience and is 
defined in (B.l-2) of Appendix B. By paralleling the steps of [3, pp. 
518-5191 that were used to obtain (26), but applying them to (28) 
instead,  yields  the  value of h that minimizes (28) as x. As obtained from 
the above step, the parameter is the solution of the following iteration 
equationI2: 

'%e error dynamics of a gyro reflect  the 24 h earth rotation  rate: wnwquently, 
9CR2 is an acronym for two (2) confidence regions. 

approximately one full 24 h period is required for the fdter to lock onto the cycle of the 
underlying sinusoid. Initially,  phase aligned simuhrions have no initial transient 

form of (1) and (2) and  superimposed in the real data  using linearity. Cost  of  inducing 
"Failure  measurements  were  simulated  from  the official full-state error model of the 

actual  failure in an INS would be prohibitive. 
12Notice  that this is a scalar iteration equation, just as (26) is but that  here  internal 

matrix quantities are uxd in a trace. 

with  the initial value  chosen (as explained in [3, Section 5D such that 

7 <Ao< 1 
1 -  

where 

T h e  major steps in the proof of convergence of t h i s  scalar iteration 
equation parallel the almost  identical steps that are used in the conver- 
gence  proof that appears in [3, Theorem 5.21 for the other scalar iteration 
equation (26).  Both equations have internal matrix structure of the same 
form  [compare (26) to (29a)], but (26)  becomes a  scalar equation through 
the presence of inner products while  (29)  becomes  a scalar equation 
through  the  presence of the trace 0perati0n.l~ The relevant steps of the 
proof of [3, Theorem 5.21  involve considering an associated  underlying 
matrix equation of special structure from which  convergence of the 
scalar equation (26) is inferred upon taking inner products. The same 
device of working  with  the  associated matrix equation having the same 
qecial structure is sufficient to guarantee convergence of (29)  by  using 
an auxiliary  result that relates the previous  proof for inner products to a 
new  proof for this case where  the trace is used. The  final step of the new 
convergence proof in converting the underlying  matrix equation into a 
scalar equation is fulfilled by also taking speafic inner products, and 
using the result of [33, eq. (6.8)] that now  relates  the  required  trace 
directly to these  specific inner products as 

i -  1 

where e, is a  column  vector consisting of all zeros except for a 1 in the 
ith position or row. As with  (26), the conclusion is that (29) is a 
contraction. Expressions for the probabilities of false alarm and correct 
detection in terms of the intermediate quantity Ti will now be obtained. 

"Stability in the sense of  numerical  analysts [37& which requires establishing continuity 
with respect to perturbations in the  parameter matrices, is assured for both (26) and (29) 
since these  iteration  equations (used as successive approht ions)  have been demon- 
strated to be contraction mappings. Successive  approximations  with contraction map 
pings are guaranteed to he  stable [37, p. 1741. 
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= ( e x p { - K l C / 2 } / 2 r C G )  2 [(-K1b/2)'/i!] 
a 

i - 0  

. (sins)'/[l+(b/C)sine]ciB I_: 
=(exp{ -K1C/2}/rC=) [(K,b)'/i!] 

W 

i=O 
a 

.I_ z ' / [ ( z2+2(b/C)r+1)( l+e2) ' ]dr  (Mh) 

= ( e x p { - K , C / 2 } / e o ) [ e o + e , K , + e 2 K ~ + e , K ~ + e 4 K ~ + e , K ~ + . . . ] .  

(4) 

The  final  result  being the algebraic series of (ai which is devoid of all 
integral  expressions and is just an algebraic equation to be solved for K , .  
From manipulations of the matrix S(x, k), defined in (B.1-2), the power 
series coefficients in (4Oi), obtained without  having to solve for any 
eigenwrues or eigenoectors, are1' 

eo L tr[ S(X,k)]/2ddet[ S(x ,k ) ]  >O (43) 

e ,  = l [ e o -  11 A C  
(444 

When j iP , (k) ,  and P2(k) are known, then S&k) of (B.l-2) is spedied; 
therefore,  by (41)-(44), all the  coefficients can be calculated. For a given 
desired PI.(k), all that remains to be done is to solve the nonlinear 
equation, (4Oi), for the unknown K,(k). This is achieved  by  using  a 
successive  approximations approach [3T] in conjunction with the follow- 
ing  device. 

When  rearranged, (4Oi) becomes the following nonlinear algebraic 
equation: 

eo.Pfa(k).exp[K,-C/2]=eo+e,Kl+e2K~+e3K~+e4K~+e,K~ (45) 

that must be solved for K,(k) at each  check time k.  Let 

y,(K,) L eo+e,Kl+e2K:+e3K:+e4Kf+e5Kf (46) 

Y2(K,)  eo-pfu(k)-exp[KlC/21. (47) 

If y1 versus Kl is plotted using (46) and if y2 versus K ,  is plotted using 
(43, as shown in Fig. 4, then the positive K ,  value  where the two graphs 
intersect is the  value K, that is a solution of (45) and, equivalently of 
(40). All the coefficients of the polynomial of (46) are positive (F'roposi- 
tion 1 of Appendix B); hence the quintic y, is  monotone  increasing for 
positive K,. The  vertical asymptote of the quintic y , is eo; since 

O<Pfa(k)< 1 (48) 

the  increasing  exponential y2 has a vertical  asymptote, eo.PfU(k), which is 

b2, and C. 
"Notice that the coefficients el. e,, e> e, and es are completely  defined in terms of e, 

I EXPONENTIAL,vl y I ,  A  QUINTIC  POLYNOMAL 
HAVING ALL COEFFICIENTS 
POSITIVE 

Fig. 4. Succesive approximations solution of K,. 

below the vertical  asymptote of the quintic y,. Even though y2 starts 
below y,, the fact that an increasing exponential will always  asymptoti- 
cally dominate a  polynomial guarantees that these two curves will indeed 
intersect at one point and, therefore, that a  unique  positive  solution E, 
will always  exist. This point E, may be found by the  successive a p  
proximations  procedure as illustrated in Fig. 4. For this application to the 
exponential  that b dominated near zero by the  quintic pobnomial with all 
coefficients positiw, rhe successiw approximations procedure always con- 
wrges so there are no numerical  difficulties  when  computer  evaluation is 
used. 

Time-varying  decision  thresholds,  precalculated according to the 
above procedure and used in conjunction with  the  two-dimensional CR2 
test statistic to detect  failures in the real data of  Fig. 3, are shown in Fig. 
5 for  a  range of probability of false  alarm.  These  thresholds are exact 
and are below  the  upper bounds obtained from the asymptotic, as time 
increases, 2 distriiution of the  [-statistic [See (40a)l. 

WI. CALCULATING THE INSTANTANEOUS PROBAEILlTY OF 

CORRECT DETECTION THAT CORRESPONDS TO THE THRESHOLD 
SETIWG 

Given that x Pl(k),  and P2(k) are known (from  (29), (4). and 0, 
respectively) and that the threshold R,(k) corresponding to a given 
specified  Pfa(k)  has been previously determined (as discussed in Section 
VI), it  is  desired that PJk) of (34) be evaluated so that the likelihood of 
detecting  a  specific failure mode e, when it occurs, is quantified. 

Pd(k) for the Scalar Case 

Again the Lagrange  multiplier x, necessary for evaluating (M), is given 
by (36) for the scalar case. Using (36) for x the  expression of (34) 
reduces to 

P d ( k ) = l - : e r f [ ( S N P ( k ) / f i ) + m  

1 

(49) 
where, for the scalar case, the  expression for the signal-to-noise ratio Of 

(35) simplifies as 

All the terms in the argument of the error fimctions of (49) are known so 
that it may  be  numerically  evaluated. 

Pd(k) for the lbo-Dimensional Vector Case 

Equation (34) may be rewritten for two dimensions via a coordinate 
(i.e., similarity) transformation as 
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t 
L 

10 - ,/- 
/ 0.01 - I 

I 

Fig, 5. Timevarying threshold used for two-dimensional CR2. 

pd(k)=l-flGNu(o,l)h (5  1) 

where G is the following region: 

( ~ + [ P z - P , ] - ’ / ~ d ( k ) )  T--, A (A)(u+[P,-P,]-”’d(k))< - - W )  
A(1-A) 

(52) 

where the integral  represents the volume under  the circular  Gaussian 
surface  enclosed by the  ellipse as illustrated in Fig.  6. 

Using the definition of the  multidimensional  signal-to-noise ratio in 
(35), the  integral of  (51), represented in Fig.  6,  may be closely  approxi- 
mated  by  the  integral  represented in Fig. 7 by applying the cyclic 
property of the trace operation [33, eq. (6.14)] on the  definition of  (31) to 
yield 

t r [ P ( X ) ]  =tr[ S(X,k)].  (53) 

Consequently,  the  intermediate quantity RZ may be obtained from (52) 
as 

R Z ~  ~ , ( k ) / [ ~ ( l - ~ ) t r [ ~ ( l ; , k ) l ] .  (54) 

This quantity R is an input entry along with 
:I  

D A SNR(k) 

which are both used in the tables of  [40] to enable  the readout of the 
numerical  quantification of “offset  circle  probabilities for  the circular 
normal  distribution” of  Fig. 7 as an easily  accessible  approximation to 
the  evaluation of  (51). The exact  evaluation of  (51) is in [41].  Now that 
the  expressions  provided  by this paper  are available for Pfa and pd for a 
particular failure v, the Bayes, Neyman-Pearson, or miAimax criteria [6] 
can be used in  a  tradeoff to specify the setting of the  decision  threshold 
level scaling parameter b that  appears  in (39b)  (for  the scalar case.) or to 
specify  setting of the  explicit  threshold  scaling  parameter Pfa that a p  
pears in (45) and (47). 

While all of the  results of the CR2 statistical  analysis and threshold 
setting of Sections VI and VI1 have been obtained under the assumption 
of an optimal  Kalman  filter  in (3)-(5) of the same  dimension as the 
system  model of (l), (2), the CR2 results  pertaining to test  statistic 
calculation, to threshold  setting, and  to statistical  analysis of the  deci- 

Fig. 6. Shaded area encloses volume represented by integral in (5 I). 

Fig. 7. Circle approximation used in Pdk) calculation. 

sions remain  valid  when  a  reduced-order  filter  formulation, such as [251 
or [26] is used. The reduced-order filter approaches of [25l and [26] still 
yield  the correct c m ’ a n c e  and cross correlations associated with  the 
reduced-order filter. The same Gaussian  random processes are inputs to 
the reduced-order filter; therefore,  the outputs are also Gaussian 
processes  since  the  reduced-order  filter,  although not optimal, is still a 
linear  system and consequently  supplies all the information needed- 
namely,  the means and variances-for  a  fully  rigorous interpretation of 
the  resulting two confidence  regions. 
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MII. SUMMARY 

The two  confidence region (CR2) approach to failure detection is 
revealed in Section I1 to be a  generalization to two or more dimensions 
of a  simpler  noniterative  two-wnfidence  interval failure detection a p  
proach. The advantage of generalization is illustrated in the application 
of the two-dimensional CR2 in detecting subtle out of tolerance drift- 
rate "failures,"  between external position  resets, in a  two-degree-of-free- 
dom gyro within an inertial navigation  system. It is shown in Appendix 
A that the  two-dimensional CR2 failure detection approach does not 
discard the information on the skewness or tilt of the underlying 
ellipsoids contained in the cross correlations and actually utilizes a 
greater (or equal in a worse case situation) input signal-to-noise ratio 
than would  be utilized by  two uncorrelated simultaneous one-dimen- 
sional detectors.  (The  same  conclusion  trivially holds for an n-dimen- 
sional CR2 versus n uncorrelated onedimensional detectors.) 

The equations and evaluation procedure for an off-line statistical 
analysis of the decision  test, as derived  here, in conjunction with the 
rigorous  proof of convergence and convergence rate in [3] (summarized 
in Section 110, and the refinement for evaluating the probability of false 
alarm over a time interval [43] should provide  a  complete view  of the 
CR2 approach to failure detection. The performance of the CR2 ap- 
proach in detecting gyro drift-rate failures in  an inertial navigation 
system is demonstrated in Section III using real data A conventional 
discretestate Markov reliability/availabity analysis of the effect of 
failure detection on the overall performance of a  complex  navigation 
system, using  the standard reliability  techniques of  [44], is provided in 
[451. 

APPENDIX A 
AN ADVMAGE OF ONE TWO-DIMENSIONAL cR2 FAILURE 

DETECTOR OVER Two ONEDIMENSIONAL DETECTORS 

The definition of signal-to-noise ratio (SNR) of (35) may be expanded 
-\  for the  two-dimensional case as 

and the two associated onedimensional scalar signal-to-noise ratios for 
each subcomponent are 

SNR,. ld21/u2 (A.3) 

77zeorem 1: For a strict inequalitjr on the correlation coefficient of 

- 1 < p <  1 ('4.4) 

and with 
4z(pq/ui)4.  for izj, ('4.5) 

then 
SNR, > SNR, (A.6) 

and 

SNR2 > SNR,.. 

Pro03 The following is nonnegative because it is a squared quan- 
tity, and nonzero  because of the condition of (A.5): 

Expanding (A.8) yields 

o<p2<1 ('4-12) 

and, by subtraction, the following  result is obtained: 

1 > 1 -p2>0. (A. 13) 

Dividing  through ( A l l )  by the strictly positive quantity of (A.13), yields 

which, upon taking square roots of both sides,  yields the conclusions of 
(A.6) and (A.7) for i = 1 and i = 2, respectively. 

Comment I: Theorem I states that because of the cross correlation 
information the SNR provided as an input to the two-dimensional 
failure detection implementation is greater than that provided to both 
subcomponent scalar failure detection implementations.  Numerical 
quantification indicates that the advantage is sometimes greater than the 
square-root of the s u m  of the squares of both the subcomponent SNR's. 

Comment 2: The  conclusion of Theorem  1 as (Ah), (k7) may be 
jointly summarized as SNR2 > max(SNR,,  SNR;). 

Comment 3: Upon removing the restriction of (A.3, the conclusion of 
Theorem 1 as (A.6), (A.7) must be  weakened to allow possible equality. 

APPENDJX B 
D m m  OF THE THRESHOLD CALCULATION FOR THE VECTOR CASE 

(DIMENSION: 2) 

The underlying mathematical analysis sketched in Section VI to em- 
phasize the end objective of solving (40) for K,(k) is now presented in 
logical order with the steps being formulated as propositions,  lemmas,'* 
a  corollary, and a  theorem.  Appendix B.1 consists of the proper state- 
ments of what is to be  proved.  Appendix B.2 consists of sketches of the 
proofs. 

B.1 Statements to be P r d  

Lemma I: The characteristic function for Z&k) of (25) under Ho for 
the general muitiahem'onai case is 

+ , ( ~ , x , k )  kE[e"(k)'IHo] 

I HO] (B.1-la) 

=lP2(k)-P1(k)l-*/Z 

(B.1-lb) 

(B.1-lc) 

(B.1-Id) 

"Only Lemma 1 holds without modification for the general multidimensional case. 
E ~ W o n s  of Corollary 1, Th- 2, and Propositioar 1 and 2 to the general n 
dimensional case is still open since the intended application -rid in sstion III 

only scalar and two-dimensional results. However, calculation of the test statistic (a O b  calculation of the  auxiliary quantity X [via G9)L and thc convergena 
pararitcc of 131 are valid for arbitrary dimensions. which, upon rearranging,  becomes 
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(B.1-lh) 

=l[Z-J?vx(l-x)[  V-'(k)M(k)U(k)-a]-'] I (B.1-li) 
- 1  ' / 2  

(B.1-lj) 

(B.1-lk) 

P 
= i-  11 1 ( 1 - ( j 2 v x ( 1 - x ) / ( d i i ( k ) - i ) ) ) - ' ~ 2  (B.1-lm) 

where, in the above, 

S(x,k) [ P 2 ( k ) - P , ( k ) ] [ ( l - ~ ) P 2 ( k ) + ~ l ( k ) ] - '  (B.l-2) 

and 

[ P Z W  - P,(k)l= m k )  (B.l-3) 

where  (B.l-3) results from a  Choleski factorization [37l and 

M(k)=  v-=(k)P2(k)Y-'(k)  (B.1-4) 

where U(k) is the normalized eigenvector  matrix" associated with the 
symmetric  matrix M(k), therefore using  V(k) in a similarity transforma- 
tion diagonalizes M( k) as 

v - ' ( k ) M ( k ) U ( k ) = A ( k ) = d i a g ( d l l ( k ) , ~ ( k ) , . . .  ,&,(k)) 

(B.l-5) 

with 

P 
IS-'(X,k)l=IM-Tjl=IA-iirl= (4 i (k) -x)  (B.l-6) 

i -  1 

P tr[ S - ' ( x , k ) ] = t r [ M - ~ j l = t r [ A - T j ] =  2 (d,(k)-X). (B.l-7) 
i= 1 

Equation (B.1-lm) is recognized to be the product of the characteristic 
functions of weighted  chi-square random variables [38]  which  represents 
the sum of weighted independent chi-squared random variables [39, eq. 
7-7 and has the following probability density function: 

where 

and * represents  convolution. 
Corollary I :  For the two-dimensional case, (B.1-8) becomes 

arc used here for a theoretical  examination of the  problem structure. 
'%igcnvalUts,  eigenvwtors, and matrix factorizations arc not a c d y  calculatcd; they 

(B.l-lob) 

thus establishing (4Oa), (Mb), and (a), where 

b ( % - a W % a l .  (B.1-11) 

Theorem 2: For the two-dimensional case, use of the results of (B.1- 
10) allows (33) to be evaluated as shown in each of the intermediate 
steps of (a), where 

Proposition I :  By the inequality of (B.l-9) and the definitions of b 
and C in (B.1-11) and (B.1-12), it follows that 

O<(b/C)2< 1 (B.1-13) 

and therefore that 

O<ei i =O, . . * ,5 .  (B.1-14) 

Rqosition 2: The following identities are used to evaluate the coef- 
ficients of (41)-(44)  while avoiding any explicit  eigenvalue  evaluation: 

~,a,=X~(l-Ti)~/det[ S-'(X,k)] (B.1-15) 

~ ~ + + = ~ ( l - i ) t r [ S - ' ( ~ , k ) ] / d e t [ S - ~ ( ~ , k ) ]  (B.1-16) 

~ = ( % + a ~ ) / l a ~ + = t r [  ~-'(X,k)]/(241-X)) (B.1-17) 

e o = l / V a  =(u2+a1)/2= 
I 

(B.1-18) 

C=tr[ S-'(x,k)]/ddet[  S-'(i,k)] (B.1-19) 

a~+a~=iiz(1-~)2tr[S-1(ii,k).S-1(~,k)]/det[S-1(~,k)]Z (B.l-20) 

b2=(a~-a,)2/(2ala~2=(u~+a~-2ala,)/(2ulu~2 (B.l-21a) 

=(tr[ s-'(r;,k).S-1(X,k)]-2det[S-'(~,k)])/(4X2(1-ji)2) 

(B.l-21b) 

where S(x, k) is defined in (B.1-2). 

B.2. Prmfs 

Proqf o f k m  I :  Equation (B.1-la)  results  from the definition of the 
characteristic function. Equation (B.1-lb) results when the definition of 
expectation is used in (B.1-la), i.e., 

E[ ~ ~ ( 1 - 9 ; ' ( t ~ - ' ( & ~ ( & ) ~  
IHO] 

A I . . . ( ~ ~ ~ [ ~ ~ ( I - ~ ) ~ T ~ - ~ ~ - ~ I T [ P ~ - P , I - ~ ~  1 
.(2sr)-p/21P2-~11-1/2~ (B.2-la) 

= ~ P ~ - ~ l ~ - 1 ~ 2 ~ Q ( ~ , ~ ) ~ - ' ~ 2 ~ ~ ~ ~ ~ ( 2 ~ ) - p ~ 2 ~ Q ( ~ , ~ ) ~ ' ~ 2  

-exp( - 3 i T Q ( x , v ) i ]  1 h (3.2-1b) 

=IP2-P11-1/21Q(i;,.)l-'/2 (B.2-lc) 

where 

Q(~,v)=[P2-Pl1-'- j2j i ( l -x))A-'( j i )p . .  (B.2-2) 
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Equation (B.1-IC)  follows from (B.1-lb) since the determinant of the 
product of two matrices is the product of their determinants. Equation 
(B.1-1d)-(B.1-lg) are self-explanatory and reflect different groupings or 
observations about the internal structure. Equations (B.1-lh),  (B.1-li), 
and (B.1-lj)  follow since the determinant is invariant under a similarity 
transformation. Equations (B.1-lk), (B.l-lt),  and (B.1-lm)  result  from 
the characteristically  convenient manipulations that can be performed 
with  diagonal  matrices. 
Proof  of Coroiiury I :  Writing the convolution of (B.1-8) explicitly for 

the two-dimensional case yields 

where the summarizing notation of (B.1-11) for b has been used.  Com- 
pleting the square of the denominator term  under the radical in the 
integrand of (B.2-3) and using the following  trigonometric substitution 
134  x-(~/2)=(~sin8)/2 yields 

(B.2-4) 

For the i n t e w d  of (B.2-4), 
+ U  - 2$ ; J-, - - a / 2  

(73.2-5) 

therefore,  using 13.2-5) in (B.2-4) yields  (B.1-lob). 
Proof  of Theorem 2.- Since the integrand of (B.l-lob) is positive and 

(B.l-loa) is a pdf and, as such, has a finite integral  when integrated over 
Kl to m, use of Fubini's theorem  [34]  allows the rigorous interchange of 
the order of integration,  resulting in (e). Equation (4Oe) may be 
rewritten, using the series expansion of the exponential, as (4Of). Since 
the resulting series of continuous functions in (40 is a m ~ o m &  
conwrgent  series by the Weierstrass M-test [35L the order of integration 
and summation can be rigorously (i.e., validly)  interchanged in (40 to 
result in (4Og). Using the half-angie substitution 1361  of z=tan (8/2) in 
(4Og) yields (4Oh). 

The  real  integrals of  (4Oh)  may be evaluated using  Cauchy's  residue 
theorem [MI in conjunction with  some  limiting  arguments about how the 
complex  extension of the real  integrals of  (4Oh)  have zero contribution 
over the infinite  semicircle in the upper half of the  complex plane. The 
general integal of (ah)  has poles  where 

.\ 

z2+2(b /C)r+1=0  (B.2-6) 

and where 

22+  1 =o. 03.2-7) 

Since (B.2-6) is a quadratic equation, the  poles  enclosed by the closed 
contour in the  upper  half-plane are 

I = - + j d a  and z = +jl (of multiciplicity i). C 
(B.2-8) 

Evaluating the  first six terms in the series of  (4Oh)  using  Cauchy's residue 
theorem (in the manner described  above),  results  in (443) [with 
coefficients  defined as in Eqs.  (41)-(44)]. 
Proof  of  Proposition I :  Using the definition of (B.l-9), (B.1-ll), and 

(B.1-12) 

=((1*-u1)2/(a2+u1)2<1. (B.2-9) 

Now 0.2-9) implies that 

1 > 1 - ( b / q 2 > 0  (B.2-10) 

and, consequently, that 

1/- >1; (B.2-11) 

eo= 1 / V x  > 1 >O (B.2-12) 

hence, 

and 
el=(C/2)[eo-l]>0 (B.2-13) 

since (C/2) is positive  by  (B.1-12) and (B.l-17). Also 

e2=(C/2)el>0. (B.2-2-14) 

Since e, through e, may be represented in an expanded  form, e.g., - 

e l=f (c /2) [  { ( c / ~ ) ~ / V G G Z  1 -t~/2)~-(b2/23)], 

(B.2-15) 

these  remaining  coefficients  may  be  similarly demonstrated to be posi- 
tive. 
Proof  of  Propm'tion 2: Results  follow  using  simple algebra and the 

definition of q, S&k), the trace and determinant as the sum and 
product of eigenvalues,  respectively. B .  

LJ 
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Decomposition Techniques for Largescale Systems 
with Nonadditive Interactions: Stability and 

Stabilizability 

M. VIDYASAGAR, SENIOR “BW, IEEE 

I. INTRODUCTION 

The results  presented in this paper can essentially be divided into two 
parts. In the first  part, we are interested in the stability properties of 
nonlinear large-scale systems described by 
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i,(t)-gi(r,zl,...,z,(t)), i=l,... ,k (1.1) 

where zi(t) is the state of the ith subsystem and k is the number of 
subsystems.  Using  the graph-theoretic decomposition  techniques  pro- 
posed in [1]-[3l, it is fairly straightforward to show that the system 
equations (1.1) can be rearranged in the hierarchical form 

x i ( t )= f i ( t , x l ( r ) , . . . , x i ( r ) ) ,  i = l , - . -  ,m (1.2) 

where the new state vectors xl,-**,xm are obtained from zl,-*-,zk by 
renumbering and aggregating the latter, if necessary. In [4l,  Michel, 
Miller, and Tang study the case where  each functionA is of the form 

i 

~(t,~~,---,q)= X Aj(r,.$ (1.3) 
j -  1 

and derive  sufficient  condition5 for the stability of the overall  system 
(1.2)  involving only some properties of the “isolated  subsystems” 

Xi(t) =ff ( t ,x i ( t ) )  (1.4) 

and the interconnection functionsf;j. ( - , , ) J < i .  The results in [4] can be 
thought of as the Lyapunov counterparts to the input-output decom- 
position  techniques  proposed in [5], [q. Subsequently, Tang, Michel, and 
Hale [7],  [8] extended the results of [4] to the case where  the functionf, is 
expressible in the form 

A(t,xl,”‘,xi)=l,i(t,x,,...,xi-l)+fi(~,Xi). (1.5) 

Once again,  sufficient conditions for the stability of the overall  system 
(1.2) are given in t e ~  of the stability properties of the isolated subsys- 
tems (1.4) and the fun~tionsj,~. 

In the present paper, the focus is on systems of the form (1.1)  with 
noMdditioe interactions, i.e., where the functionA mgv not be expressible 
in the form (1.5).  We then introduce the ”isolated subsystems” 

x i ( t ) = ~ ( t . O . . . . , o , x i ( t ) )  (1.6) 

and show  how the decomposition techniques in [4], 1% [8] are related to 
the above.  Finally, in  the main results of this part of the paper, we show 
that the  overall system (1.2) is uniformly asymptotically stable (respec- 
tively  exponentially stable, globally  exponentially stable) if and  on& if 
each of the isolated subsystems (1.6) is uniformly  asymptotically stable 
(respectively  exponentially  stable,  globally  exponentially  stable). We also 
present some conditions for the global asymptotic stability and the 
instability of the overall  system (1.2), but these conditions are not as 
elegant as the others. The main tool used to accomplish all this is the 
converse  Lyapunov  theory. 

In the next part of the paper, we study control systems  described  by 

ii(t)=~(:,z,(r),...,z,(t),fl(t),...,f1(t)), i=l , .- .  ,k (1.7) 

where z l ( t ) , - .  * ,Zk(t) are the state vectors and rl(r),. ,r,(t) are the 
control functions. We show that, by renumbering and aggregating the 
state vectors as well as the control vectors, the system (1.7) can be 
rewritten in the hierarchical form 

i i ( t ) = ~ ( t , x l ( r ) , ~ ~ ~ , x i ( f ) , r t l ( t ) , ~ - - , u i ( t ) ) ,  i = l , - - - , m .  (1.8) 

We  show that the  system  (1.8) can be stabilized  by a decentralized 
control law if and only if the isolated  subsystem 

X i ( r ) = ~ ( t , o , ~ ~ ~ , ~ , x i ( t ) , ~ , ~ ~ ~ , u i ( t ) )  (1.9) 

can be  stabilized. 
This paper is organized as follows. In Section 11, we present the 

graph-theoretic technique for decomposition into hierarchical form. In 
Section III, we present all of the main theorems of the paper. A brief 
discussion of these  theorems is contained in Section IV. Appendix I 
presents several  preliminary  results and definitions that are needed for 
the proofs of the main theorems,  which are contained in Appendix 11. 
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