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I. Introduction 

Muck of the phenomena of the real world is nonlinear and should 

be analyzed using nonlinear differential equations wirhsut.recourse 

to linearized versions of these differential equations which, when 

solved, yield answers strikingly different from the observed pheno- 

mena and, hence, having little value as a mathematical model. Many 

of the control systems encountered today have essential nonlineari- 

ties resulting from the physical limitations of the devices employed. 

In order to obtain meaningful results from the mathematical model, 

satisfactory methods of analysis must be found for both.::ttpe case 

. of deterministic inputs and the case of stochastic inputs. Suit- 

able analysis techniques are needed as a first step in the develop- 

ment of synthesis techniques. 

Below are presented some of the currant techniques employed 

in the analysis of nonlinear systems with stochastic inputs. Also 

mentioned are the limitations associated with each of these methods. 

11. The Ana-lysis sf.Nonlinear Control Systems with Random Inputs 

According to R. C. Boston (1953), who first introduced the 

technique , the method of statistical linearization , is an inexact 
method of allowing systems with a certain class of nonlinearities, 

subject to random inputs, to be analyzed. The class of nonlineari- 

ties allowing the method of statistical linearlizations to be used 

are zero-memory nonlinearities ,in both open loop and feedback con- 



Zero-memory,nonlinearitiea are those nonlinearities with res- 

ponses determined completely by the instantaneous amplitude of the 

input  to the element. (The method does mot apply to  nonlinearities 

witk memory, e.g., hysteresis). 

The purpose of the analysis is to allow the computation of 

tihe probability denisty function ( p d f . )  of the output when the 

pdf of the input is known. The configuration and nonlLneatitias 

of the system mst be kenom before the method of statistical linca- 

riza.tisn can be applied. 

The method involves replacing the nonlBnaar elemat of the 

system by a linear element witk a parameter. The paraPeter, the 

equivalent gain, Keg, is evaluated by statistical coasideratiows. 

After the gain is evaluated the analysis of the whole system pro- 

ceeds usfag the methods of linear systems. 

The relationship between the output, y, and the input, x ,  ~ Q K  

zero-memory nonlinearities can be expressed as y 2 f ( x ) .  The method 

of' statistical linearization involves assuming the fsm of 

y : Keg x + XH as the input-output relationship and neglecting x ~ : : ,  

the "distortion function". Keg is chosen by satisfying the cri- 

terion of minimizing the-mean square error, [y - Keg x I2 .  , 

The mean square error is determined by applying the funda- 

mental theorem of expectation, as shorn below: 



By df f f@rawtiat i~g  FB w i t h  respect to Keg and s e t t i n g  the result 

equal to  zero an equat,fon results which can be solved for the 

value ~f Keg that miaimirea M. 

ad 

t o  Kc., = j-, x f tr)  $?t(x)& 
J . . x 2 ~ c x l - A  

The method of stat stical Linearization is especially well 

adoptad to gatussian inputs since, after tba conversion of the non- 

lingsr system to an approximate linear system, the theory of 

linear systems assures that every variable in  the s y s $ a s  is gaua- - 

siawly d i s t r i b u t e d  and so, therefore, is the output. 

Under the assumptisa of a gaussiaa input  t h o  expression for 

the computation of the Keg is greatly simplbf Led. The pdf ,  0 %  the 

- ( X - R ) ~  
input to the .onlinearity approxi~s . t io .  is f?i 11*d ls we qa 

= 6; + ( ~ l x 7 ) '  

The nonlinearity is saw replaced by the linear systems with 

Keg, The resulting linear s y s t e a  i s  analyzed using the usual linear 

system analysis teehaiquas. 

According to Esotsn (1953), the above analysis is also appli- 

cable to servomachan%sms and feedback control systems with unity 

feedback. The method of tatatierieal liwearieation f5 not so 

straight forward for these confisutatkn;c and lsoda t o  an aaaalyat~ 

cquivaleat t o  the m a l y a i s  0 %  a linear system with a parameter, 

The result  of the anaPyais indicate6 that wu%t%nodal bekavisr sf 



t h e  response is indicated.  

This  type of  response is  physica l ly  v e r i f i e d ,  bu t  the  method 

of  s t a t i s t i c a l  l i n e a r i z a t i o n  does not  p red ic t  when t h e  response 

w i l l  be of  a p a r t i c u l a r  mode. 

In  a more cecent  wo,.yk, Pervozvanskii (1965) has general ized - 
t h e  method of s t a t i s t i c a l  l i n e a r i z a t i o n  and extended i t  t o  nonlinear  

time-varying systems. 

An example of  s t a t i s t i c a l  l inaa rbza t ioa  fs given i w t h e  

appendix. 

- > 

I .  Approximate Analysis of  Monstatiaaa~r Nonlinear Systems &g 

Semiinvar iants 

The purpose of the  ana lys i s  is t o  f ind  the  p robab i l i ty  den- 

s i t y  function (pdf) of the  output o f  a system which cart be repre-  

sented  as a nonlinear ,  time-varying, d i f f e r e n t i a l  equation of  the 

fom w-5 c * ( x c R ~ * ) + & ( ~ )  ~ ( f )  , where w ( t )  is  

white gauss ian  noise.  

A s  shown by M. L. Daskevskii (1966$1967), t h e  method involves 

a genera l i za t ion  of a technique t h a t  is  very fami l i a r  from e t a t i s -  

t i c s .  Recall  the  f ami l i a r  technique o f  using t h e  c h a r a c t e r i s t i c  

function,  M =  E [ e'j8XJ , t o  c a l c u l a t e  the  moments o f  the  va r i ab les ,  - . The function y = In  H, 

c a l l e d  the  "second c h a r a c t e r i s t i c  function", was used t o  compute 

% a Q  
t h e  semi- invariants ,  1 . k  .= (-#) 

. I (Thi.s method can bc p p" 
a 

found i n  the  exerc ises  of Wozencraft and .Jacob< PRZECIPLES OF 

cOIW %CAT%ONS) .  The genera l i za t ion  involves extending the  techni-  



que t o  the  case  when a l l  the  above q u a n t i t i e s  a r e  functions of time, 

8 s  0 
a r e  the  two genera l i za t ions  upon which the  method is based. 

From the Fokker-Ftanck or Kolgmogorov's equation the  p a r t i a l  

d i f f e r e n t i a l  equation for t he .  gdf o f  the  output  

- - - & [ l ~ b 7 f ) ~ ( ~ , ~ 1 ~ ~ &  is manipulated i n t o  an integro- , 
p a r t i a l  d i f f e r e n t i a l  equation i n  M (ge))) 7 0 (~ , ; t )  ., @(x, .), and 4-0 : 

v aM(.$?t-) = 
3 lP po e ~ - ~ x " ) a ~ . ~ < * ~ 9 ~ + ~ . . v ~ x ~ + ) 9 ~ ) G L x - ~ + j  B - ~ ~ g ~ ~ ~ < 2 1 ~ ~ .  

Prom the  equation v(?, f ) = n (3,--) t he  

in teg ro -pa r t i a l  d i f  f e r e n r i a l  equation involving W(3, t )  , b ( t )  , a (x , t )  s 

a y b  t) - ~ ( ? ~ t ,  cx)  and p (x , t )  a r e  obtained: 2 7 .  = e ;i..yxc:tI 

a t  jgJ-& e .~xct~,~r(xcti,+~Jx~~) - ezct,.g72 
Mow, differentfast ing the  above with respect  toZ;', mult iplying 

by (-j), and s e t t i n g  %= 0. 
EO - i$x 1 -  1 i+g ( ~ X - Y ' ( ~ , ~ ) ) ] . ~  (x,+)e dg:x, $1 JA 

5 =" 

Yielding: ' 

A ~ I c t j  - - a2 ylID,t) - 
- (-  j) agaf =l-$x( t ) , t )  p ( x ( t ) , t )  dx(t1. 

By taking (-j) 
a"zi 

t o  opera te  on t he  above 

y ie lds :  

dXJfL - ?_3Wta -4 t)- - J 7 r- iL) a (~(t),t)~(x(t),t)dx(t)+b~(t). 

a&%, -@ 

Simi la r ly  the  above operation is continued u n t i l  

+- 7 

I 1 .+) Ax3 (t- d a  tl a,,d o, l i g l  a -  3 x- a r e  obtained. 



The hk(t) arc the semi-invariants and are of fundamental 

importance in the method. The still unknown p (x(t),t) is expanded 

in an Edgeworth series which involves the unknown lower parameters 

Xi (t), h,(t) ,A (t), h+(t), and XS.(t). The above integro-differential 

equations are solved simultaneously for the>k(t), k s 1,2,. . . , 5 ,  

and used in the Edgeworth series as a good representation of the 

pdf ,  p(x(t),t), of the output. 

Only a finite number of the ",' are solved for sioul- -2r 
taneously to keep the work load as low as possible. ft is assumed 

that all \k(t) = o for k 2 6 .  

The power of this method lies in the fact that it easily hand- 

les the time-varying nonlinear differential equations thae have 

general nonlinearities involving time. 

Owe of the main drawbacks of the method is that the nuaber of 

integro-differential equations that must be solved simoltaaeously 

in order to obtain the required seni- invariants greatly . increases 

as the order of the differential equations describing the system 

increases. 

IV. Vol terra Functioxatsl Analysis of W~nlinear Tine-Varying Sys terns 
with Random Inputs 

According to Y. W. Ku (196531967), the recent Volrerra func- 

tional method is extrenely powerful in that it can be used to analyze.: 

systerns that can be represented as differential equations that are 

nonlinear, time-varying, and that have dererministic or stochastic 

inputs. 



Since t h e  method o f  ana lys i s  f o r  t h e  case  of  s t o c h a s t i c  inputs  

i s  very similar but S l i g h t l y  wore complicated than the  analys is  f o r  

t h e  case  of de te rmin i s t i c  inputs ,  the  de te rmin i s t i c  case  w i l l  be 

discussed here f i r s t .  The method i s  app l i cab le  when the  systems 

can be represented by d i f f e r e n t i a l  equations s f  the  following £om: 

5 )  Z(D)x(t) a F(x,G,. . . ,x - 1 )  = .(t), D=& 

n-1) 
ii) t ( ~ ) x ( t )  f g ( t )  ~ ( x , ; ,  . . .x(  & r ( t )  

iii) L(t;D)x(t) f F ( x , ~ ,  . . . ,X (a-1)): r ( t )  

i v )  L(t;D)x(t) -I- g ( t )  ~(x,;,. . . ,x (n - lh , ( t )  

where L(t;B) denotes a l i n e a r  operator  i n  both t and D; F i s  an ~i 

a n a l y t i c  nonlinear  function of  t h e  response, x ( t )  , and i t s  time ,.i 

d e r i v a t i v e s ,  g ( t )  denotes a function of time, and r ( t )  denotes 

t h e  input ,  e i t h e r  determinis  t i e  o r  a sample function { T ($1, - 4 f~ ~3 
from a s t r i c t  sense s t a t i o n a r y  source wi th  bounded moments o f  a l l  

orders .  

For z(D) x (t) - b ~ ( x , i ,  ..., x (n-l)) = r ( t )  and a determinis- 

t i c  r ( t ) ,  t he  method y i e l d s  a s o l u t i o n  of the  f o m  x ( t ) =  
n' 1 

and where the  kernel  f o r  t h e  n t h  term is an n - dimensional ker-  
C 

n e l  h, (tl,  tzO. .  ., tn) .  Thus, t h e  method is a genera l iza t ion  of 

the  convolutdsn i n t e g r a l  used i n  l i n e a r  system ana lys i s .  Indeed; 

the f i r s t  t e r n  of  the series, xl ( t ) ,  is simply a convolutLon s f  

the f i r s t  i n p ~ t , r ( t ) ~ a n d  the  impulse h l ( t )  of  t h e  l i n e a r  por t ion  

o f  t h e  gverall system. Recurrence r e l a t i o n s  e x i s t  for computing 



t h e  Vol ta r ra  kernels  i n  t e r n s  of previous kernels  and previously 

computed terms o f  the  s e r i e s .  These recurrence r e l a t i ~ n s  make 

the evaluat ion  s f  t h e  severa l  convslut ians l e s s  tedious. 

Only a f i n i t e  number of terms o f  the s e r i e s  a r e  required t o  

c l o s e l y  approximate t h e  nonlinear  sps ten ,  A s i t u a t i o n  analogous 

t o  the  use  of  a f i n i t e  number of terms s f  a Four ier  s e r i e s  t o  

represent  a function. 

For L(t;D) x ( t )  + P ( x , ~ ,  . . . ,x - =  r (t) and a de te rmin i s t i c  

r ( t ) ,  t he  method is very s i m i l a r  t o  t h e  method fo r  the case  given 

above except: t h a t  ins tead  of  using an impulse response h l ( t )  f o r  

c a l c u l a t i n g  x i  (r)  , t he re  is  a time-varying system function k l  ( r  ,T) 

such t h a t  x l ( t ) =  The k i ( t , T )  can be found by 

f i r s t  f inding Kl( t , s )  by Zadeh's method and inverse Laplace t r ans-  

forming. 

The o the r  tvo cases  of  a non l inea r i ty  of  the  f o m  of g ( t )  

F (  . , , x ~  t r e a t e d  i n  the  same way as t h e  above two cases.  

Th& ana lys i s  of  t h e  four d i f f e r e n t  dorms of  d i f f e r e n t i a l  

equations f o r  the  case  of a  s t o c h a s t i c  input  deviatesonly s l i g h t l y  

from t h e  ana lys i s  f o r  t h e  case  of a d e t i r m i n i s t i c  input.  For t h e  

d i f f e r e n t i a l .  equation o f  form i). . 

£0)  x ( t )  + ~(x,;,. . . , x = r ( t )  where 1 (t) - DO f4?] 

is a sample function from a s t r i c t  sense  stationary source with 

moments of a l l  orders  bounded, t he  l i n e a r  systems is  given by 

Z(D) x l ( t ) =  r ( t ) .  The so lu t ion  for  the l i n e a r  p a r t  is q ( t )  = 
L 
A I h l  ( t - ~ ) r ( ~ ) d ~ ( l !  where bl ( t )  represents  the  inpulse  response 



of the  l i n e a r  por t ion  system. Denotiug t h e  ensemble average of  

r(t) and x ( t )  by <r(t$& and (x(t$$ and applying these  averages 
t 

t o  both members of (i) gives  = ( f - 7 )  < Y ( T I > ~ ~ T  

where the interchange of expecta t ion  and in tegra t ion  has taken 

p lace  and x l u  (t) is  t h e  response of  t h e  system t o  a de te rmin i s t i c  

u n i t  s t e p  function U ( t ) .  Po+ t h e  higher order  t e r n  < ~ i ( t ) ) ~  = 

< ( )  X i u ( t )  where the  (ri(rOr is t h e  it& n o m n t  of  t h e  input - 
and Xi, is a r e s u l t  i d e n t i c a l  t o  the  d s t e m b n 8 s t i c  case  with 

r(t) ' U(t). 

The o t h e r  forms ti ,  iii, and iv,  of t h e  nonlinear  d i f f e r e n t i a l  

equations are t r e a t e d  i n  exact ly  the  same way except t k a t  fo r  L(t;D) 

the system funct ion  is used. A l l  follow the form $t(r))x = 
c-5 

(ri(t)) XiU (t) with (~(t)) -$ <xi(t))X being t h e  f i n a l  
i s  1 

so lu t ion ,  

A s  Ku mentions, t h e  method described above is less tedioas when 

d i g i t a l  computer programs are used i n  performing t h e  convolutions 

and sumat ions  . 
An exasple us ing the  Vol te r ra  functional ana lys i s  is given in 

t h e  appendix. 

Seauential Esti.nation of S t a t e s  and Parameters i n  Eoisy Bonlinear v* -- 
a i a i n t c a l  S y e , t x  

Put  forward by D. M. Detchmendy and 8. Sridhar  (1966) t h i s  

Betlied is  one o f  the  most prorrrtsiszg i n  t k a t  i t  caw y i e l d  an e s t i -  

. A  
mate of X, x, when X = g(xgt) 9 k(x , t )u  and y ( t )  = h(x, t)  

(observation e r r o r )  w?iere U represents  an unknown input .  



This  method uses a v a r i a t i o n a l  approach and then uses inva- 

r i a n t  imbedding equations t o  so lve  the  r e s u l t i n g  two point  boundary 

value problem. 

An fmportant advantage is t h a t  the es t imator  obtained by t h i s  

scheme can be implimented i n  r e a l  time. 

There is  a l s o  the  p o s s i b i l i t y  tha t  t h i s  method can be used i n  

conjunction with s t a t i s t i c a l  l i n e a r i z a t i o n  i n  helping t o  determine 

t he  ga in  for the feedback configurat ion,  when, as mentioned above, 

the  ana lys i s  proceeds as with a l i n e a r  system with a pa rmete r .  

V%. Proposed Area of  Research 

I n  summary, we have t he  following four methods o r  too l s  t o  

apply t o  nonlinear  systems with s t o c h a s t i c  i n p u t s :  

(1.) The method of s t a t i s t i c a l  l i n e a r i z a t i o n  can be appl ied  
t o  con t ro l  systems of  tkc  following configurat ions:  

where U ( t )  i$ white gauss ian noise and the  non l inea r i ty ,  M.L. is of 

an acceptable t y p e  (zero-memory b u t  t imervarying o r  t ime- invariant) .  

Lp and L2 i n  the  above are l i n e a r  systems. 



2 . )  The method of semi-invariant@ is applicable t o  the 
following configuration: 

I,-,,,,,,,,,,,,,,,,--------"-----------: 

or any configurat5on that allows a nonlinear differential equa- 

tion to be expli&ity written. Again, U(t) is gaussian white noise. 

The precision of the results using the method sf semi-invariants 

is much better than the method of statistical linearization and 

it can be used in the analysis of a larger class of nonlinear 

systems ( i . e . ,  time-varying'nonllinearfties). 

( 3 . )  The Volterra functional analysis method is applicable 
. if the system can be formulated as a differential 

equation with a linear pa t and a nonlinear part of 
the form g(t) I?(%,$,. . . ,x ). The only approxima- 
tion involved in this method is that of using only a 
finite ns~~nber of the terms in the series. The random 
inputs must be strict-sense stationary and have all 
movements bounded. 

(4.)  The sequential estimation method is good in that it 
can be used whcin the input is a composite of control 
function and noise. The allowed system configuration 
is: 

where U(t) and V(t) are unknown noises and G ( t )  is a deterministic 

control force. 



The response of a l i n e a r  system subjected t o  s t o c h a s t i c  inputs  

and a de te rmin i s t i c  con t ro l  force  canc.be obtained by adding t h e  

response of  the  system due t o  the  s t o c h a s t i c  inputs  alone t o  the  

response of t h e  sys ten  due t o  the  de te rmin i s t i c  c o a t r o l  force  

alone. That t h e  sum of the  responses t o  the  individual  inputs  is 

the  responses o f  the  system t o  the  combined inputs  follows from the 

v a l i d i t y  o f  the  superpos i t ion  p r i n c i p l e  f o r  l i n e a r  systems. 

A comsn c h a r a c t e r i s t i c  of three of t h e  fou r  approaches t o  the 

a n a l y s i s  o f  nonlinear  systems subjec ted  t o  random inputs  given 

above was the  absence o f  a de te rmin i s t i c  con t ro l  force.  No such 

convient superpos i t ion  p r i n c i p l e  e x i s t s  for nonlinear  systems 

s o  t h a t ,  i n  genera l ,  the  response of a nonlinear  system t o  a 

s tochns t fc  input  and a de te rmin i s t i c  input  i s  not the  sum of 

the  response due t o  the  s t o c h a s t i c  p a r t  a lone  and the  response 

due t o  the  d e t e q i n i s t i c  p a r t  alone. Because superpos i t ion  i s  

not  v a l i d  f o r  nonlinear  systems, the  response t o  s t o c h a s t i c  in-  

puts  alone i s  o f  no value i n  t s y i c g  t o  determine the  response 

t o  s t o c h a s t i c  inputs  and a de te rmin i s t i c  cont ro l .  

I n  the  proposed research,  it is my d e s i r e  t o  attempt t o  

so lve  the  problem s f  ana lys i s  o f  nonlinear  systems subjected t o  

s t o c h a s t i c  inputs  and de te rmin i s t i c  con t ro l .  I would a l s o  l i k e  

t o  consider  t h e  proble~n of  f i t t e r i n g  under the  above condit ions 

when t he  observation i s  contaminated by measurement noise.  Ply 

approach w i l l  be t o  learn.how t o  der ive  the  Stratofiwich-Kusbner- 



13 

Bucy f f t t e r i n g  equation f o r  t h i s  general  nonlinear  system having 

s t o c h a s t i c  and de te rmin i s t i c  imputs and t o  l e a r n  the  I t o  and 

St ra tonavich ' s  approach t o  manipulat ing t h i s  equation. I would 

then t r y  t o  generalfze the  four approaches mentioned above t o  

t h i s  problem. 

Another approach t o  the  problem t h a t  1 plan t o  take i n  

the  proposed research  w i l l  be i n  following the  l ead  of  a recent  

paper by H. F. VanLandingham and W. A. BlBckwell (1967) on the  

design of a technique t h a t  generates a con t ro l  s ' ignal which forces 

tho s t a t e  of  a nonlinear  p lan t  t o  be c l o s e  t o  the  s t a t e  of a 

model by ingeniously applying Liapunov's second method. 

The system conf igura t ion  is shown below. 

The model used i s  a l i n e a r  antonornous system and represents  

" ideal" systein behavior, The s t a t e  va r i ab le  r ep resen ta t ion  of 

t h i s  model is &J = Ao Xd f Bo r ,  where Xd is  the  s t a t e  of the  - 
l i n e a r  coaskan~t system model, i s  t h e  inpu t  vector ,  and A 6  and 

Bo a r e  cons tant  matr ices.  

The a c t u r a l  nonlinear  system is  charac ter ized  by the  non- 
C 

l i n e a r  d i f f e r e n t i a l  equation 5 = f(x,G, t ) ,  where H is the  a c t u a l  

s t a t e ,  is the  de te rmin i s t i c  con t ro l  vector ,  and t is time, 



The e r r o r ,  =, is defined as Xd__ - and can be conviently 

e 
manipulated i n t o  the  d i f f e r e n t i a l  equation 2~ g + p . ~ s  - 
f (x ,c ,  t )  + Bo r.  

Liapunov's second method is  appl ied  t o  th id  d i f f e r e n t i a l  

equation by assuming a form f o r  t h e  Liapunov function of 

'f V = e Be, where P is  a symmetric p o s i t i v e  d e f i n i t e  matrix. The 

d e r i v a t i v e  of V with r e spec t  t o  time is 

h de te rmin i s t i c  cont ro l  i s  synthesized t h a t  makes V negative 

d e f i n i t e .  This condit ion ensures t h a t  the  error, 2, is  a s p p -  

t o t i c a l l y  s t a b l e  and, hence, goes t o  zero. 

B!y proposed research on t h i s  aspect of the  prsblern w i l l  

be t o  i n v e s t i g a t e  the  p o s s i b i l i t y  s f  replacitng the Liapu~.ov 

funt ion  of the  Be temin i s  t i c  case with s"stoches t i  c  Eia;pria;raov 

function" i n  synthes iz ing  a t o  ensure 2 t o  be asymptotical ly 

s t a b l e  'and thus genera l ize  the  above method t o  the con t ro l  of 

nonlinear  systems with random inputs .  

The use  of s t o c h a s t i c  Liapunov functions has received a 

good deal  o f  a t t e n t i o n  i n  t he  las t  three Kushner (1967) 

has done q u i t e  a bbt  i n  t h e  a r e a  o f  s t o c h a s t i c  Liapunsv functions.  

In working with s t o c h a s t i c  Liapunov functions,  I realize 

t h a t  t h i s  p a r t  of the  research w i l l  be l e s s  p rac t i ca l- or ien ted  

s ince ,  a s  Kushner (1965) mentioned, a shortcoming common t o  

both de te rmin i s t i c  and s t o c h a s t i c  Lfzpunov functions is  the  

d i f f i c u l t y  o f  f inding them. 



VII. Appendix 

S t a t i s t i c a l  Linerezatdon Exmale 

The figure below shows a nonlinear element representing 

saturation with a dead zone. 

In equation form, Y (t)  Z. f ( t ]  , where X ( t )  is  a zero 

mean gausstaa random process with u n i t  variance and having a 

pdf OE P, (x): exp(-+~'i*). w 
The assumption wade is that  X g ( t )  is n s g l i z i b l e  i n  the 

representation Y (t) = Keg X ( t )  Xn (t). Therefore Xg ( t )  
A 

i s  .dropped, y i e ld ing  Y (t) = Keg X(t) . 
The mean squared error which is  to  be  minimized as the 

A 
c r i t e r i o n  s a t i s f i e d  by t h i s  technique i s  [~ ( t ) -Y  ( t ) j  ' ' [ ~ ( t )  -ICeg ~ ( t ) ]  2 

So Keg i s  to be chosen t o  rtltniniee 

The general r e s u l t  for Keg, s h o r n -e a r l i e r ,  is  

- Keg - 9 



W 

In the above px = 0 since r x  = j'.'.& w -m 
under x '= -X  

and the only quantity equal to i t s  negative i s  zero. 

Evaluating the expression for Keg i n  terns of the appropriate  

value of f (x) y ie lds :  

Substituting i n  the pdf yields: 

Using symetry properties of even f u n c t i d ~ s  and shuffling the 

integrals  around yields: 

To further s impl i  fyi:lhe above express ion for Reg three 

integrations by pcrts are c a r r i e d  out below. Use is made of the 

errof f m c t  ion. 
oQ 

i.1 J,@ r e e x % ~ x  - H z +  L J  =-%# = -e -&I+w = - e-wt&z= C-z. 
















