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On the other hand, introduction of vibrations can stabilize all modes
simultaneously, as it was in the case of glow discharge.

2) The main results of this paper were presented at several seminars
and in the course of all of them the question was asked: Is it possible to
stabilize the system using not regular but random *‘vibrations”? Since I
strongly suspect that the same question may also appear now, I would
like to give some comments.

The answer to the stated question is not found, although it was
discussed in many publications (see, for instance, [14], [15]), and some
particular result concerning first- and second-order systems were ob-
tained. In the light of the present study, a plausible conjecture can be
posed.

Hypothesis: Let system x=Ax be observable in principle. Then the
condition tr 4 <0 is necessary and sufficient for the existence of the
stationary ergodic matrix random process F/(2)=|w;;(¢)||] ;=) (With
zero mean) such that system x=(A4+ W())x is asymptotically stable
with a probability of one.
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Statistical Analysis of a Two-Ellipsoid Overlap Test
for Real-Time Failure Detection

THOMAS H. KERR, MEMBER, [EEE

Abstract—Real-time failure detection for systems having linear
stochastic dynamical truth models has been posed in terms of two confi-
dence region sheaths in [1]-[3]. One confidence region sheath is about the
expected nominal no-failure trajectory; the other is about the Kalman
estimate of the state(s) being monitored for failures. The implementation
of a necessary and sufficient test of whether these two confidence regions
of elliptical cross section are disjoint at any time instant is shown to result
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in a scalar test statistic that is compared to a prespecified decision
threshold at each check-time in making failure /no-failure decisions.

The motivating theoretical basis of the test statistic is briefly discussed,
the implementation equations and theoretical milestones previously en-
countered in guaranteeing algorithm convergence and establishing conver-
gence rate are summarized, then the details are presented for:

1) the derivation and analytic evaluation of the expressions for the
probabilities of false alarm and correct detection that serve as a basis for
subsequent tradeoffs in setting the threshold level; and

2) the derivation of an expression for the decision threshold and a
technique for its calculation from the covariance of the Kalman filter.

The probability of correct detection is shown to be a monotonely
increasing function of the underlying fundamental signal-to-noise ratio
response of the Kalman filter estimate of the failure mode state to a
particular magnitude of failure. Real data results are provided to illustrate
application of this technique for the two-dimensional case to detect failures
in an inertial navigation system having two-degree-of-freedom gyros. This
is the application for which the technique was developed.

I. INTRODUCTION

Whereas the detection of an unknown signal at a known event time or
the detection of a known signal at an unknown time are standard
problems in communication theory as presented in [4]-[7], the problem
in failure detection is to detect a signal of unknown magnitude which
occurs at an unknown time. Failure detection in a dynamic stochastic
system is a more difficult problem that has only relatively recently
received attention in the literature [3], [8, References 5, 9, 12, 15, 16, 22,
24, 26, 28, 29, 31, 33, 52), as discussed in the failure detection survey, and
in [9]-[20). Each of the above cited references represents a different
approach to failure detection.

Most of the above proposed failure detection methods utilize a statistical
test which relies on the whiteness property of the Kalman filter innovations
or residuals [24, pp. 597-606). However, a reduced-state filter is required
in many practical implementations to avoid an otherwise unacceptable
computational burden or to avoid poor sensitivity characteristics [29, p.
279). Filter residuals may be nonwhite either because of a failure
occurring or because of the required use of a reduced-order or “densen-
sitized™ filter for practical reasons [29, pp. 230-232]. Therefore, when
using a statistical test that only checks for white residuals a dilemma
arises from the difficulty of distinguishing between the nonwhite residu-
als due to a nominal unfailed system that is implemented with a
“practical” filter [21]-[23] and the nonwhite residuals that arise from an
actual occurrence of failure.

The so-called two-confidence region failure detection approach has
been developed [1]-{3] which is based on the multidimensional confi-
dence regions associated with the underlying Gaussian random processes
under both failure and no-failure. The Gaussian processes persist even if
a suboptimal filter is used as long as the filter is linear. This failure
detection approach also uses the estimates and covariances of error of a
linear filter, but does not depend on there being white innovations in the
nominal unfailed situation (further details on the use of a suboptimal filter
are found at the end of Section VII).

The contribution of this paper is in the derivation of the general
expressions for the off-line statistical analysis of the two-confidence
region decision test in terms of the probabilities of false alarm Py, and
correct detection P,. A technique is specified for numerical quantifica-
tion of Py, and P, for the scalar and two-dimensional cases and the
technique is used in an inertial navigation system application.

To date, a detailed statistical analysis in support of a failure detection
technique that has been proposed for specific navigation applications is
available in the open literature as {20). However, an assumption in [20]
for the nominal unfailed operating condition, is that the gyro drifts of
that application are negligible as compared to gimbal angle resolver
quantization error so the test statistic for calculating Py, is consequently
taken to be a function of only the gimbal angle quantization error. In the
real-time application of the two-confidence region failure detection ap-
proach to an inertial navigation system (INS) presented in Section III,
the test statistic is specifically a function of the gyro drift-rate states that
are modeled in the filter because an objective is to detect large anoma-
lous excursions of the gyro drift-rate as a failure.

0018-9286/80/0800-0762800.75 ©1980 IEEE
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II. MortvatioN FOR UsmNG Two CONFIDENCE REGIONS TO
DETECT FAILURES

The two-confidence region approach to failure detection may be
applied to systems that have either truth models or error models that
may be represented in the following linear state variable form:

x(k+1)=®(k+1,k)x(k)+ w(k)+vd, 4 (1)
z(k)=H(k)x(k) + v(k) 03]

where w(k) and o(k) are independent, zero-mean, Gaussian white noises,
having covariances of intensity Q(k) and R(k), respectively, and x(0) is a
Gaussian random vector initial condition (independent of the noises) of
mean x, and variance Py. The failure modes that can be monitored using
this two-confidence region approach can be modeled as states of the
system (1) (e.g., unwanted deleterious ramp and bias gyro drift-rates and
accelerometer biases are examples of soft or subtle failures that may be
modeled as states in the linear error model of an INS [9]). A failure may
be represented’ [8, eq. 40] as the vector » (unknown magnitude and
direction unknown but confined to the subspace spanned by the mod-
eled failure mode states) that occurs at the unknown failure time 8. The
event of a failure occurring is commonly represented by the Kronecker
delta 3, 4, that is, unity for k=8 and zero otherwise.

Unlike the situations for which the usual likelihood ratio is a uni-
formly most powerful (UMP) test in that it is as good as or better than
any other decision test [5, p. 91], [6, p. 102], the failure event to be
detected is a random event that occurs at a random or unknown time.
There is a little justification for using a likelihood ratio as a decision
function [27, p. 315] since it is not UMP for this situation of unknown
failure time and there may be other decision functions that are as good
or better? [5, pp. 91-96]. Confidence region tests serve as an alternative
approach although no formal proof is yet available to demonstrate that
they are necessarily better or worse than a likelihood ratio approach.
However, confidence region approaches have recently been proposed for
other detection applications as well [28].

A Kalman filter, modeled on the unfailed system of (1) with the term
v8, ¢ absent, is implemented to track the system that is to be monitored
for failures. The Kalman filter uses the measurements z(k) as inputs and
the estimate x(k) evolves from an iteration equation which has the
following form (by combining propagate and update stages [29]) as

Sk +1) =Dk +1,k)3(k) + K(k + D z(k+ 1) — HO(k+ 1, K)(%)]
3)
¥0)=x,

with the covariance of error in estimation being provided from the
following iteration equation:

P (k+1)=8(k+1,k)[ I~ K(K) H(k)1P,(k)®T(k +1,k) + Q(k+1)

@
P 1(0) =P,
and with the Kalman gain, as used in (3), being defined as
K(K)= P, (R HT(O[ H(K) P,(K)HT(k)+ R(k)] . 6]

In order to use two confidence regions for failure detection, the expected
value of the unfailed system and the associated variance available,
without using the measurements, are needed and are provided, respec-
tively, as solutions of the following two iteration equations:

#(k+1)= E[x(k+ 1)|Hy] = ®(k+ 1,k)Z(k) 6)
x¥(0)=x,

Py(k+1)=0(k+1,k) Py(k)DT(k +1,k) + Q(k+1) )
Py(0)= P,

I'The two-confidence region approach can also be used to detect time-varying failures.

2The generalized likelihood ratio (GLR) has been described as an “optimum decision
rule” for failure detection [8, p. 607], but no criterion was provided in support of this
claim to indicate how it would be optimum. Indeed, four caveats have been cited [6, p.
106] for use of a likelihood ratio in conjunction with a maximum likelihood estimate as
done with GLR.
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The underlying alternative hypothesis for the failure mode states x; are

(no-failure) Hy:
(failure) H,:

#(k)~N(0,[P(k)],) (zero mean) ®
.7?,-(k)~N(d(k),[P,;;(k)]ii) {nonzero mean) (9)

where d(k) is defined as

da(k) £ ith component of the mean deterministic response of the
filter to an assumed specific failure mode 7 that is to be

detected®
(10
and
P; ; (k) is the (i, i)th component [ P;:(k)],, of
Pii(k)=Py(k)—P,(k)>0  fork>0. (1

(Equation (11) follows from an application of the projection theorem [30,
p- 202).)

Figure 1 presents the principle underlying the so-called two-confi-
dence interval hypothesis test for distinguishing between H, and H, at
time= k. The two confidence intervals that are being tested for overlap
are depicted as lying along the horizontal axis. One confidence interval is
centered about the expected unfailed value of zero and reflects the
uncertainty of the system noise by the conservative extension to
= n(k)- V[Py(k)]; . The other confidence region is centered about the
Kalman estimate x,(k), which itself reflects the current information
obtained from the measurements®, within the uncertainty of the system
and measurement noise conservatively included in the extension of
*n(k): V[ Py(k)]; . As long as the two confidence intervals overlap, the
true state x,(k) may be in both confidence intervals; however, when both
confidence intervals are disjoint, the true state cannot be in both intervals
simultaneously and a failure is declared.

An obvious test for the overlap of the two confidence intervals is to
compare the endpoints of the two intervals. From Fig,. 1, it is seen that
there is no overlap either if

n(k)- V[P(K)],; +n(k) VIPy(k)],; <x(k) (12)
or if
(k)< —n(k) V[ P(k)]; —n(k) V[Pyk)]; . (13)

This decision rule may be concisely written by combining (12) and (13)
as
NO OVERLAP (DECLARE FAILURE) WHEN:

(&) >n(k) (VPR + VPR, ) (142)
OVERLAP (NO-FAILURE) WHEN:
[Z () <n(k)y (VPR + VPR, ). (14b)

An alternate test for the overlap of the two confidence intervals results
from considering the associated parabolas® of Fig. 1. First, notice that
the image in the range of each of the four endpoints of the two
confidence intervals is [#(%)}?. The decision threshold at time=% is

Ky(k) & [n(k)F (15)

but specification of the exact value of n(k) is deferred to Section VI.

*The time history of the parameter d(k) may be evaluated through a simulation using
the truth model with the sy and cment noise ple functions zeroed out and
only the # failure mode activated.

4Matching the filter to the “no-failure” model may require “tuning” [29, p. 279] of the
covariance Q(k) so that the filter bandwidth ins open to p ubseq
measurements from being ignored.

5These two parabolas correspond to the exponent of the Gaussian densities for x,(&) at
time =% from the Gauss—Markov system of (1) and as the solution of the Stratonovich—
Kushner—-Bucy equation [30, p. 178], respectively.
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Confidence intervals and associated parabolas at time=k for two-confidence
interval failure detection.

Fig. 1.

From Fig. 1, notice that x*(X) (i.e., the point in the domain that
corresponds to the minimum point on the intersection of both parabolas)
serves a special function. If the two intervals overlap, they both contain
x}(k). If the two intervals are disjoint, neither contains x*(k). Conse-
quently, the presence of the special point x}(k) in either of the two
confidence intervals is necessary and sufficient for overlap of the intervals.
This special point x*(k) may be conveniently found as the solution of
the constrained nonlinear optimization problem having the following
Lagrangian:

L Wy=[ (2= 2 /120, ]+ M = [ (= 2D /1P, ]+ [x3/1P2)u] }
(16)

where A is a scalar Lagrange multiplier and the term in braces represents
the constraint that the minimum be on the intersection of the two
parabolas, The optimization problem may be conveniently solved ana-
lytically for this case of one-dimensional confidence intervals by pro-
gressing as described below. Solve for the critical points of L(x;,A) by the
following.

1) Differentiating (16) with respect to x;, setting the result to zero, and
solving for x; as shown in (17) and (18), respectively:

0= 2D (1Nl AP MR/ (7
5= (NP A/ -V, AP @

2) Differentiating (16) with respect to A, setting the result to zero, and
substituting for x; from (18) yields

[l "(i;z[P]]”/ﬁﬂPZ]")]}\z—zA-p 1=0

a quadratic equation that A* must satisfy.S

3) Upon solving the quadratic equation of (19), choosing the correct
sigh to yield the minimum rather than the maximum, the correct
Lagrange multiplier is

(19

r=VI(py, /(VIP), + VP, )-

4) Substituting the scalar A* from (20) back into (18) results in an
expression for the special point as

(20)

X = V[P2]ii ii/(\/[PZ]n + Wpllii ) @1

5) Checking that x* corresponds to the intersection of the two

parabolas of Fig. 1, substitution of (21) into both parabola equations
results in the anticipated equality as

SIn the multidimensional case, the X’s occur in an inner product in (19) and do not
divide out; the solution for A in the multidimensional case requires an iterative equation.
The derivation of (17)-(23) is supplied to enable a contrast between the simple scalar
results presented here and the slightly more complex results of [3] for the general
multidimensional case.
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Lt A =y () =[5(0T/( VIR0, + VPR, ). (22)

6) Defining the test statistic at time=k as

1) & L(x ()M () =[£G/ VIPHT, + VPR, )
(23)

allows the alternate overlap/no-overlap decision test of Fig. 1 to be
performed in the range using /(k), rather than in the domain using x*(k).
The equivalent’ alternative decision rule in the range compares the test
statistic (k) of (23) to the decision threshold X,(k) of (15) as

NO OVERLAP (DECLARE FAILURE) WHEN:

(k) >K, (k) (24a)

OVERLAP (NO-FAILURE) WHEN:

I(k) <K,(k). (24b)
While the obvious decision rule of (14) was easy to obtain as a test for
the overlap/nonoverlap of confidence intervals it is the alternate for-
mulation of the decision rule as (24) that generalizes to two or more
dimensions. (The use of one two-dimensional two-confidence region test
is more appropriate than the use of two similar scalar tests in secking to
detect drift-rate failures in two-degree-of-freedom gyros that utilize two
input axes. With a two-dimensional test, tilt or skewness information,
intrinsically contained in the cross correlations, is not neglected as it
would be if two scalar tests were used to monitor these axes. An
additional advantage of using a two-dimensional confidence region test
over using two scalar confidence interval tests for this application is the
larger underlying signal-to-noise ratio (SNR) response to a failure,
available for subsequent processing at the input of the failure detection
algorithm, as demonstrated in Appendix A.)

A summarizing overview is provided in Fig. 2 of how this failure
detection approach generalizes to the multidimensional case (treated in
[3D. The top diagram depicts the two confidence regions of elliptical
cross section which indicate a failure at the check times at which they
fail to overlap. At each check time ¢, the elliptical cross sections of the
top diagram are fixed levels of two paraboloids, shown in the middle
diagram. This is where the overlap test is formulated as the solution of a
minimization problem. A necessary and sufficient test for disjoint confi-
dence region ellipses is that /(t), the minimum point of the intersection
of the two paraboloids, be above K;(#) (which can be determined by
monitoring only the scalar test statistic history and decision threshold in
the bottom diagram). A more detailed explanation of Fig. 2 can be
found in [3, Section 6] where the six steps for mechanization are
presented in a table to demonstrate how simple the CR2 test is to
implement. Analytical expressions are derived in Sections VI and VII
which are used to calculate the time-varying decision threshold K| and
for evaluating the detection and false alarm probabilities associated with
this decision test.

III. SuMMARY OF PREVIOUS SUPPORTING THEORETICAL
DERIVATIONS

As established in [3], the decision rule of (24) can be applied directly
to the failure/no-failure decision test for two multidimensional confi-
dence regions by using the following test statistic:

A%, E) =21 -A) 2 T(R)[(1 =A%) Py (k) +A* P (K)) " Li(k) (25)
where A* is the solution of the following scalar iteration equation:
A= 1/ [1+(ETRIATIO) P AT A)E(K) /ET(KYA ™ (M) E(K))]
(26)

where
AQg) 2 [(1=A)Po(k)+ A, Py(K))]
with A, chosen (as explained in [3, Section 5]) so that

7

"That the decision rule of (24) is identical to that of (14) may be verified by using the
definition of /(k) and K;(k) from (23) and (15), multiplying through by the covariances
and taking square roots throughout.
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tions (1) and (2) which is “stabilizable and detectable,”® the iterative
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©
Fig. 2. Overview shows how comparison of scalar test statistic to decision threshold
related to test for confidence region overlap through artifice of optimization problem.
(a) Two confidence regions. (b) A new optimization at each time. (¢) CR2 failure
detection.
l<Ao<1.
2

Subsequent to an early iterative technique proposed for calculating the
test statistic in [1], [2], the better iterative algorithm of (26) and a

algorithm will always converge. By using another property of contraction
mappings, a minimum rate of convergence as being at least linear was

stronger convergence proof based on the property of a contraction

mapping [32] have been obtained as (34) and [3, Theorem 5.1], respec-

tively. The convergence proof guarantees that, for the system of equa-  tive [31).

also analytically established in [3, Theorem 5.2}, indicating a real-time
capability as verified in simulations by the small number of iterations

8Concepts which are similar to “controllable and observable,” but slightly less restric-
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INS (CR2) failure detection performance using real data. (a) No failure. (b)

Large magnitude ramp drift rate failure in the equational input axis of a two degree of
freedom gyro in an INS (SNR (24 h)=5.38).

needed to converge. See [3] for more elaboration on aspects pertaining to
rate of convergence.

The CR2° failure detection performance on real INS data for a naval
application is presented in Fig. 3. Details of the 9-state reduced-order
filter and 94-state truth model (used for superimposing failure responses)
are omitted to avoid conflicts with classified national security informa-
tion; however, a detailed structural block diagram is in {45]. When
external position fixes are available to the INS, failures in the individual
INS are more easily detected by a comparison to this more accurate
external fix as a standard. The proposed use of the CR2 algorithm is to
detect failures (of a certain critical magnitude corresponding to a certain
critical signal-to-noise ratio associated with the resulting filter failure
signal response to excessive gyro drift or accelerometer pickoff errors)
between external fixes. The plot of Fig. 3(a) depicts the CR2 test statistic
and the prespecified decision threshold K, under a no-failure condition
using real data. After the initial 24 h', the test statistic is well below the
decision threshold, confirming that no failure is present. The plot of Fig.
3(b) represents the CR2 test statistic and decision threshold for a
simulated!! large magnitude ramp drift-rate failure in one of the INS
gyros. Following the initial 24 h waiting period, the CR2 test statistic
quickly exceeds the threshold, correctly indicating a failure.

IV. AN INTERMEDIATE QUANTITY NEEDED TO SPECIFY THE
DecisioN THRESHOLD

A parameter A is used in calculating the time-varying threshold for a
specified probability of false alarm Pp(k), and in calculating the
associated probability of correct detection P (k). Using (11) and [33,
Properties (6.2) and (6.28)], which relate an inner product to the trace of
a matrix, the expected value of (25) is

E[HA ) =A(1 -t S(A, k)] (28)
where S(A,k) is just used for shortened notational convenience and is
defined in (B.1-2) of Appendix B. By paralleling the steps of [3, pp.
518-519] that were used to obtain (26), but applying them to (28)
instead, yields the value of A that minimizes (28) as A. As obtained from
the above step, the parameter A is the solution of the following iteration
equation’?:

9CR2 is an acronym for two (2) confidence regions.

1°The error dynamics of a gyro reflect the 24 h earth rotation rate; consequently,
approximately one full 24 h period is required for the filter to lock onto the cycle of the
underlying sinusoid. Initially, phase aligned sinudations have no initial transient.

HEajlure measurements were simulated from the official full-state error model of the
form of (1) and (2) and superimposed in the real data using linearity. Cost of inducing
actual failure in an INS would be prohibitive.

2Notice that this is a scalar iteration equation, just as (26) is, but that here internal
matrix quantities are used in a trace.

Aer=1/[1+(e[ 27 R) P A (R,) | /e[ A7Y(R,)])] @9
=1/[1+(a] s k) P47 (R,) | /6 S(R.K)])]  (290)
with the initial value chosen (as explained in [3, Section 5]) such that

1

3 <Xp<l (G0

where
AQR,) 2[P,— P 24(R)P,- P ()
P, 2P~ P 2P P- PV (32)

The major steps in the proof of convergence of this scalar iteration
equation parallel the almost identical steps that are used in the conver-
gence proof that appears in [3, Theorem 5.2] for the other scalar iteration
equation (26). Both equations have internal matrix structure of the same
form [compare (26) to (29a)], but (26) becomes a scalar equation through
the presence of inner products while (29) becomes a scalar equation
through the presence of the trace operation.!® The relevant steps of the
proof of [3, Theorem 5.2] involve considering an associated underlying
matrix equation of special structure from which convergence of the
scalar equation (26) is inferred upon taking imner products. The same
device of working with the associated matrix equation having the same
special structure is sufficient to guarantee convergence of (29) by using
an auxiliary result that relates the previous proof for inner products to a
new proof for this case where the trace is used. The final step of the new
convergence proof in converting the underlying matrix equation into a
scalar equation is fulfilled by also taking specific inner products, and
using the result of [33, eq. (6.8)] that now relates the required trace
directly to these specific inner products as

(pxp) L4
tr [U] = 2 eiTuei
i=1

where ¢, is a column vector consisting of all zeros except for a 1 in the
ith position or row. As with (26), the conclusion is that (29) is a
contraction. Expressions for the probabilities of false alarm and correct
detection in terms of the intermediate quantity A will now be obtained.

13Stability in the sense of numerical analysts [37], which requires establishing continuity
with respect to perturbations in the parameter matrices, is assured for both (26) and (29)
since these iteration equations (used as successive approximations) have been demon-
strated to be contraction mappings. Successive approximations with contraction map-
pings are guaranteed to be stable [37, p. 174).
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V. INTEGRAL EXPRESSIONS FOR Py, AND P, AT EacH
Cueck TiME

Using the standard definitions of probability of false alarm and
correct detection [5, p. 31] and applying them to the decision rule of (24),
while using the underlying statistical structure of (8) and (9), yields the
following expressions for these probabilities'® at each check-time instant
k, respectively, as

P,(K) £ ProblK(k) > K, (k)| H,] = (f v [ NAOP(k)dE (332)
I{

&) >K(k)

A1-R)2TA 1 (R)x > Ky (k)

N30, Pyo(k))dx (33b)

P,(k) 2 Probli(k) > Ky(k)| Hy]= ([ coe [ Na(d(h), Peg(R))
1) > K, (K)

(34a)

X1-N)2TA Q)£ > Ky(k)

N(d(k), Py (k) dx (34b)

where d(k), as defined in (10), is the mean deterministic response of the
filter to the specific failure 7 that is to be detected with the system and
measurement noise sample functions zeroed out. The quantity (k) may
be numerically quantified by simulating the specific failure » in the
failure mode of interest from the full state truth or error model of (1) and
(2), with Q(k) and R(k) indentically zero, then processing the simulated
failure measurements with the possibly reduced-order filter of (3)-(5)
with Q(k) and R(k) at their proper nonzero design values.

The multidimensional signal-to-noise ratio (SNR) [7] that is used in
evaluating P, (k) in (34) is

SNR(K) £ VdT(k)Pes(k) ™" d(k) @39)
[another convention is to define SNR as the square of (35)]. The
objective of Sections VI and VII is the specification of a method
whereby (33) and (34) may be explicitly evaluated. There is a natural
dichotomy in the specification of a short easy solution for the scalar case
(for two confidence intervals) and a more involved solution for the
generalization to two multidimensional confidence regions (which will be
completely detailed only for the representative two-dimensional case,
since gyros have only one or two input axes).!* This dichotomy occurs
because the optimization problem for the scalar case has a closed-form
solution, as given in (20)—(22) to obtain the test statistic of (23), while the
optimization for the multidimensional case involves use of the iterative
algorithm of (26) to obtain the test statistic of (25). Additionally, the
multidimensional case requires the use of the iterative algorithm of (29)
to determine the decision threshold with which the test statistic is
compared in making failure/no-failure decisions as the decision rule of
(24). The multidimensional Gaussian integral of (33) is solved for K,
without recourse to CEP or SEP techniques [42}, which would require
eigenvector calculation by some additional iterative algorithm such as
the Jacobi method [37], because the direct approach involving a matrix
inversion appears to be more efficient.!6 Stability of this direct approach
is established in Section VI, where conditions encountered in this ap-
plication are summarized that guarantee convergence of the successive
approximations procedure that is used to specify the decision threshold.

VI. SoLVING FOR THE DECISION THRESHOLD

The objective of this section is to solve (33) for K (k) when a
prespecified value of P, (k) is given as the requirement to meet.

14yJsed A(k) instead of A(k) to avoid measurement sample function (realization) depen-
dence in an a priori evaluation.

5Accelerometer faflures such as ramps or biases may also be detected by their effect on
the gyro drift estimates without strict inclusion of additional accelerometer states in the
model of (1).

16While eigenvalues are easy to calculate for the two-dimensional case, the two-dimen-
sional matrices encountered in this INS application are also easily inverted analytically,
thus facilitating an implementation of the CR2 technique.
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Threshold for the Scalar Case: In the scalar case, both (26) and (29)
reduce to

X=A*=VPyk) /(VPy(k) +VPi(K))

and (33) may be simply represented, using (11), in terms of the well-
tabulated error function as

(36)

PaO= [ iy (VEs oy y O TR BN,

= - 1\/p
feskar(vE: wVE[(VE -VRY] T

(37a)

-1- 1erf[ VER)/2

2

-\/(\/Pz(k) + VPR ) (VP - VPR ) ]
(3Tv)

To obtain the decision threshold X,(k), given a fixed value of instanta-
neous Py, (k) to be maintained at each check time, involves using tables
to solve for the constant b in the following equation:
1
P,,(k)=1—5erf[b/\/5 ] (38)
Once b has been evaluated, this value of » may be equated to the
argument of the error function of (37b) as

b/V2 = VK (K)/2 -\/(\/Pz(k) +VP(k) )/(VPok) —VPy(k))
(39a)

to be rearranged as the specification of the time-varying decision
threshold K,(k) for the scalar case as

Ki(ky=52[ (VB0 = VPR )/(VP) + VR ).
(39b)

Threshold for the Two- Dimensional Case: In the two-dimensional case,
the solution of (33) for X(k) requires a different route than the simple
utilization of the tabulated error function that was available in the scalar
case. The major intermediate steps in the evaluation of K,(k) for the
two-dimensional case are summarized here as (40a)—(40i) to allow the
main theme in the evaluation method to be perceived. The underlying
theoretical details that rigorously substantiate these intermediate steps are
relegated to Appendix B. The expression for the CR2 probability of false
alarm, (33), may be reexpressed as

Pu= [ iD= f:[la—lllpxz(a;l)tﬁpxz(a'—z)]dl (402)

=f]:°[wj;le—bx/\/x(1_x) dx]dl (40b)
1 'n'Valaz
=fK°l°[(1/4'rrVa1a2 )f_’:rexp{ —%[alz+b+bsin0}l}d0]dl
(40c)
=(1/4Vare; )f_ww[f:exp{ —%[é +b+bsin0]l}dl]d0
(40d)
L - 2)sind
= (exp{ —K,C/2} /2nCVaa, ) fwe"pf +((Zfé'/)s)in81: } 10
(40¢)



768
=(exp{ - K,C/2}/27CVaa, )

.f”

-

[ .§D(— K,b/z)"(sino)"/i!] /I1+(b/C)sind]d (40f)

=(exp{ - K,C/2}/27CVa,a, ) 20 [(—Klb/z)i /it]

-f "(sinB) /[1+(b/ C)sind)db (40g)

=(exp{ -K,C/2}/aCVaa, )igo [(Klb)i/i!]

-f°° 2 /[(2+2b/ Chz+ 1)1+ 22 ] dz (40h)

=(exp{ — K,C/2} /el ept e, Ky + e K2+ es K+ K+ esKi+ -+ ]
(401)

The final result being the algebraic series of (40i) which is devoid of all
integral expressions and is just an algebraic equation to be solved for X.
From manipulations of the matrix S(A, k), defined in (B.1-2), the power

series coefficients in (40i), obtained without having to solve for any
eigenvalues or eigenvectors, are'’

C 2 u[ S(Rk)]/[ 221 -Rydet] SR.6)] ] >0 (a1

pr2 (tr[s(X,k)s(X,k)]—2det[s(X,k)])/[2X(1—X)]2>0 (42)

e 2 ] S(LK) ] /2\aet SR, 1) ] >0 43)
&2 Sle-1] (442)
o2 %(%)el (44b)
e2 %(g)[ez-g—:] (40)
e 2 %(%)% (44d)
e ! w

When X, Py(k), and P,(k) are known, then S(A, k) of (B.1-2) is specified;
therefore, by (41)-(44), all the coefficients can be calculated. For a given
desired Pg(k), all that remains to be done is to solve the nonlinear
equation, (40i), for the unknown X,(k). This is achieved by using a
successive approximations approach [37] in conjunction with the follow-
ing device.

When rearranged, (40i) becomes the following nonlinear algebraic
equation:

ey Py (k) exp[K-C/2] =eg+ e Ky + e kit e Ki+eKiteKi  (49)
that must be solved for K,(k) at each check time k. Let

71(Ky) = ep+ e, Ky + e, K3+ e, K3 + e, K} + esK{ (46)

y2(K) & eo-Fp,(k)-expl K,C/2]. “7

If y, versus K is plotted using (46) and if y, versus K| is plotted using
(47), as shown in Fig. 4, then the positive X, value where the two graphs
intersect is the value K| that is a solution of (45) and, equivalently of
(40). All the coefficients of the polynomial of (46) are positive (Proposi-
tion 1 of Appendix B); hence the quintic y, is monotone increasing for
positive K. The vertical asymptote of the quintic y, is e,; since

0<P,(k)<1 “48)

the increasing exponential y, has a vertical asymptote, ¢ Pp(k), which is

1"Notice that the coefficients e, e;, e3, €4, and es are completely defined in terms of eq
b2, and C.
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Fig. 4. Successive approximations solution of K.

below the vertical asymptote of the quintic y,. Even though y, starts
below y,, the fact that an increasing exponential will always asymptoti-
cally dominate a polynomial guarantees that these two curves will indeed
intersect at one point and, therefore, that a unique positive solution X,
will always exist. This point K; may be found by the successive ap-
proximations procedure as illustrated in Fig. 4. For this application to the
exponential that is dominated near zero by the guintic polynomial with all
coefficients positive, the successive approximations procedure always con-
verges so there are no numerical difficulties when computer evaluation is
used.

Time-varying decision thresholds, precalculated according to the
above procedure and used in conjunction with the two-dimensional CR2
test statistic to detect failures in the real data of Fig. 3, are shown in Fig,
5 for a range of probability of false alarm. These thresholds are exact
and are below the upper bounds obtained from the asymptotic, as time
increases, x> distribution of the /-statistic [See (40a)].

VII. CALCULATING THE INSTANTANEQUS PROBABILITY OF
CORRECT DETECTION THAT CORRESPONDS TO THE THRESHOLD
SErrmq

Given that X, P,(k), and P,(k) are known (from (29), (4), and (7),
respectively) and that the threshold XK,(k) corresponding to a given
specified Py, (k) has been previously determined (as discussed in Section
V), it is desired that P (k) of (34) be evaluated so that the likelihood of
detecting a specific failure mode #, when it occurs, is quantified.

P,(k) for the Scalar Case

Again the Lagrange multiplier A, necessary for evaluating (34), is given

by (36) for the scalar case. Using (36) for A, the expression of (34)
reduces to

Py (k)=1- %erf[(SNR(k)/\/i )+ VK, (k)/2

~\(FVPz(k) +VP(k) )/(VPoky - VP(k) ) ]

- %eﬂ[(SNR(k)/VE )- VE(k)/2

-\i\/h(k) +VP(k) }/(VRk) - VP(k)) }

(49)
where, for the scalar case, the expression for the signal-to-noise ratio of
(35) simplifies as

SNR(k)=|d(Kk)|/V Py(k)— Py(k) -

Al the terms in the argument of the error functions of (49) are known so
that it may be numerically evaluated.

(50)

P,(k} for the Two-Dimensional Vector Case

Equation (34) may be rewritten for two dimensions via a coordinate
(i.e., similarity) transformation as
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Fig. 5. Time-varying threshold used for two-dimensional CR2,

where G is the following region:
(u+[Py— P,]"72d(k)) A~ R)(u+ [P, — 1)~ /2d(R)) < Xﬁl(_k;)
(52)

where the integral represents the volume under the circular Gaussian
surface enclosed by the ellipse as illustrated in Fig. 6.

Using the definition of the multidimensional signal-to-noise ratio in
(35), the integral of (51), represented in Fig. 6, may be closely approxi-
mated by the integral represented in Fig. 7 by applying the cyclic
property of the trace operation [33, eq. (6.14)] on the definition of (31) to
yield

u] A7 Q) ]=t[ SR.0) |- (53)
Consequently, the intermediate quantity R? may be obtained from (52)
as

R22 By (k)/[ M1 -0t S(R.K) ] ] (54)

This quantity R is an input entry along with
v

D = SNR(k)

which are both used in the tables of [40] to enable the readout of the
numerical quantification of “offset circle probabilities for the circular
normal distribution” of Fig. 7 as an easily accessible approximation to
the evaluation of (51). The exact evaluation of (51) is in [41]. Now that
the expressions provided by this paper are available for P, and P, for a
particular failure v, the Bayes, Neyman—Pearson, or minimax criteria [6]
can be used in a tradeoff to specify the setting of the decision threshold
level scaling parameter b that appears in (39b) (for the scalar case) or to
specify setting of the explicit threshold scaling parameter Py, that ap-
pears in (45) and (47).

While all of the results of the CR2 statistical analysis and threshold
setting of Sections VI and VII have been obtained under the assumption
of an optimal Kalman filter in (3)-(5) of the same dimension as the
system model of (1), (2), the CR2 results pertaining to test statistic
calculation, to threshold setting, and to statistical analysis of the deci-

[pz - p‘]"?gm

JOINT GAUSSIAN
WITH UNIT VARIANCE

Fig. 6. Shaded area encloses volume represented by integral in (51).

R, (k)

2 2
R=R d. E—_
R - M e [9)

S/N =2 Dimensional s/n
VdTtk) [Pe-Pi] M d k)

Fig. 7. Circle approximation used in Pk) calculation.

sions remain valid when a reduced-order filter formulation, such as [25]
or [26] is used. The reduced-order filter approaches of [25] and [26] still
yield the correct covariance and cross correlations associated with the
reduced-order filter. The same Gaussian random processes are inputs to
the reduced-order filter; therefore, the outputs are also Gaussian
processes since the reduced-order filter, although not optimal, is still a
linear system and consequently supplies all the information needed-
namely, the means and variances—for a fully rigorous interpretation of
the resulting two confidence regions.
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VIH. SumMARY

The two confidence region (CR2) approach to failure detection is
revealed in Section II to be a generalization to two or more dimensions
of a simpler noniterative two-confidence interval failure detection ap-
proach. The advantage of generalization is illustrated in the application
of the two-dimensional CR2 in detecting subtle out of tolerance drift-
rate “failures,” between external position resets, in a two-degree-of-free-
dom gyro within an inertial navigation system. It is shown in Appendix
A that the two-dimensional CR2 failure detection approach does not
discard the information on the skewness or tilt of the underlying
ellipsoids contained in the cross correlations and actually utilizes a
greater (or equal in a worse case situation) input signal-to-noise ratio
than would be utilized by two uncorrelated simultaneous one-dimen-
sional detectors. (The same conclusion trivially holds for an n-dimen-
sional CR2 versus n uncorrelated one-dimensional detectors.)

The equations and evaluation procedure for an off-line statistical
analysis of the decision test, as derived here, in conjunction with the
rigorous proof of convergence and convergence rate in [3] (summarized
in Section III), and the refinement for evaluating the probability of false
alarm over a time interval [43] should provide a complete view of the
CR2 approach to failure detection. The performance of the CR2 ap-
proach in detecting gyro drift-rate failures in an inertial navigation
system is demonstrated in Section III using real data. A conventional
discrete-state Markov reliability/availability analysis of the effect of
failure detection on the overall performance of a complex navigation
system, using the standard reliability techniques of (44}, is provided in
{45).

APPENDIX A
AN ADVANTAGE OF ONE Two-DMENSIONAL CR2 FAILURE
DEetECTOR OVER TWO ONE-DIMENSIONAL DETECTORS

The definition of signal-to-noise ratio (SNR) of (35) may be expanded
for the two-dimensional case as

swn [ () -(2)(2)+ (£)] o

and the two associated one-dimensional scalar signal-to-noise ratios for
each subcomponent are

SNR, & |4,/ /0, (A2)

and
SNR,. £ [dy)/ a2 (A3)

Theorem 1: For a strict inequality on the correlation coefficient of

-l<p<l (Ad)
and with
d#(pgy/0)d,  foriwj, (A35)
then
SNR, >SNR; (A6)
and
SNR; >SNR;.. A7

Proof: The following is nonnegative because it is a squared quan-
tity, and nonzero because of the condition of (A.5):

[(@/g)—p(d/a)]'>0  forji. (A8)
Expanding (A.8) vields
(4/9)~20(d;/ 6 )(d/ ) +p*(d:/0))* >0 (a9)

which, upon rearranging, becomes
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(@/0) -2d/o)(d/0)> —pX(d /ey forij. (A.10)
Now adding the nonnegative quantity (d,/q,)? to both sides of (A.10)

yields

(4/9) = 20(/ ) (d/ o) +(d/ o)’ >(1-p*)d /o)  foriz.
(A1)
From the condition of (A.4), it occurs that
0<p?<1 (A12)
and, by subtraction, the following result is obtained:
I1>1-p2>0. (A.13)

Dividing through (A.11) by the strictly positive quantity of (A.13), yields

(l_—lpz) [(@/9)*~20(d/ o) /o) +(d/ )] >(di/a) (A14)

which, upon taking square roots of both sides, yields the conclusions of
(A.6) and (A.7) for i=1 and i =2, respectively.

Comment 1: Theorem 1 states that because of the cross correlation
information the SNR provided as an input to the two-dimensional
failure detection implementation is greater than that provided to both
subcomponent scalar failure detection implementations. Numerical
quantification indicates that the advantage is sometimes greater than the
square-root of the sum of the squares of both the subcomponent SNR’s.

Comment 2: The conclusion of Theorem 1 as (A.6), (A.7) may be
jointly summarized as SNR, > max(SNR,SNR}).

Comment 3: Upon removing the restriction of (A.S5), the conclusion of
Theorem 1 as (A.6), (A.7) must be weakened to allow possible equality.

APPENDIX B
DETAILS OF THE THRESHOLD CALCULATION FOR THE VECTOR CASE
(IDIMENSION: 2)

The underlying mathematical analysis sketched in Section VI to em-
phasize the end objective of solving (40) for X,(k) is now presented in
logical order with the steps being formulated as propositions, lemmas,'$
a corollary, and a theorem. Appendix B.1 consists of the proper state-
ments of what is to be proved. Appendix B.2 consists of sketches of the
proofs.

B.1 Statements to be Proved

Lemma 1: The characteristic function for /(A,k) of (25) under H, for
the general multidimensional case is
&;(v, X, k) = E[ /%7 | H,]

= E[ IRU-RET (AT (iR | Hn] (B.1-1a)

=|Py(k)—P(K)| '/

_a-1/2

im0 - Pt =20 - B[ (1 -Ry k)RR (k) 7|
(B.1-1b)

172

=l[I—ijrX(l—J_\)[Pz(k)—Pl(k)][(l—X)P,_(k)+XP,(k)]_l]_l
(B.1-1¢)

=|[1-Ra-RsE0] (B.1-1d)

130nly Lemma 1 holds without modification for the general multidimensional case.
Extensions of Corollary 1, Th 2, and Propositi 1 and 2 to the general n
dimensional case is still open since the intended application reported in Section III
required only scalar and two-dimensional results. However, calculation of the test statistic
{via (25), 26)), calculation of the auxiliary quantity A [via (29)], and the convergence
guarantee of [3] are valid for arbitrary dimensions.
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_nl/2
o R GO ORI ORI O IR C) '|

(B.1-1e)
1712
=|[I—-j2v7\(l—7\)[V‘T(k)Pz(k)V‘l(k)——XI] ] (B.1-19)
. _ o -1 172
=I[1—mx(1—x)[u(k)—u] ‘] | (B.1-1g)

—102011/2 $(1_% N i 172
=1~ )2 [ 1A - R MG -N] | oo

(B.1-1h)
— =111 1/2
_|[ ~2A(1-X)[ U~ (k) M) U(k) -1 | ] | (B.1-1i)
2
- [1_,2»\(1 -0 agy-x1]” ‘] | (B.1-1j)
_—
- [1—,2»}\(1 -%) {d, (k)-X) P] ] ‘ (B.1-1K)
1/2
= [ (1-(2Ra-R M@ -X))) 17 ®B.1-10)
=i]_Il(1—(1'2”7\(1—X)/(du(k)—x)))—l/z (B.1-1m)
where, in the above,
S.K) & [P(0)~ PRI 1-D P +3P (B (B12)
and
[Pa(k) = Py(R)]= VT (K)V(k) (B.1-3)
where (B.1-3) results from a Choleski factorization [37] and
M(k)=V~T(kK)P(k)V ~ (k) (B.14)

where U(k) is the normalized eigenvector matrix'® associated with the
symmetric matrix M(k), therefore using U(k) in a similarity transforma-
tion diagonalizes M(k) as

U~ (k) M(k) U(k)= A(k)=diag(dy, (k) dp(k), - + 1 d,,(K))

(B.1-5)
with

P
Is~'QR)I=IM-M|=|a-Nr|= 11 (4:(0)-%)  (B.16)

[ § 'R &) | =t M-N]=t[A-NI]= _ﬁl (40 —%). @.1-7)

Equation (B.1-1m) is recognized to be the product of the characteristic
functions of weighted chi-square random variables [38] which represents
the sum of weighted independent chi-squared random variables [39, eq.
7-7} and has the following probability density function:

1 . 1 . 1 .
y=— — e ) e— — B.1-8
Puorns? lal|px¥(“1 )*Iazlpx'z(az). ‘I“plpx'z(ap) ( )

where

a,(k) £ X(1=X)/(dy(k) =) >0

and = represents convolution.
Corollary 1: For the two-dimensional case, (B.1-8) becomes

for (i=1,---,p) (B.1-9)

19Bigenvalues, cigenvectors, and matnx factorizations are not actually calculated; they
are used here for a theoretical tion of the problem str
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1 .
P[(k)[Ho("’)"' px:(a,) a—z-pxlz(a_z) (B.1-10a)

=(1/47fva1‘12 )f_:exp{ - l[_al_z +b+bsi.n8]w} de

2
(B.1-10b)
thus establishing (40a), (40b), and (40c), where
b2 (a—a)/2am,. (B.1-11)

Theorem 2: For the two-dimensional case, use of the results of (B.1-
10) allows (33) to be evaluated as shown in each of the intermediate
steps of (40), where

ata
2a,a,

ca —l—+b——+ il W

>0.
@ 2aa

(B.1-12)

Proposition 1: By the inequality of (B.1-9) and the definitions of b
and C in (B.1-11) and (B.1-12), it follows that
0<(b/CY<1 (B.1-13)

and therefore that
(B.1-14)

Proposition 2: The following identities are used to evaluate the coef-
ficients of (41)-(44) while avoiding any explicit eigenvalue evaluation:

3,8,=N(1-1)/det[ S~ '(R, k)] (B.1-15)
+a2-X(1—X)tr[s-1(X,k)]/det[s~l(x,k)] (B.1-16)
C=(ay+a))/2aa,=ts[ § 7' (X, k) ]/(2A(1-X)) (B.1-17)
e0=1/V1-(6/C) =(ar+ap/2Vara,
=t S IR0 /2t S~ R0)] (B.1-18)
Va,a, C=t[ST'}K) | /nfdet[ TR0 ] (B.1-19)

a2+ at=2%(1 —X)zu[s-l(i,k)-s-l(x,k)] /det[ S

B2 =(a— @)’/ (2a18,)° = (a3 + a} —2a,a,) /(2a1a,)*

IR, %) ])/(482(1-X)%)
(B.1-21b)

“(X,k)]2 (B.1-20)
(B.1-21a)

=(tr[S"(X,k)-S‘l(7_\,k)] —2det[ S~

where S(A, k) is defined in (B.1-2).
B.2. Proofs

Proof of Lemma 1: Equation (B.1-1a) results from the definition of the
characteristic function. Equation (B.1-1b) results when the definition of
expectation is used in (B.1-1a), ie.,

E[ SA(1-R)ET(k)A “(k)i(k)leo]
a1 wvaTg—1o 1A —1a
= f .- fexp{ﬁ\(l —-A)xT4A - ExT[Pz—Pl] lx}
-2y~ F?|P,— P~ V248 (B.2-1a)

=|P,= P10, 0|2 [ - @m0, )|/

-exp{ - 1370(, y).i} & (B2-1b)
=Py~ Py| "2 Q(Q,p)| "1/ (B2-1¢)

where
QA »)=[P,— P,] '~ j2X(1-R)4 "1 (D)». (B.2-2)
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Equation (B.1-Ic) follows from (B.1-1b) since the determinant of the
product of two matrices is the product of their determinants. Equation
(B.1-1d)-(B.1-1g) are seli-explanatory and reflect different groupings or
observations about the internal structure. Equations (B.1-1h), (B.1-1i),
and (B.1-1j) follow since the determinant is invariant under a similarity
transformation. Equations (B.1-1k), (B.1-1¢), and (B.1-1m) result from
the characteristically convenient manipulations that can be performed
with diagonal matrices. [

Proof of Corollary 1: Writing the convolution of (B.1-8) explicitly for
the two-dimensional case yields

e~ v/ Lw 1

Vaa, 2770 Vx(w—x)

where the summarizing notation of (B.1-11) for & has been used. Com-
pleting the square of the denominator term under the radical in the
integrand of (B.2-3) and using the following trigonometric substitution
[36] x —(w/2)=(wsind)/2 yields

+n/2 1 1 .
p;_z(w)==(]/4qua1a2 )f_ﬂ/i exp{ —5[0—2+b+bm0]w} d.

(B.2-4)

e b%dx

7y w)= (B23)

For the integrand of (B.2-4),
+a T /2
f -7 2f —7/2 ’
therefore, using (B.2-5) in (B.2-4) yields (B.1-10b). |

Proof of Theorem 2: Since the integrand of (B.1-10b) is positive and
(B.1-10a) is a pdf and, as such, has a finite integral when integrated over
K, to o, use of Fubini’s theorem [34] allows the rigorous interchange of
the order of integration, resulting in (40e). Equation (40e) may be
rewritten, using the series expansion of the exponential, as (40f). Since
the resulting series of continuous functions in (40f) is a uniformly
convergent series by the Weierstrass M-test [35), the order of integration
and summation can be rigorously (i.e., validly) interchanged in (40f) to
result in (40g). Using the half-angle substitution [36) of z=tan (#/2) in
(40g) yields (40h).

The real integrals of (40h) may be evaluated using Cauchy’s residue
theorem [34] in conjunction with some limiting arguments about how the
complex extension of the real integrals of (40h) have zero contribution
over the infinite semicircle in the upper half of the complex plane. The
general integral of (40h) has poles where

®.2:5)

2242(b/C)z+1=0 (B.2-6)

and where

2241=0.

(82-7)

Since (B.2-6) is a quadratic equation, the poles enclosed by the closed
contour in the upper half-plane are

b
2= ——

C+jV1—(b/C)2 and z=+;1 (of multiciplicity i).

(B.2-8)

Evaluating the first six terms in the series of (40h) using Cauchy’s residue
theorem (in the manner described above), results in (40i) [with
coefficients defined as in Eqgs. (41)-(44)]. [ |

Proof of Proposition 1: Using the definition of (B.1-9), (B.1-11), and
(B.1-12)

0<(b/CY =((a,— a,)/2a,a))* /(@ + 2,)/ (2a,a,))?

=(ay—a))’/(ay+a))’<1. (B.2-9)
Now (B.2-9) implies that
1>1-(6/C)*>0 (B.2-10)

and, consequently, that
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17V1-(b/C) >1; (B2-11)
hence,
e0=1/V1-(6/C) >1>0 (B2-12)
and
ey=(C/Dleg—1]>0 (B2-13)
since (C/2) is positive by (B.1-12) and (B.1-17). Also
e;=(C/2)e;>0. (B2-14)

Since e; through e5 may be represented in an expanded form, e.g., -

ey=3(C/D[{(c/D/V 1=/ CF }-(c/27- /D)),
(B.2-15)

W
these remaining coefficients may be similarly demonstrated to be posi-
tive. |

Proof of Proposition 2: Results follow using simple algebra and the
definition of a4, S(A,k), the trace and determinant as the sum and
product of eigenvalues, respectively. m.
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Decomposition Techniques for Large-Scale Systems
with Nonadditive Interactions: Stability and
Stabilizability
M. VIDYASAGAR, SENIOR MEMBER, IEEE

Abstract—In this paper, we study decomposition techniques for nonlin-
ear large-scale systems, which have the feature that the interactions
between the various subsystems are nonadditive. Using the technique of
decomposing a graph into its strongly connected components, we first
revwrite the system differential equations into a hierarchical form, by
renumbering and aggregating the original state variables, if necessary. In
this hierarchical form, each subsystem interacts only with “lower” subsys-
tems but not with “higher” subsystems. Once the system equations have
been rearranged in this hierarchical form, we show that the overall system
is uniformly asymptotically stable (respectively exponentially stable, glob-
ally exponentially stable) if and only if each of the subsystems is uniformly
asymtotically stable (respectively exponentially stable, globally exponen-
tially stable). The main technique used to do this is the converse Lyapunov
theory. We then turn to problems of stabilizability, and show that, once the
system equations have been arranged in hierarchical form, the overall
system can be stabilized by a decentralized control law if and only if each
of the subsystems can be stabilized. Several examples are presented to
illustrate the various theorems.

I. INTRODUCTION

The results presented in this paper can essentially be divided into two
parts. In the first part, we are interested in the stability properties of
nonlinear large-scale systems described by
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2;(1)=g:(t. 2y, <, 2 (1)), i=1,-+,k (1.1)

where z,(¢) is the state of the ith subsystem and % is the number of
subsystems, Using the graph-theoretic decomposition techniques pro-
posed in [1}-[3], it is fairly straightforward to show that the system
equations (1.1) can be rearranged in the hierarchical form

xi(‘)=fl(t’xl(t)r' . x(1)),

where the new state vectors x,, - ,x,, are obtained from z,,---,z by
renumbering and aggregating the latter, if necessary. In [4], Michel,
Miller, and Tang study the case where each function f] is of the form

i=1---,m (1.2)

i

-’;(trxlv' i ’xi)= zlf;’(t’xj) (1‘3)
=

and derive sufficient condition§ for the stability of the overall system

(1.2) involving only some properties of the “isolated subsystems”
x(O=F(t,x2)) a9

and the interconnection functions f; (-,+),j <i. The results in [4] can be
thought of as the Lyapunov counterparts to the input—output decom-
position techniques proposed in [5], [6]. Subsequently, Tang, Michel, and
Hale [7], [8] extended the results of [4] to the case where the function f; is
expressible in the form

Lt xy e x) = (X, (1.9

Once again, sufficient conditions for the stability of the overall system
(1.2) are given in terms of the stability properties of the isolated subsys-
tems (1.4) and the functions fj;.

In the present paper, the focus is on systems of the form (1.1) with
nonadditive interactions, i.e., where the function f; may nor be expressible
in the form (1.5). We then introduce the “isolated subsystems™

x,-(t)=j;(t,0,- i ao’ xi(’))

» X )+t x;).

(1.6)

and show how the decomposition techniques in [4], [7], [8] are related to
the above. Finally, in the main results of this part of the paper, we show
that the overall system (1.2) is uniformly asymptotically stable (respec-
tively exponentially stable, globally exponentially stable) if and only if
each of the isolated subsystems (1.6) is uniformly asymptotically stable
(respectively exponentially stable, globally exponentially stable). We also
present some conditions for the global asymptotic stability and the
instability of the overall system (1.2), but these conditions are not as
elegant as the others. The main tool used to accomplish all this is the
converse Lyapunov theory.

In the next part of the paper, we study control systems described by

Z(D=g(t,2,(1):* 2 (Do 1y (2),- - -, 1 (2)),

where z,(?),---,2,(¢) are the state vectors and ry(s),---,r{r) are the
control functions. We show that, by renumbering and aggregating the
state vectors as well as the control vectors, the system (1.7) can be
rewritten in the hierarchical form

ii(l) =f{t.x (D, - . 2D, (D), - - (D)),

We show that the system (1.8) can be stabilized by a decentralized
control law if and only if the isolated subsystem

x‘i(t) =.ﬂ(t10’ 0,--- 9"i(’))

can be stabilized.

This paper is organized as follows. In Section II, we present the
graph-theoretic technique for decomposition into hierarchical form. In
Section III, we present all of the main theorems of the paper. A brief
discussion of these theorems is contained in Section IV. Appendix I
presents several preliminary results and definitions that are needed for
the proofs of the main theorems, which are contained in Appendix IL.

i=1--,k (17)

,m. (1.8)

i=l,...

-,0,x5,(1), (19
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