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|. Introduction

Mick of the phenomena of the real world is nonlinear and shoul d
be anal yzed using nonlinear differential equations without recourse
to linearized versions of these differential equatiomns which, when
solved, yield answers strikingly different fromthe observed pheno-
mena and, hence, having little value as a mathenatical nodel. Many
of the control systenms encountered today have essential nonlineari-
ties resulting fromthe physical limtations of the devices enpl oyed.
In order to obtain neaningful results from the mat hematical nodel,
sati sfactory methods of anal ysis nust be found for both:the case

. of determnistic inputs and the case of stochastic inputs. Suit-
abl e anal ysi s techniques are needed as a first step in the devel op-
ment of synthesis techniques.

Bel ow are presented sone of the currant techni ques enpl oyed
in the anal ysis of nonlinear systens with stochastic inputs. Al so

mentioned are the |imtations associ ated with each of these nethods.

1I. The Analysis of Homlinear Control Systens w th Random | nput s

According to R C Boston (1953), who first introduced the
techni que , the nethod of statistical linearization , is an inexact
met hod of allowi ng systens with a certain class of nonlinearities,
subj ect to randominputs, to be analyzed. The class of nonlineari -
ties allow ng the method of statistical linearlizations to be used
are Zer0-Nenory nonlinearities in both open loop and feedback con-

figurations.



Zero-memory nonlinearities are those nonlinearities wth res-
ponses det erm ned conpl etely by the instantaneous anplitude of the
fnput to the elenent. (The nethod does not apply to nonlinearities
with nenory, e,g., hysteresis)

The purpose of the analysis is to allow the conputation of
the probability demisty function (pdf.) of the output when the
pdf of the input is known, The configuration and nonlinearities
of the systemmust be known before the nethod of statistical linea-
rization can be applied.

Th2 method invol ves repl aci ng the nonlinear element of the
system by a linear el enent with & parameter. The parsmster, the
equi val ent gain, Keg, is evaluated by statistical comsideratioms,
After the gainis evaluated the analysis of ths whole system pro-
ceeds using the methods Of limear systens.

The rel ationshi p between the output, y, and the input, x, for
zero-nenory monlinearities can be expressed as y = £(x). The method
o' statistical linearization involves assumiag the form of
y = Keg x # xy as the input-output relationship and neglecting xyg .»

the "distortion function". Keg is chesen by satisfying the cri-

terion of mnimzing the mean square error,[} - Keg x]z.

The mean square error is determined by applying the fuunda-
mental theorem of expectation, as shown bel ow

nely — Kox Fely - T} Elrosedl] -
-[: ['H*)‘Kc’gxrf, ) dx = 5 : £0x) P (x) dx - zl(eg.f_:x Foo feoadx

+ Keg §__ %2 fe I .



By differentiating M with respect to Keg and setting the result
equal to zero an equatiom results which can be solved for the
value of Kggy that minimizes M,

%_-%;; 2§ xfwo #Px () dx + 2 Keg [ X* e () ok = 0

o Keg = _fw_x_fww(mcla_

é” X% Fe () dx _ .
The method of statistical linearizatiom s especially well
adopted tO gaussian inputs gince, after the ceaversior of the non-
linear system t0o an approximate |inear system, the theory of
| i near systems assures that every variable in the system is gaus-
sianly distributed snd SO, therefore, IS the output.

Under the assumption of a gaussiam input the expressiomn for

the computation of the Keg is greatly simplified. The pdf, of the

%)%
input to the nonlinearity approximation is fx ()= o * g?r"z
o | . ZIT
.f_,a X* g o = E(x) = ¢+ (Elx1)

(a4 —
. | -1 (X=X
So Keg = j-“ X O Trw et %
02+ X*

The nonlinearity is saw replaced by the linear systems Wi th
Keg, The resulting linear system is amalyzed using the usual linear
system analysis techniques,

According to Booton (1953), the above analysis is also appli-
cable to servemechanisms and feedback control systems with unity
feedback. The method of statistical limearizaticm is not so
straight forward for thase configurations and leads to sn analysis
eguivalent to the aanlysis of a lisear system with a parameter,

The result of the analysis indicates that multimodal behavior of



the response is indicated.

This type of response is physically verified, but the method
of statistical linearization does not predict when the response
will be of a particular mode.

INn a more vecent woyk, Pervozvanskii (1965) has generalized

the method of statistical linearization and extended it to nonlinear
time-varying systems.
An example of statistical linearizationm is given in the

appendix.

Approximate Analysis of Hounstationarvy Nonlinear Systens By
Semiinvariants

The purpose of the analysis is to find the probability den-
sity function (pdf) of the output of a system which can be repre-
sented as a nomnlinear, time-varying, differential equation of the
form %ﬁﬂ: o (X ¢k 1) + £ ) wer) y Where w(t) is
white gaussian noise.

As shown by M, L. Dashevskii (196651967), the method involves
a generalization of a technique that is very familiar from statis-

tics. Recall the familiar technique of using the characteristic

function, M= E[ el18%] , to calculate the moments of the variables,

—_— A
k o (= g f‘ M | 1 P
X ( ]’) B%ﬁk o . The function Y = 1n ¥,
called the "second characteristic funition", was used to compute
S N Ll '
the semi-invariants, )\Z{ = (-g) _ gp( 30" (This method can be

-
7

found in the exercises of Wozencraft and Jacobs PRINCIPLES COF

COMMUNICATIONS). The generalization involves extending the techni-



gue to the case when all the above quantltles are functlons of tlme
Xﬁz,,--kéMgg) ¢ i b3k Ytz
a%’, B%
are the two generalizations upon WhICh the method is based.

‘3?;::0

From the Fokker-Planck or Kolgmogorov's equation the partial

differential equation for the.pdf of the output 9 éif 1)
[3-7()( i‘)a(&ﬂ]’ffif} _ iS manipulated into an integro-

partlal differential equation in H(;;)*)g o (x40, /p‘(x, ), and ,6

BM(?« t)
/7 i #xd by +) diig) = EH 2 ey
From the equaugn eq/ §’+)0L(XL|¢H 1?1.) (j; )) +) x(*) z } ﬂi ?)ﬂ-

integro-partial differential equation involving W(g, t),b(t),a(x,t),

3-j)t(”

d p(x,t) btained: 3¥{z.1)_ ¥ (got)
and p(x,t) are obtaine a(Xi’) {’)W(X(ﬂ?{')(}x([—)

of 1% L,
/At .g/z
Mow, differentiating the above with respect to %, multiplying

by (=3), and setting %= 0. - .
Yields: o ¥(z,1) ﬁ eVt | Lf%"f(d'x-‘f"(%ﬂ)]'a(xpf)e“(?}:(xy 1) dx .

éa,éf -0
) “W)g | 5=s

Yielding:

c/)\i(ﬂ it
- (- j)ag,s,. ={2aG(©),0) p (0,0 ax(o).

By taking(-j) 2 to operate on the above

o7
yields:

AN Fhat)- ) ( T a (x(€), 0p((6), D)ax (42 (e).
a,'?}&f - od
r'd 4
dut) d =)

Similarly the above operation is continued until

i}?lﬁ ; "[ M ﬂ 9 and D%E‘Lﬂ are obtained.

C



The >\k(t) arc the sem-invariants and are of fundamental
importance in the nethod. The still unknown p (x(t),t) is expanded
I n an Edgeworth series which invol ves the unknown | ower paraneters

)ai(t), ?\z(t))\s (t),>\l+(t:), and >\y(t). The above integro-differential
equations are sol ved sinul taneously for the)(&(t), k=1,2,...,5,
and used in the Edgeworth series as a good representation of the
pdf, p(x(t),t), of the output. '

Only a finite nunber of the €£%§ﬁﬂ are sol ved for simul-
taneously to keep the work |oad as low as possible. It is assumed
that all )\k(t) =0 for k26,

The power of this nethod lies in the fact that it easily hand-
les the time-varying nonlinear differential equations thae have
general nomlinearities involving time.

Owe of the main drawbacks of the nethod is that the number of
integro-differential equations that nust be solved simultaneously
in order to obtain the required semi-invariants greatly.increases
as the order of the differential equations describing the system
I ncr eases.

IV, Volterra Functional Anal ysis of Houlinear Tine-Varying Systems
W th Random | Nputs

According to Y. 1, Ku (196551967), the recent Volterra func-
tional nethod is extremely powerful in that it can be used to analyze:
systems that can be represented as differential equations that are
nonlinear, time-varying, and that have dererministic or stochastic

i nput s.



Since the method of analysis for the case of stochastic inputs
is very similar but Slightly wore complicated than the analysis for
the case of deterministic inputs, the deterministic case will be
discussed here first. The method is applicable when the systems
can be represented by differential equations sf the following form:
i) Z(D)x(t) aF(x,;fc,...,x(ﬂ'l)) MO D:g‘t‘

1)  Z@x(E) +g(t) Flx,%,...x " Drr(e)

£11)  L(t;D)x(e) 4 Flx,x,...,x(B-1)}=  L(p)

iv) L{e;D)x(t) + g(t) F(x,:'z,...,x(ﬂ'l).zr(t)

where L(t;D) denotes a linear operator in both t and D; F is an «
analytic nonlinear function of the response, x(t), and its time .
derivatives, g(t) denotes a function of time, and r(t) denotes

the input, either deterministie or a sample function { T(f),) = oo <;(L4 m‘}
from a strict sense stationary source with bounded moments of all

orders.

For Z(D) x (&) +F(x,§<,...,x(n'1)) 2 r(t) and a determinis-

(o]

tic r(t), the method yields a solution of the form x{t)* xq(t),

Z

n®1
L o0 .

Xn (t) :j—w”“'soahn (TI,TZ:---,'fn)r(t'Tl)...r(t“Tn)dTl...dTn ;

and where the kernel for the nth term is an n - dimensional ker-

nel hy (tl, tgseeny tn). Thus, the method is a generalization of

the convolution integral used in linear system analysis. Indeed;

the first term of the series, x3(t), is simply a convolution sf

the first imput,r(t),and the impulse hj(t) of the linear portion

of the gverall system Recurrence relations exist for computing



the Volterra kernels in terns of previous kernels and previously
computed terms of the series. These recurrence relations nake
the evaluation sf the several convolutions less tedious.

Only a finite number of terms of the series are required to
closely approximate the nornlinear system, a situation analogous
to the use of a finite number of terms sf a Fourier series to
represent a function.

For L{t;D) x(t) 4 F(x,X,uuu,% (n—l))= r(t) and a deterministic
r(t), the method is very similar to the method for the case given

above except that instead of using an impulse response hi(t) for

calculating x1(t), there is a time-varying system function kg (t,T)
[

such that x1(t)° .[ogl(t,T)r(toT)dT., The k,(¢,T) can be found by
first finding K;(t,s) by Zadeh's method and inverse Laplace trans-
forming.

The other two cases of a nonlinearity of the form of g(t)
F(x,§,..,,x(“°l)bre treated in the same way as the above two cases.

The analysis of the four different dorms of differential
equations for the case of a stochastic input deviatesonly slightly
from the analysis for the case of a deterministic input. For the
differential. equation of form 1).

Z®) x(t) +Flx,%,..., 1) o (1) where { Y(i'),“wé;(_<_oa}
is a sample function from a strict sense gtationary source with
moments of all orders bounded, the linear systems is given by

Z ) x1(t)* r(t). The solution for the linear part is x3(t) =

J hl(t-T)r(T)dT(l? where hi(t) represents the impulse response



of the linear portion system. Denotiug the ensemble average of
r(t) and x(t) by {r(t))r and (x(t)z{ and ap‘tplying these averages
to both members of (1} gives <X1(f)7x = L fhl (+-1) <Y(’T7>fcl’i'

f L.
= Y% [ A - U dT = <1 Kgg H)
where the interchange of expectation and integration has taken

place and x1p (t) is the response of the system to a deterministic

unit step function U(t). For the higher order term <x1(t)>x
<ri(t)>r Xiju(t) where the <ti(t)>r is the ith moment of the input
and Xiuy 1is a result identical to the deterministic case With
r(t) ° U(e).

The other forms ii, iii, and iv, of the nonlinear differential
equations are treated in exactly the sane way except tkat for L{t;D)

the system function is used. All follg\év the form Qﬂt)}x -
Giqe)) r Xiy () with (o) < - 23 <x4(t)>, being the final
solution, i

As Ku mentions, the method described above is less tedioas when
digital computer programs are used in performing the convolutions
and sumations.

An example using the Volterra functional analysis is given in
the appendix.

V. Sequential Estimation Of States and Parameters in Boisy Nonlinear
Dynamical Systems

Put forward by b, M, Petchmendy and R, Sridhar (1966) this
tiethod is one of the most promising in tkat it caw yield an esti-
: A
rate of X, x, when X = g(x,'t) # k(xyt)u and y{t) = h(x,t) +

(observation error) where U represents an unknowa input.
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This method uses a variational approach and then uses inva-
riant imbedding equations to solve the resulting twe point boundary
val ue problem.

An important advantage is that the estimator obtained by this
scheme can be implimented in real time.

There is also the possibility that this method can be used in
conjunction with statistical linearization in helping to determine
the gain for the feedback configuration, when, as mentioned above,

the analysis proceeds as with a linear system with a parameter,

VI, Proposed Area of Research

In summary, we have the following four methods or tools to
apply to nonlinear systems with stochastic inputs:

(1.) The method of statistical linearization can be applied
to control systems of the following configurations:

U(t) o—d} N.L}——>X(t)

i K oL 1 T—X(t)

Jiil JIH T iz » X(t)

(=]
~~
rr
o’
o

+
3l

where U(t) {g white gaussian noise and the nonlinearity, ML {g of
an acceptable type(zero-menory but times-varying Or time-invariant).

Ly and L, in the above are linear systems.
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2.) The nethod of sem-invariant@is applicable to the
foll owing configuration:

L L T T Py R R Y R R Y ]

. xkt)

B oo

() o

cocnnene
]
~
(o4
-
-
Nt

€ S L R D PP O D DT G W D e O e

or any configuratdon that allows a nonlinear differential equa-
tion to be explic¢ity witten. Again, U(t) iS gaussian white noi se.
The precision of the results using the method sf sem-invariants
is much better than the method of statistical linearization and

it can be used in the analysis of a |arger class of nonlinear
systens (i,ez,, time-verying nonlinearities),

(3.) The Volterra functional analysis method is applicable
if the systemcan be formulated as a differentia
equation with a linear paxt and a nonlinear part of
the formg(t) Flx,%,...,x n-1 Y. The only approxima-
tion invoelved in this methed is that of using only a
finite number of the terns in the series. The random
i nputs nust be strict-sense stationary and have al

novenent s bounded.

(4.) The sequential estimation nethod is good in that it
can be used when the input is a conposite of control
function and noise. The allowed systemconfiguration

is:

OM 1)

U(e) . 'é{if\_}_ o N.L, -
G(t) y(t)

where U(t) and v(t) are unknown noises and G(t) IS a determnistic

control force
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The response of a linear system subjected to stochastic inputs
and a deterministic control force canzbe obtained by adding the
response of the system due to the stochastic inputs alone to the
response of the system due to the deterministic control force
alone. That the sum of the responses to the individual inputs is
the responses of the system to the combined inputs follows from the
validity of the superposition principle for linear systems.

A common characteristic of three of the four approaches to the
analysis of nonlinear systems subjected to random inputs given
above was the absence of a deterministic control force. ¥o such
convient superposition principle exists for nonlinear systems
so that, in general, the response of a nonlinear system to a
stochnstfc input and a deterministic input is not the sum of
the response due to the stochastic part alene and the response
due to the detergpinistic part alone. Because superposition is
not valid for nonlinear systems, the response to stochastic in-
puts alone is of no value in tyyirg to determine the response
to stochastic inputs and a deterministic control.

In the proposed research, it is my desire to attempt to
solve the problem sf analysis of nonlinear systems subjected to
stochastic inputs and deterministic control. | would also like
to consider the problem of fittering under the above conditions
when the observation is contaminated by measurement noise. My

approach will be to learn-how to derive the Stratetgvich~-Kusbier-
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Bucy fittering equation for this general nonlinear system having
stochastic and deterministic imputs and to learn the Ito and
Stratonavich's approach to manipulating this equation. | would
then try to generalize the four approaches mentioned above to
this problem.

Another approach to the problem that I plan to take in

the proposed research will be in following the lead of a recent
paper by H, F. VanLandingham and W. A. Blackwell (1967) on the
design of a technique that generates a control signal which forces
tho state of a nonlinear plant to be close to the state of a
reference model by imgeniocusly applying Liapunov's second method.

The system configuration is shown below.

T Xd G
_ o Model o Controller . Nonlinear X >
command Plant
signal

The model used is a linear antonomous System and represents
"ideal” system behavior, The state variable representation of
this model is Xd = Ao Xd + Bo r, where Xd is the state of the
linear constant system model, xr is the input vector, and A6 and
Bo are constant matrices.

The actural nonlinear system is characterized by the non-
linear differential equationg{’_ : f(x,6,t), where X is the actual

state, G is the deterministic control vector, and t is time,
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The error, e, is defined as Xd = X and can be conviently

——r

manipulated into the differential equation _e:z-: Ao ¢ + AoX -
£(x,G,t) + Bo r.
Liapunov's second method is applied to this differential
equation by assuming a form for the Liapunov function of
= ¢Tpe, where P is a symmetric positive definite matrix. The

derivative of V with respect to time is

v ogF [ P+ Pho] g_+{2gT[ AoX - £ (x,G,t) + Bo ;]}

h deterministic control G is synthesized that nakes V negative
definite. This condition ensures that the error, &, iS asymp-
totically stable and, hence, goes to zero.

My proposed research on this aspect of the problem will
be to investigate the possibility sf replacing the Liapunov
funtion of the deterministic case with a"stochastic Liapunov
function” in synthesizing a ¢ to ensure e to be asymptotically
stable'and thus generalize the above method to the control of
nonlinear systems with random inputs.

The use of stochastic Liapunov functionshas received a
good deal of attention in the last three years, Kushner (1967)
has done quite a bit in the area of stochastic Liapunov functions.

In working with stochastic Liapunov functions, | realize
that this part of the research will be less practical-oriented
since, as Kushner (1965) mentioned, a shortcoming common to
both deterministic and stochastic Liapunov functions is the

difficulty of finding them,
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M. Appendix

Statistical Linerazation Example

The figure below shows a nonlinear element representing

saturation with a dead zone.

Y
Xéﬂ . e 1{ — )

In equation form Y(t) = f [X(t)] , Where X(t) is a zero

mean gaussiam random process with unit variance and having a

. 1 4y
pdf of Px (X)’ W—: eXP( 2 X (ﬂ)e

The assumption made is that X yg(t) is neglizible in the
repreéentation Y(t) = Keg X(t) +XH (t). Therefore Xg (t)
A
is dropped, yielding Y(t) = Keg X(t).
The nmean squared error which is to be minimized as the
A
criterion satisfied by this technique is [Y(t:)-‘l(t:)J2 =[Y(t)-Keg X(t)] 2
2 [r@e) - keg x(0)] 2.
So Keg is to be chosen to minimize
o .
- 3 2
M= J [Y(t) -Y(t):l Px (x)dx
-0 )
The general result for Keg, shornearlier, is

Joor X £00) pe)dx :

Keg = 500 Xz /sz (X)OLX

-
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1 B 2
Sincepx(x)--v—?;—— &XF(%_X('H),
- % 2
o pde= I w0 e dk = 0ol = 1

Z.ﬂ

I

-

In the above }Jg:O since F*"fw

under x'=-X
and the only quantity equal to its negative is zero.

Evaluating the expression for Keg in terms of the appropriate

value of f(x) yields:
-2 -1 +1
Keg ‘[ §oo xet fx(x)clzx s ><(1+x)47xmdx +1, X-0° Px (x) clx
2 0o ;
+0 e pecades 5 xap0adk A

Substituting in the pdf yields:

Keg [I o X(1)e chom‘f (x+x2)e” olx+ S_?o
§1 ey e ¥y w5 x e VA

Using symmetry properties of even functions and shuffling the

integrals around yi el ds:

Keg = z[ (x*-x)e” ‘obxff-f X e "J/x ]/Va/:r

To further simplify:the above expression for Reg three
integrations by parts are carried out below. Use is made of the

erro¥ function.
o

) o0 _X% g i -
A jz xe oy = é‘ff e'ﬁvlﬁ’: ’@-ﬂfz}‘; = *e'm-#e"’": e

el e

i
= -zet ety VE o2, 6ud’u. -f~Ze +“+V—1["-rh
LG~
2 > X%t - L
,LM) ~X e Edx = % = e e ?

~erf(dz)
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Resubstituting into the expression for Keg giwes
kes = 2 e*-2e + €+ VT {erf (v2) -erf (fr Vre- % 4
= [edf 4z -erf (i) ]

The error function erf(f) is well tabulated,
From the expression for Keg, the expression for the estimate

of the output,
86 = Reg x(0) = [ erf (VE)- eff(%)] X (),

is obtained.
Volterra Functional Analysis Example

o & c‘%?; + 41 '%‘“’f?.yﬁ'}/ﬁz: Y (4)

r(t) is a stochastic imput having all moments '<ri (ti>r,i= 1,2,3,...,

known and bounded,

First, consider the method of VYolterra functional amalysis
applied to the deterministic case of r(t) = U(t), a unit step,
since the results of this analysis are required in evaluating the
case of a stochastic r(t).

The above ordinary nonlinear differential equation is of the
form L(t,D)Y(t)1LF(y,§,...,Y(“°1)) = r(t), so the method of
Volterra functional analysis is applicable.

In order to start the Volterra functional analysis procedure
it is necegsary to obtain the fmpulse response from the linear

portion of the nonlinear differential equation,
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Finding the impulse response involves appiying the varia-
tion of parameters method to the linear portion of the example,
The differential equation now being considered is |
¢? ﬁzﬁé + lsta{,‘?' 4+ 2Y = F(t)., To apply the method of variation
of parameters it is first necessary to have.the comﬁlementary or

transient solution which is the solution of the associated homeo-

geneous differential equation, ¢2 -‘iﬁ%-} bt 2{? +2¥Y 2 0. The

associated differential equation in this example 1s seen to be
of the Canchy type, ameanable to solution by the standard trick
of a change of independent variable using the substitution

t = e?, (Another method of obtaining the complementary solu-
tion would be to use Mellin transforms.)

The substitution requires evaluation of:

t=e% = z=lnt

S
B ing )
PSR
|
I
\
T ———y
e
o\
—_—
e
1l
—
I v
—~ '.:'--'.‘.____
S
\
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Then applying the substitution to the associated homogeneous
differential equation transforms the Canchy type differential
equation into a linear, constant coefficient, ordinary differential

equation as shown below!

t2 (}Lz[(ggz‘ﬁ%fj ) + 4t (J;%t)-fﬂ:o
or D2Y 4 3DY £ 2Y 5 0 '
or O+2)s«d+1)Y= O
From the theory of linear constant coefficient differential equua-
tions the complementary solution is Y(%) = C e-z%-;‘—‘,_:Cz e 7 ,
where Cjand C2are arbitary constants, Reversing the substitutiom

- _anf -Lni‘
used above, replacing by LNt yields Y(t)® €je +Cp e -

—G—L + Lo . That the complementary solution,}. and 1 ’
= %k t2 T

are indépendent:can be checked by observing that the Wronskian

i3 nonzero: 1 1/
v | 0 T |aii ez 1 40
2 - AN A
5° 5"

The linear differential equation tzé{;{lt+ bt 2%%/ + 2Y = F(t)
is of the form ap (t) DY + ap.1 (t) 1y F...F 8 o Y(t)FA(D,t)Y™ F(t)
and by being of this form has a particular solution, obtained
by variatii.on of parameters, o,f1 the form
Y(t) = fo Fs) [ﬁ:{‘iﬁﬂ'\@y é lgi(*)Wm (g)J J,_Z ,
where the Yi's are the n independent solutions of thz associated

homogeneous differential equation, W(%) is the Wronskian, and the
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ni (5) are the ni-th cofactor of the Wromskian, The Wromskian
is given by

Yig Y@ o Tn@
Vi Yep o0 Yap

......,..;f’ﬂ.'l‘

¢ " =

(1-1) (n-1) (”'”
Yi (» Y, (x) «-c Yﬂ

The quantity in brackets above is known as the om-sided

Creen's function and is denoted by g(t,g) m 2 ¥:(+) Wai (g)

The Green's function satisfies the useful property that the parti-
cular solution is given by Y(t) = fo F & (:t,g)(%a
For a differemtial equation of the type censidered in this

example the i_mpﬁlse response and the one~sided Green's functien

are identical. Therefore h(t,3) - {%(t,j) for 0<% <A

for A<F
1 1
N - o, W 3* ¥ 1
t e ' = - =%
or e present example (5,\ _%3 %z 34
R |
g ¥ 3
. o 1.1 - G2
and ‘éjY/. (f) Wn; (}) = ';T?. il- - g i» }; glt

0 , £<%

L\gn»

= *.:i o
Se /ﬂl(i,g) d(*,&) m*}) e (*) W‘nx ("}) 3‘(?) 35t ] {

The impulze response or Zadeh's systen function could hay

been obtained by Zadeh's method. The above approach was taken

here because of the genzral fewiliarity of the several techmiques

used.
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The techniques used in this example camn be found in DeRusso
or any good differential equatiouns boqk or book on the techkniques
of mathemati@%bhysics.

Returning now to the application of the Volterra functiomnal
analysis technique to the solution of the nonlinear differential
equation %" 55}-3’;_ +4T6[’L”+2?,+,‘}22 =y with a linear

portion impulse response represesnted using a notation in keeping

(kz) f>?
o :{ég

with that suggested in DeRusso of h¥ (t,t-z) = h(t,}) :{
The linear system is given by the convolution integral

t
Yot =3 by (1,4 7 () .

The quadratic and cubic systems are
x 2
Yz (+) = -’J fo l’t,&- (i’, t- }) Y;[ («}) o‘%'-

In general, the higher order systenm is given by
A-1

Yi(h) = - SJ by (1, f—y)YLJ(g)Y(;)o/y, iz 4y, byen

For this example, r(t) 2 U(t), 2 unit step function, so the sys-

tems reduce to!

£ (- o gzt o X
Yowe J A v = [ g Gk |- By

Vo= 0] p Gl @' - -40)- -4

Yot = -2p §, 2 (be)dy = £ 4= 4

L - o &0

i1 %

Yih) = Z“———“L Y*;U‘{a(,) gy iz 4,8,
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Now that the analysis of the nonlinear system for the case
of a deterministic unit step input has been conpleted above, it
is permissible to proceed with the analysis of the c;ase of a
stochastic input since all the information adccyved in the analy-
sis for the unit step will be neceded. Applying ensemble

averages to the linear portion convolution integral yields

yatth, = <8 g (- PGVl 7e = d, e (- <0G =
<'f >J ﬁ\ ()C ’ })u CJ/}’ <T(‘f)7~r ‘?m (ﬂ

where Y4u(t) is notation 1ndica»

ting that it is the deterministic response when the input is a
unit step. In general, <Yi(t)>y = <r1(t)>r Xiu(t) for i = 1,2,3,..,

For the above example :

<Yi (t)>y - X <1“(t)>1'
Gz () y = HeGRON
Gy, T <r3<t>>r

And the final solution is

Qe - 2’ el (), Y, (©
5 <r<t)>r -p18 e ), + pe <o)y,
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